JPS60123254A - Tool abrasion monitoring method - Google Patents

Tool abrasion monitoring method

Info

Publication number
JPS60123254A
JPS60123254A JP58227839A JP22783983A JPS60123254A JP S60123254 A JPS60123254 A JP S60123254A JP 58227839 A JP58227839 A JP 58227839A JP 22783983 A JP22783983 A JP 22783983A JP S60123254 A JPS60123254 A JP S60123254A
Authority
JP
Japan
Prior art keywords
tool
cutting
tip
electric charge
piezoelectric sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58227839A
Other languages
Japanese (ja)
Inventor
Masahiko Sakai
正彦 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP58227839A priority Critical patent/JPS60123254A/en
Publication of JPS60123254A publication Critical patent/JPS60123254A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0966Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring a force on parts of the machine other than a motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0957Detection of tool breakage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/128Sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/06Measuring, gauging, or adjusting equipment on turning-machines for setting-on, feeding, controlling, or monitoring the cutting tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/24Tool holders for a plurality of cutting tools, e.g. turrets
    • B23B29/244Toolposts, i.e. clamping quick-change toolholders, without description of the angular positioning device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2717/00Arrangements for indicating or measuring
    • B23Q2717/003Arrangements for indicating or measuring in lathes

Abstract

PURPOSE:To discriminate the condition of abrasion of a tool, by comparing the output of a pressure sensor during cutting, which is disposed between a holder for a cutting tool and a tool main body or between the tool main body and the tip of the tool, with the output of the pressure sensor which is previously st as a value upon normal cutting. CONSTITUTION:A cutting tool 10 is secured to a piezo sensor 1 laid on a bed for the tool 10. A force from a workpiece is exerted to the tip of the tool due to the resistance of cutting, and is also applied to a pressure sensor 1, and an electric charge in proportional to the force is generated. This electric charge is compared with an electric charge which has been obtained beforehand upon normal cutting. Accordingly, if the electric charge abruptly increases, it is indicated that any fault takes places in the tip, and further, the more the frequency of increases in the electrical charge, the more the abrasion of the tool progresses.

Description

【発明の詳細な説明】 本発明は、切削中に切削工具の摩耗状態を監視する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for monitoring the wear condition of a cutting tool during cutting.

NC旋盤やマシニングセンタ等の自動加工装置において
は、その加工中に切削工具の摩耗の程度を判定し、摩耗
が所定の状態を越えた際には迅速に切削工具を交換する
必要がある。
BACKGROUND ART In automatic processing devices such as NC lathes and machining centers, it is necessary to determine the degree of wear on cutting tools during processing, and to quickly replace the cutting tools when the wear exceeds a predetermined level.

この種の摩耗監視法としては、加工装置内の・駆動モー
タの消費電流を検出してそれが所定値を越えたか否かを
監視する方法が提案されている。すなわち、これは切削
工具が摩耗すれば、両者間の摩擦係数が増大してそれだ
け切削抵抗が増し、結局、その分モータの消費電流が増
す現象を利用したものである。ところが、モータの消費
電流は、そのワークとモータの間に介入されている歯車
列等の動力伝達系の負荷変動にも当然左右されることに
なり、この種の負荷変動は時々刻々大幅に変化しでいる
ために、消費電流の時々刻々の変化から摩耗状態の判断
は困難である。そこで、消費電流の所定時間ごとの平均
値の大小を監視することになるが、動力伝達系の負荷変
動のゆらぎ等もあり、正常時の消費電流との差異が判別
可能な摩耗状態は、大幅に摩耗がすすんだ時点となり、
結局、この方法では応答性の低下が避けられない。主た
、この方法は、モータを定トルク制御させている加工装
置に対しては適用不能である。
As this type of wear monitoring method, a method has been proposed in which the current consumption of a drive motor in a processing device is detected and whether or not it exceeds a predetermined value is monitored. That is, this method takes advantage of the phenomenon that when a cutting tool wears out, the coefficient of friction between the two increases, cutting resistance increases accordingly, and the current consumption of the motor increases accordingly. However, the current consumption of a motor naturally depends on load fluctuations in the power transmission system, such as a gear train, that is interposed between the workpiece and the motor, and this type of load fluctuation changes significantly from moment to moment. Therefore, it is difficult to judge the state of wear from momentary changes in current consumption. Therefore, it is necessary to monitor the magnitude of the average value of the current consumption at each predetermined time, but due to fluctuations in the load of the power transmission system, etc., the wear condition that can be distinguished from the normal consumption current is significantly reduced. At the point when the wear has progressed,
In the end, this method inevitably reduces responsiveness. Mainly, this method is not applicable to processing equipment in which the motor is controlled with constant torque.

その池、アフースティソクエミソションを利用する監視
法も研究され始めてはいるが、現在のところ信号の再現
性に難点がある池、モータや伝達系の発生する信号との
分離も難しく、現場での使用に耐えるまでの信頼性は摺
られていない。
Although research has begun on monitoring methods using afousti-isolation, it is currently difficult to separate the signal from the signal generated by the motor or transmission system, and it is difficult to separate the signal from the signal generated by the motor or transmission system. Reliability to withstand use has not been tested.

さて、切削工具の摩耗により生じる顕著な現象は、前記
したように切削抵抗の増大であり、それによりモータの
消費電流も堆すが、このと外、当然切削工具しそれに対
応した力を受けているわけである。とすると、監視対象
自体である工具の受ける力を直接取出して監視すれば、
それだけS/N比のよい確実な摩耗状態のI’ll断が
行なえることになる。
Now, as mentioned above, a noticeable phenomenon caused by the wear of cutting tools is an increase in cutting resistance, which also increases the current consumption of the motor, but in addition to this, of course, the cutting tool receives a corresponding force. That's why there is. Then, if we directly extract and monitor the force exerted by the tool itself, which is the object to be monitored,
Accordingly, it is possible to perform reliable I'll cutting of the worn state with a good S/N ratio.

本発明は上記前えに基づき、切削工具に何等の加工を加
えることなく、確実、簡単に摩耗状態を監視し得る方法
を提供するものであり、切削]−只、のホルダと工具本
体との間、あるいは工具本体と千ノブとの間に例えば、
チタン酸バリウム片と電極よりなる圧電センサを介在さ
せて切削中1こ圧電センサ出力を取出し、その圧電セン
サ出力と予めめた正常切削時の圧電センサ出力とを比較
して切削工具の摩耗状態をt’ll別するようにしたも
のである。
The present invention is based on the foregoing, and provides a method for reliably and easily monitoring the wear state of a cutting tool without adding any processing to the cutting tool. For example, between the tool body and the thousand knobs,
A piezoelectric sensor consisting of a barium titanate piece and an electrode is used to extract the piezoelectric sensor output during cutting, and the wear state of the cutting tool is determined by comparing the piezoelectric sensor output with the piezoelectric sensor output during normal cutting. It is designed to be separated by t'll.

本発明においては、切削工具が切削中に受ける力を切削
工具に加工を加えることなく取出す必要がある。そこで
、切削工具のホルダと工具本体とのr、il、あるいは
工具本体とナンブとの間に介在させることが可能な圧電
センサを力の検出要素として利用する。すなわち、旋盤
の切削工具にす弓いては、それがスローアウェイチップ
In the present invention, it is necessary to extract the force that the cutting tool receives during cutting without applying any processing to the cutting tool. Therefore, a piezoelectric sensor that can be interposed between the r and il of the cutting tool holder and the tool body, or between the tool body and the number is used as a force detection element. In other words, when used as a cutting tool on a lathe, it is an indexable insert.

を使用したものでは、il1図に示すように切削工具1
0の本体11の先端部に圧電セン勺]を設置し、その上
にチップ12を位置させ、チップ】2に穿った通孔13
を介してボルト(図示されていない)によI)本体〕コ
に一体的に締結する。また、創成切削工具においては、
ff12図に示すようにホルダ20の台座21」二に圧
電センサ1を設置し、その上に切削工具10′を位置さ
せ、工具10′を固定用ポル)22.231こよりホル
ダ20に一体的に締結する。
For those using cutting tool 1, as shown in Figure il1,
A piezoelectric sensor is installed at the tip of the main body 11 of the chip 2, and the chip 12 is placed on top of the piezoelectric sensor.
I) The body is integrally fastened to the body with a bolt (not shown) through the body. In addition, in generating cutting tools,
As shown in Figure ff12, the piezoelectric sensor 1 is installed on the pedestal 21'' of the holder 20, the cutting tool 10' is placed on it, and the tool 10' is integrally attached to the holder 20 through the fixing pole) 22.231. conclude.

旋削は、この切削工具のチップ先端を回転するワークに
接触させて行なうことになり、その切削抵抗により切削
工具先端にワークから力が加えられ、その結果、圧電セ
ンサ1にも力が加えられ、圧電センサ1にはその力に比
例した大きさの電荷が発生する。したがって、チップが
摩耗しtこり、あるいは欠損した場合には、切削抵抗が
大tこなi)、それに応じて発生電荷が大となる。
Turning is performed by bringing the tip of the cutting tool into contact with the rotating workpiece, and due to the cutting resistance, force is applied from the workpiece to the tip of the cutting tool, and as a result, force is also applied to the piezoelectric sensor 1. A charge proportional to the force is generated in the piezoelectric sensor 1. Therefore, if the tip is worn out and becomes stiff or chipped, the cutting resistance increases (i), and the generated charge increases accordingly.

次には、この電荷を予めめておいた正常切削時の電荷と
比較する。
Next, this charge is compared with a predetermined charge during normal cutting.

比較にあたっては、電荷の大きさを比較するのが最も簡
単であり、正常切削時の発生電荷に対して急′a、に電
荷が火となれば、チップ欠損が生じたことが判1!lI
 L、また、電荷が犬1こなる頻度が増加すれば、それ
だけ摩耗がすすんだ二とが判明する。−実験例によると
、チップ先端がわずかに欠けた状態にてその出力変化は
実効値において正常時の1.5倍に達することが確認さ
れた。さらに詳細な比較法としては電荷の時間軸上のパ
ターンを比較する方法であり、これによれ(r、より軽
微な段階からの摩耗状態が判明する。
The easiest way to make a comparison is to compare the magnitude of the electric charge.If the electric charge suddenly ignites compared to the electric charge generated during normal cutting, it is clear that chip failure has occurred! lI
Also, if the frequency at which the electric charge is applied increases, it becomes clear that the wear has progressed accordingly. - According to an experimental example, it was confirmed that when the tip tip was slightly chipped, the effective value of the output change reached 1.5 times that of the normal value. A more detailed comparison method is to compare the charge patterns on the time axis, and by this, (r), the state of wear from a more minor stage can be determined.

以上は、圧電センサ1の一方向(上下方向)の分力につ
ぎ正常時との比較を行なう場合であるが、圧電素子は3
方向に感度を有しており、前後方向、左右方向の分力を
電荷に変換して取出し、それぞれにっと」1記の比較を
行なうことによりさらに詳細な摩耗状態の監視が行なえ
ることになる。
The above is a case where the component force in one direction (vertical direction) of the piezoelectric sensor 1 is compared with the normal state.
It is sensitive to direction, and by converting component forces in the front-rear direction and left-right direction into electrical charges, and comparing them with each other, it is possible to monitor the wear state in more detail. Become.

以上のとおりであり、本発明は、監視対象である切削工
具の受ける力を直接的に、しがも切削工u−に加工を施
すことなく検出し、それを正常切削時の力と比較して摩
耗状態を判定するので、S/N比が高く、それだけ詳細
、かつ応答性よ<f11定でき、しがも簡単である。
As described above, the present invention directly detects the force applied to the cutting tool to be monitored without machining the cutting tool u-, and compares it with the force during normal cutting. Since the wear state is determined based on the wear condition, the S/N ratio is high, and the response can be determined in detail and response <f11, which is simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は、本発明を実施するための圧電センサの切
削工具への取(=1状態を示す斜視図である。 10:切削工具 11:工具本体 12:チ・ンプ20
:ホルグ 出願人
1 and 2 are perspective views showing a piezoelectric sensor installed in a cutting tool (=1 state) for carrying out the present invention. 10: Cutting tool 11: Tool body 12: Chip 20
: Horg applicant

Claims (1)

【特許請求の範囲】 1、切削工具のホルダと工具本体との間、あるいは工具
本体とチップとの間に圧電センサを介在させて切削中【
こ圧電センサ出力を取出し、その圧電センサ出力と予め
めた正常切削時の圧電センサ出力とを比較し、切削工具
の摩耗の状態を判別するところの工具摩耗監視方法。
[Claims] 1. During cutting, a piezoelectric sensor is interposed between the holder of the cutting tool and the tool body, or between the tool body and the tip.
A tool wear monitoring method that extracts the piezoelectric sensor output and compares the piezoelectric sensor output with the piezoelectric sensor output during normal cutting in advance to determine the state of wear of the cutting tool.
JP58227839A 1983-12-02 1983-12-02 Tool abrasion monitoring method Pending JPS60123254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58227839A JPS60123254A (en) 1983-12-02 1983-12-02 Tool abrasion monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58227839A JPS60123254A (en) 1983-12-02 1983-12-02 Tool abrasion monitoring method

Publications (1)

Publication Number Publication Date
JPS60123254A true JPS60123254A (en) 1985-07-01

Family

ID=16867170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58227839A Pending JPS60123254A (en) 1983-12-02 1983-12-02 Tool abrasion monitoring method

Country Status (1)

Country Link
JP (1) JPS60123254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110788670A (en) * 2019-09-25 2020-02-14 北京石墨烯技术研究院有限公司 Cutter wear monitoring system based on graphene sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160045A (en) * 1982-03-17 1983-09-22 Toshiba Corp Detecting method of abnormality of tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160045A (en) * 1982-03-17 1983-09-22 Toshiba Corp Detecting method of abnormality of tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110788670A (en) * 2019-09-25 2020-02-14 北京石墨烯技术研究院有限公司 Cutter wear monitoring system based on graphene sensor

Similar Documents

Publication Publication Date Title
US4471444A (en) Rotating tool wear monitoring apparatus
US4786220A (en) Cutting tool wear monitor
US4694686A (en) Cutting tool wear monitor
Inasaki Monitoring and optimization of internal grinding process
EP0156073A2 (en) Combination loading sensor
US4671147A (en) Instrumented tool holder
US4802274A (en) Method of determining worn rotary tool
Tansel et al. Micro-end-milling—II. Extending tool life with a Smart Workpiece Holder (SWH)
EP0165745A2 (en) Cutting tool wear monitor
JPS60123254A (en) Tool abrasion monitoring method
US4820092A (en) Touch sensing method and apparatus
Lin et al. In-process measurement and assessment of dynamic characteristics of machine tool structures
JP2505811B2 (en) Tool damage detection device for spindle head
JPS61142056A (en) Cutting tool abnormality detecting means in machine tool
Hashimoto et al. Experimental research on cutting force variation during primary chatter vibration occuring in plain milling operation
Liao A malfunction monitoring technique in drilling operations
JPS6322938B2 (en)
JPS58132626A (en) Method for detecting abnormal level
JPS59201748A (en) Apparatus for detecting breakage of cutting tool
JPS5849814B2 (en) A cutting tool with a blade for detecting abnormal changes in cutting resistance
SU1574406A1 (en) Method of checking the quality of ultrasonic microwelding
Oketani et al. Development of a force sensing drill holder for fine drilling
JPS62124857A (en) Abnormality detecting device for cutting tool
SU650666A1 (en) Shank for securing tool in the spindle
JPH074733B2 (en) Processing monitoring device