JPS601235A - Glass fiber-reinforced polyolefin resin composition - Google Patents

Glass fiber-reinforced polyolefin resin composition

Info

Publication number
JPS601235A
JPS601235A JP10926683A JP10926683A JPS601235A JP S601235 A JPS601235 A JP S601235A JP 10926683 A JP10926683 A JP 10926683A JP 10926683 A JP10926683 A JP 10926683A JP S601235 A JPS601235 A JP S601235A
Authority
JP
Japan
Prior art keywords
polyolefin
glass fiber
parts
weight
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10926683A
Other languages
Japanese (ja)
Other versions
JPS6311365B2 (en
Inventor
Koichi Matsumoto
光市 松本
Takashi Yamamoto
隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10926683A priority Critical patent/JPS601235A/en
Publication of JPS601235A publication Critical patent/JPS601235A/en
Publication of JPS6311365B2 publication Critical patent/JPS6311365B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To provide a polyolefin resin compsn. having excellent mechanical strength, by melt-kneading glass fiber, an unsaturated silane compd., an org. carboxylic acid, and a free radical generating agent with a polyolefin. CONSTITUTION:50-99pts.wt. polyolefin, 1-50pts.wt. (per 100pts.wt. polyolefin) glass fiber, 0.1-5pts.wt. (per 100pts.wt. glass fiber) unsaturated silane compd., 0.01-5pts.wt. org. carboxylic acid or anhydride and 0.005-0.5pts.wt. (per 100 pts.wt. polyolefin) free radical generating agent are melt-kneaded together. Preferred polyolefin resins include crystalline polypropylene and a crystalline ethylene/propylene copolymer. Preferred carboxylic acid and its anhydride include C1-C3 carboxylic acids. Preferred free radical generating agents include org. peroxides having a decomposition temp. of 120 deg.C or above at which the falf life period for decomposition is 1min.

Description

【発明の詳細な説明】 本発明は、機械的強度に優れたガラス繊維強化ポリオレ
フィン系樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a glass fiber reinforced polyolefin resin composition having excellent mechanical strength.

ガラス繊維で強化したポリオレフィン系樹脂は通常のポ
リオレフィン系樹脂よりも機械的性質、耐熱性、寸法安
定性等がすぐれているため、自動車部品、電気器具部品
、各種工業部品への適用が広がりつつある。
Glass fiber-reinforced polyolefin resins have superior mechanical properties, heat resistance, and dimensional stability than regular polyolefin resins, so their application to automobile parts, electrical appliance parts, and various industrial parts is expanding. .

従来、ガラス繊維強化ポリオレフィン系樹脂組成物の物
性改善のためにガラス繊維とポリオレフィン系樹脂の界
面改質ないし界面接着を達成するための各種提案がなさ
れている。例えば、(1)不飽和シラン化合物とラジカ
ル発生剤を共存させる方法(特公昭49−41098号
公報等)、(2)ポリオレフィン系樹脂にシラン処理ガ
ラス繊維と該シラ、ンと反応し得る多官能上ツマ−とラ
ジカル発生剤を添加混合する方法(特公昭49〜410
96号公報等)、(3)アミノアルキルシラン系化合物
で表面処理されたガラス繊維とポリオレフィンに、有機
カルゼン酸もしくはその酸無水物を添加する方法(特公
昭49−49029号公報)、(4)不飽和カル−7酸
またはその無水物で変性されたポリオレフィン系樹脂に
、酸と反応する有機基を有するシラン化合物で処理され
たガラス繊維を添加混合させる方法(特公昭51−10
265号公報等)等がある。しかしながら、従来法(1
)、(2)、(3)の方法Fi、簡便ではあるが機械的
強度の改善効果は充分でなく、従来法(4)の方法は機
械的強度の改善効果を充分に得るには変性されたポリオ
レフィン−′系樹脂を多量に必要と1また、予め変性さ
れたポリオレフィン系樹脂を製造もしくは入手する必要
があるので工程的に煩雑であシ、経済的にも高価である
Conventionally, various proposals have been made for achieving interfacial modification or interfacial adhesion between glass fibers and polyolefin resins in order to improve the physical properties of glass fiber reinforced polyolefin resin compositions. For example, (1) a method in which an unsaturated silane compound and a radical generator coexist (Japanese Patent Publication No. 49-41098, etc.), (2) a polyolefin resin containing silane-treated glass fiber and a polyfunctional compound that can react with the silane, Method of adding and mixing the upper part and a radical generator
96, etc.), (3) A method of adding organic carzenic acid or its acid anhydride to glass fiber and polyolefin surface-treated with an aminoalkylsilane compound (Japanese Patent Publication No. 49-49029), (4) A method of adding and mixing glass fibers treated with a silane compound having an organic group that reacts with acids to a polyolefin resin modified with an unsaturated cal-7 acid or its anhydride (Japanese Patent Publication No. 51-10
No. 265, etc.). However, the conventional method (1
Methods Fi), (2), and (3) are simple, but the effect of improving mechanical strength is not sufficient, and the conventional method (4) requires modification to obtain a sufficient effect of improving mechanical strength. Since a large amount of modified polyolefin-' resin is required, and a polyolefin resin that has been modified in advance must be manufactured or obtained, the process is complicated and economically expensive.

本発明は従来法を極めて簡便な処決で改善することによ
り、組成物の機械的強度を飛躍的に向上し得ることを見
出し完成したものである。
The present invention was completed based on the discovery that the mechanical strength of the composition can be dramatically improved by improving the conventional method with an extremely simple solution.

すなわち本発明は、ポリオレフィン50〜99重量部と
前記ポリオレフィンに対してガラス繊維1〜50重量部
と前記ガラス繊維100重量部に対して0.1〜5重量
部の不飽和シラン化合物と0.01〜5重量部の有機カ
ルボン酸もしくはその酸無水物と前記ポリオレフィン1
00重量部に対して0.005〜0.5重量部のラジカ
ル発生剤とを溶融混練してなるガラス繊維強化ポリオレ
フィン系樹脂組成物に関するものである。
That is, the present invention includes 50 to 99 parts by weight of polyolefin, 1 to 50 parts by weight of glass fibers based on the polyolefin, 0.1 to 5 parts by weight of an unsaturated silane compound and 0.01 parts by weight based on 100 parts by weight of the glass fibers. ~5 parts by weight of an organic carboxylic acid or its acid anhydride and the polyolefin 1
The present invention relates to a glass fiber-reinforced polyolefin resin composition obtained by melt-kneading 0.00 parts by weight with 0.005 to 0.5 parts by weight of a radical generator.

本発明におけるポリオレフィン系樹脂としては、結晶性
ポリプロピレン、結晶性エチレン−ゾロピレン共重合体
、ポリエチレン、ポリブテン、ポリ−4−メチルペンテ
ン−1等のα−オレフィンの単独重合体、α−オレフィ
ンと他のび一オレフィン、芳香族オレフィン1、ジエン
類など共重合可能なモノマーとの共重合体であり、これ
らの混合物あるいは50重量%未満のニジストマー類、
他種#′4 ポリマーとの混合物も可能である。特に、結晶性ポリプ
ロピレン、結晶性エチレン−プロピレン共重合体が好適
である。
Examples of the polyolefin resin in the present invention include crystalline polypropylene, crystalline ethylene-zolopylene copolymer, polyethylene, polybutene, homopolymer of α-olefin such as poly-4-methylpentene-1, and α-olefin and other polymers. A copolymer with copolymerizable monomers such as olefins, aromatic olefins, and dienes, and mixtures thereof or less than 50% by weight of distoners,
Mixtures with other #'4 polymers are also possible. Particularly suitable are crystalline polypropylene and crystalline ethylene-propylene copolymer.

本発明における不飽和シラン化合物としては、分子内に
エチレン性二重結合と、シラノール基を形成し得る基を
有する有機シランであり、たとえtf?’ニルトリメト
キシシラン、ビニルトリエトキシシラン、γ−メタクリ
ロイルオキシプロピルトリメトキシシラン、γ−アクリ
ロイルオキシゾロピルトリメトキシシラン等が好適であ
り、2種以上の混合物も可能である。これらの不飽和シ
ラン化合物の使用量は、ガラス繊維100重量部に対し
て0.1〜5重量部、より好ましくは0.3〜3重量部
の範囲にある。上記範囲未満では機械的強度の向上は得
られず、上記範囲以上では機械的強度の向上割合は小さ
くなシ、コスト高になり、耐熱性の低下、変色等が起り
易い。
The unsaturated silane compound in the present invention is an organic silane having an ethylenic double bond and a group capable of forming a silanol group in the molecule, and even tf? Preferred are nyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-acryloyloxyzolopyltrimethoxysilane, and mixtures of two or more of them are also possible. The amount of these unsaturated silane compounds to be used is in the range of 0.1 to 5 parts by weight, more preferably 0.3 to 3 parts by weight, based on 100 parts by weight of glass fiber. If it is less than the above range, no improvement in mechanical strength will be obtained, and if it is above the above range, the rate of improvement in mechanical strength will be small, the cost will be high, and heat resistance may deteriorate, discoloration, etc. may easily occur.

本発明における有機カルボン酸もしくはその酸無水物と
しては各棟が可能であシ、脂肪族カルボン酸であっても
芳香族カルボン酸であってもよく、モノカルボン酸であ
っても、ジカルデン酸であってもよく、飽和カルボン酸
であっても不飽和カルボン酸であってもよく、他種の官
能基を有していてもよい。たとえば、酢酸、プロピオン
酸、カプリン酸、ラウリン酸、ステアリン酸、アクリル
酸、メタクリル酸、オレイン酸、コハク酸、アジピン酸
、七ノ々シン醗、マレイン酸、フマール酔、イタコン酸
、シトラコン酸、乳酸、クエン酸、フタル酸、安息香酸
、トルイル酸、等が代表的なものとして挙げられる。と
りわけ炭素数3〜lOのカルボン酸が好ましい。
The organic carboxylic acid or its acid anhydride in the present invention can be of any type, and may be an aliphatic carboxylic acid, an aromatic carboxylic acid, a monocarboxylic acid, or a dicardic acid. It may be a saturated carboxylic acid or an unsaturated carboxylic acid, and may have other kinds of functional groups. For example, acetic acid, propionic acid, capric acid, lauric acid, stearic acid, acrylic acid, methacrylic acid, oleic acid, succinic acid, adipic acid, nananocin, maleic acid, fumaric acid, itaconic acid, citraconic acid, lactic acid. Typical examples include citric acid, phthalic acid, benzoic acid, toluic acid, and the like. Particularly preferred are carboxylic acids having 3 to 10 carbon atoms.

また、これらの酸無水物も可能であるが、マレイン酸、
コハク酸、フタル酸、シトシコン酸等の酸無水物が有用
である。上記の酸、および酸無水物は単独でもよいが、
2種以上の混合物として使用してもよい。上記の有機カ
ルボン酸もしくはその酸無水物の使用量は、ガラス繊維
100重量部に対して001〜5重量部、より好ましく
は0.1−1重量部の範囲にある。
In addition, these acid anhydrides are also possible, but maleic acid,
Acid anhydrides such as succinic acid, phthalic acid, and cytosiconic acid are useful. The above acids and acid anhydrides may be used alone, but
You may use it as a mixture of 2 or more types. The amount of the organic carboxylic acid or its acid anhydride used is in the range of 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight, based on 100 parts by weight of glass fiber.

また、不飽和シラン化合物に対しての使用量は重量比で
1/λθ〜26)/1の範囲で良好であるが、1/10
〜V1の範囲の使用量でも充分な改善効果が得られる。
In addition, the amount used for the unsaturated silane compound is preferably in the range of 1/λθ to 26)/1 in terms of weight ratio, but 1/10
Sufficient improvement effects can be obtained even with the usage amount in the range of ~V1.

上記使用量が上記範囲よりも少い場合は機械的強度の改
善効果が充分でなく、−F記範囲よりも多い場合は改善
効果の上昇割合は小さいものとなシ、変色や臭気等が起
り易くなる。
If the amount used is less than the above range, the mechanical strength improvement effect will not be sufficient, and if it is more than the -F range, the rate of increase in the improvement effect will be small, and discoloration, odor, etc. may occur. It becomes easier.

本発明におけるラジカル発生剤としては、有機過酸化物
やアゾ化合物が挙げられる。とくに分解の半減期が1分
間となる分解温度が120℃以上になる有機過酸化物が
好適である。たとえば、kンゾイルノセーオキサイド、
ジクミルパーオキサイr。
Examples of the radical generator in the present invention include organic peroxides and azo compounds. Particularly suitable are organic peroxides having a decomposition temperature of 120° C. or higher and a half-life of 1 minute. For example, knzoylnoseoxide,
dicumyl peroxyr.

2.5−ジメチル−2,5−ジ(重−ブチルノミ−オキ
シ)ヘキサン、2.5−ジメチル−2,5−ジ(t−ブ
チルiR−オキシ)ヘキシン−3,1,3−ビス(t−
ifルノぞ−オキシイソゾロピル)4ンゼン、1.4−
ビス(t−ジチル・ξ−オキシイソゾロビル)ベンゼン
、ジー謙−プチルパーオキシド、クメンヒドロパーオキ
シ’Y、t−ブチルノミ−ベンゾエート等があシ、2種
以上の混合物としても使用できる。これらのラジカル発
生剤の使用景は、ポリオレフィンの種類、ガラス繊維の
量、不飽和シラン化合物のt1混線条件によっても異な
るが、通常ポリオレフィン100重量部に対して0.0
05〜0.5重量部、より好ましくは0.01〜0.1
重量部の範囲にある。上記範囲よりも少い場合は機械的
強度の改善効果は充分でなく、上記範囲よりも多い場合
はポリマーラジカルの生成量が多過ぎて、架橋や主鎖切
断が起きて、物性上も成形性も好ましくない。
2,5-dimethyl-2,5-di(heavy-butylnomino-oxy)hexane, 2,5-dimethyl-2,5-di(t-butyl iR-oxy)hexyne-3,1,3-bis(t −
iflunozo-oxyisozolopyl) 4-enzene, 1.4-
Examples include bis(t-dityl/ξ-oxyisozolobyl)benzene, di-butyl peroxide, cumene hydroperoxy'Y, and t-butyl mono-benzoate, and they can also be used as a mixture of two or more. The use of these radical generators varies depending on the type of polyolefin, the amount of glass fiber, and the t1 crosstalk conditions of the unsaturated silane compound, but it is usually 0.0 parts by weight per 100 parts by weight of the polyolefin.
05 to 0.5 parts by weight, more preferably 0.01 to 0.1
Parts by weight range. If the amount is less than the above range, the mechanical strength improvement effect will not be sufficient, and if it is more than the above range, too many polymer radicals will be generated, resulting in crosslinking and main chain scission, resulting in poor physical properties and moldability. I also don't like it.

本発明において使用するガラス繊維は、通常市販のガラ
ス繊維で充分であり、表面処理は通常アミノシラン、エ
ポキシシラン、ビニルシラン、アクリルシラン等で処理
されているが、いずれで処理されたものも可能であり、
また処理されていなくてもよい。
The glass fibers used in the present invention are usually commercially available glass fibers, and are usually surface-treated with aminosilane, epoxysilane, vinylsilane, acrylic silane, etc., but fibers treated with any of these are also possible. ,
Also, it may not be processed.

通常ガラス繊維は3m+16ra長等に切断されたチョ
ツプドストランrがよいが、長繊維のロービングを供給
して混練中、(折断せしめてもよい。
Usually, the glass fibers are preferably chopped strands cut into lengths of 3 m + 16 ra, etc., but long fiber rovings may be supplied and broken during kneading.

本発明の組成物において、ガラス繊維の濃度は1〜50
重量%、より好ましくは3〜40重量%の範囲にある。
In the composition of the invention, the concentration of glass fibers is between 1 and 50
% by weight, more preferably in the range 3-40% by weight.

上記範囲より少い場合はガラス繊維の補強効果は小さい
ものであり、上記範囲より多い場合祉補強効果は飽和し
、成形性、成形品の外観等が低下(2てしまう。
When the amount is less than the above range, the reinforcing effect of the glass fiber is small, and when it is more than the above range, the reinforcing effect is saturated, and moldability, appearance of the molded product, etc. deteriorate (2).

本発明の組成物を製造するには、各種の方法が可能であ
り、コーンブレンダー、リボンブレンダー等で上記成分
を予備混合してトライブレンド組成物としSこれを各種
成形機に供給して溶融成形して成形品を得る方法、上記
予備混合物を単軸押出機、2軸押用機等で溶融混練して
造粒してペレット状組成物とし、これを各種成形に供す
る方法が可能である。
Various methods are possible for producing the composition of the present invention, and the above components may be premixed using a cone blender, ribbon blender, etc. to form a tri-blend composition, which is then fed to various molding machines and melt-molded. Alternatively, the premix may be melt-kneaded and granulated using a single-screw extruder, twin-screw extruder, etc. to obtain a pellet-like composition, which is then subjected to various moldings.

本発明によりトライブレンド組成物やペレット状組成物
として得られる成形材料は射出成形、押出成形、圧縮成
形などの通常用いる溶融成形法によシ各種成形品、シー
ト、棒、Aイブ状物に成形される。
The molding material obtained as a tri-blend composition or a pellet-like composition according to the present invention can be molded into various molded products, sheets, rods, and A-shaped products by commonly used melt molding methods such as injection molding, extrusion molding, and compression molding. be done.

本発明の組成物は上記成分以外に、熱安定剤、紫外線吸
収剤、帯電防止剤、滑剤、充てん剤、難燃剤、着色剤、
結晶核剤等の各種添加剤を含有していてもよい。
In addition to the above-mentioned components, the composition of the present invention includes a heat stabilizer, an ultraviolet absorber, an antistatic agent, a lubricant, a filler, a flame retardant, a colorant,
It may contain various additives such as a crystal nucleating agent.

以下、実施例及び比較例により本発明をさらに具体的に
説明する。実施例及び比較例中の部、チは全て重量部、
重量%を表す。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. All parts and parts in Examples and Comparative Examples are parts by weight.
Expresses weight %.

また、機械的強度は引張強度および曲げ特性を測定した
。測定方法は以下の方法によった。
In addition, mechanical strength was measured by measuring tensile strength and bending properties. The measurement method was as follows.

引張強度: A8’rM D638、単位に9/−曲げ
強度: A8’rM D790.単位Kf/ct;1曲
げ弾性率: A8TM D790、単位Kf/d実施例
1−1−6 MFI4.0の結晶性ポリゾロピレン、r−メタクリロ
イルオキシプロピルトリメトキシシラン、マレイン酸、
2・5−ジメチル−2・5−ジ(t−ブチルパーオキシ
)ヘキサンを第1表に記載の割合で充分混合した後、長
さ3wIII+、直径13μのγ−アミノプロピルトリ
エトキシシランで表面処理されたガラス繊維チョツプド
ストランPを添加混合して、押出機に供給して230℃
で溶融混練してペレット化した。得られたペレットから
射出成形により試験片を作成し、機械的強度を測定17
た。その結果を第1表に示す。
Tensile strength: A8'rM D638, 9/- in units Bending strength: A8'rM D790. Unit Kf/ct; 1 Flexural modulus: A8TM D790, Unit Kf/d Example 1-1-6 Crystalline polyzolopyrene with MFI 4.0, r-methacryloyloxypropyltrimethoxysilane, maleic acid,
After thoroughly mixing 2,5-dimethyl-2,5-di(t-butylperoxy)hexane in the proportions listed in Table 1, the surface was treated with γ-aminopropyltriethoxysilane having a length of 3wIII+ and a diameter of 13μ. The chopped glass fiber P was added and mixed, and the mixture was fed to an extruder and heated at 230°C.
The mixture was melt-kneaded and pelletized. A test piece was made from the obtained pellet by injection molding, and the mechanical strength was measured17.
Ta. The results are shown in Table 1.

比較例1−1〜5 実施例1において、各成分の量比を第1表に示す割合に
した以外は実施例1と同様にして組成物ペレットを製造
し、機械的強度を測定した。その結果を第1表に示す。
Comparative Examples 1-1 to 5 Composition pellets were produced in the same manner as in Example 1 except that the quantitative ratio of each component was changed to the ratio shown in Table 1, and the mechanical strength was measured. The results are shown in Table 1.

比較例2 無水マレイン酸0.3部でグラフト変性されたMFI 
8の結晶性ポリゾロピレン70部と、実施例1で用いた
ガラス繊維30部を実施例1と同様に押出機を使用して
ペレット組成物を製造し、評価した。その結果を第1表
に示す。
Comparative Example 2 MFI graft-modified with 0.3 parts of maleic anhydride
A pellet composition was prepared using an extruder in the same manner as in Example 1 using 70 parts of crystalline polyzolopyrene No. 8 and 30 parts of the glass fiber used in Example 1, and evaluated. The results are shown in Table 1.

以 下 余 白 実施例2 実施例1−1において、マレイン酸の代すに各種有機カ
ルヂン酸および酸無水物を使用すること、を除いては実
施例1−1と同様にして組成物ペレットを製造し、機械
的強度を測定した。その結果を第2表に示す。
Example 2 Composition pellets were prepared in the same manner as in Example 1-1, except that various organic cardinic acids and acid anhydrides were used in place of maleic acid in Example 1-1. It was manufactured and its mechanical strength was measured. The results are shown in Table 2.

第2表 実施例3 実施例1−5において、結晶性ポリゾロピレンの代シに
MI20、密度0.962の高密度ポリエチレンを使用
することを除いては実施例1・−5と同様にして組成物
ペレットを製造し、機械的強度を測定した。引張強度は
820KqlcJ、曲げ強度は1210Kv’cJであ
った。
Table 2 Example 3 In Example 1-5, a composition was prepared in the same manner as in Examples 1-5, except that high-density polyethylene with an MI of 20 and a density of 0.962 was used in place of the crystalline polyzolopyrene. Pellets were manufactured and mechanical strength was measured. The tensile strength was 820 KqlcJ, and the bending strength was 1210 Kv'cJ.

比較例3 実施例3において、高密度ポリエチレンとガラス繊維の
みを使用することを除いては実施例3と同様にして組成
物ペレットを製造し、機械的強度を測定した。引張強度
は5 B □Kg/lyi、曲げ強度は690Kp/ノ
であった。
Comparative Example 3 Composition pellets were produced in the same manner as in Example 3, except that only high-density polyethylene and glass fiber were used, and the mechanical strength was measured. The tensile strength was 5 B□Kg/lyi, and the bending strength was 690Kp/no.

本発明の組成物は機械的強度が優れており、特に引張強
度、曲は強度が極めて高い値を示す。本発明によれば、
ガラス繊維20チを充てんすることにより、従来法の組
成物ではガラス繊維30%の充てんを要する引張強度、
曲げ強度と近似の値を発現することができる。ガラス繊
維の充てん量を下げることができるということは、コス
トダウンはもとより、成形機の摩耗は少くなシ、成形品
の外観は艮くなり、軽くなり、異方性が少くできる等メ
リットは数多い。
The composition of the present invention has excellent mechanical strength, particularly tensile strength and bending strength, which exhibit extremely high values. According to the invention,
By filling 20 inches of glass fiber, the tensile strength that would require 30% glass fiber filling in the conventional composition,
It is possible to develop a value that approximates the bending strength. Being able to reduce the amount of glass fiber filled has many benefits, including cost reduction, less wear on the molding machine, a clearer appearance of the molded product, lighter weight, and less anisotropy. .

しかも本発明の組成物は簡便な方法で製造できる。Moreover, the composition of the present invention can be produced by a simple method.

特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1) ポリオレフィン50〜99重量部と前記ポリオ
レフィンに対してガラス繊維1〜50重量部と前記ガラ
ス繊維100重量部に対して0.1〜5重量部の不飽和
シラン化合物と0.01〜5重量部の有機カルゼン酸も
しくはその酸無水物と前記ポリオレフィン100重量部
に対して0.005〜0.5重量部のラジカル発生剤と
を溶融混練してなるガラス繊維強化ポリオレフィン系樹
脂組成物
(1) 50 to 99 parts by weight of a polyolefin, 1 to 50 parts by weight of glass fiber based on the polyolefin, 0.1 to 5 parts by weight of an unsaturated silane compound based on 100 parts by weight of the glass fiber, and 0.01 to 5 parts by weight of an unsaturated silane compound. A glass fiber-reinforced polyolefin resin composition obtained by melt-kneading parts by weight of organic carzenic acid or its acid anhydride and 0.005 to 0.5 parts by weight of a radical generator per 100 parts by weight of the polyolefin.
JP10926683A 1983-06-20 1983-06-20 Glass fiber-reinforced polyolefin resin composition Granted JPS601235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10926683A JPS601235A (en) 1983-06-20 1983-06-20 Glass fiber-reinforced polyolefin resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10926683A JPS601235A (en) 1983-06-20 1983-06-20 Glass fiber-reinforced polyolefin resin composition

Publications (2)

Publication Number Publication Date
JPS601235A true JPS601235A (en) 1985-01-07
JPS6311365B2 JPS6311365B2 (en) 1988-03-14

Family

ID=14505807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10926683A Granted JPS601235A (en) 1983-06-20 1983-06-20 Glass fiber-reinforced polyolefin resin composition

Country Status (1)

Country Link
JP (1) JPS601235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312706A (en) * 2005-04-08 2006-11-16 Asahi Fiber Glass Co Ltd Cyclic polyolefin resin composition and molded product thereof
JP2019529620A (en) * 2016-09-19 2019-10-17 ロッテ ケミカル コーポレーション Glass fiber composite material with improved impact strength

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312706A (en) * 2005-04-08 2006-11-16 Asahi Fiber Glass Co Ltd Cyclic polyolefin resin composition and molded product thereof
JP2019529620A (en) * 2016-09-19 2019-10-17 ロッテ ケミカル コーポレーション Glass fiber composite material with improved impact strength

Also Published As

Publication number Publication date
JPS6311365B2 (en) 1988-03-14

Similar Documents

Publication Publication Date Title
US4338228A (en) Polyolefin composition containing (a) filler (b) nucleating agent and (c) heat deterioration inhibitor
JP3338124B2 (en) Propylene-based heat-resistant resin molding material and molded article thereof
JPS61190549A (en) Glass fiber-reinforced polypropylene composition
JPS60203654A (en) Glass fiber-reinforced polypropylene composition
JP2010116571A (en) Filler-containing polyolefin resin composition, pellet, and molded article of the same
JP2584663B2 (en) Reinforced polypropylene composition
JPS6335179B2 (en)
JP2004197068A (en) Filler-containing polyolefin resin composition, pellet and its molded product
JP2019529620A (en) Glass fiber composite material with improved impact strength
JPS6057464B2 (en) Polyamide resin composition
KR950009113B1 (en) Process to graft stereoregular polymers of branched, higher alpha-olefins and composition thereof
JPS58167637A (en) Preparation of molded polyolefin type resin article
KR101063712B1 (en) Method for producing thermoplastic resin having scratch resistance
JPS6311366B2 (en)
JPS601235A (en) Glass fiber-reinforced polyolefin resin composition
JPH0416499B2 (en)
JPH0425291B2 (en)
JPS58217532A (en) Production of glass fiber-reinforced polyolefin
JPS58145745A (en) Production of polyolefin resin molding
JPS631985B2 (en)
JP3115344B2 (en) Manufacturing method of propylene resin housing
JPS6381147A (en) Glass fiber reinforced polypropylene resin composition
JPH038382B2 (en)
JPS6366343B2 (en)
JPS63178153A (en) Production of filled propylene polymer composition