JPS60122701A - Production of hydrogen by partial oxidation of heavy hydrocarbon in cdq equipment - Google Patents

Production of hydrogen by partial oxidation of heavy hydrocarbon in cdq equipment

Info

Publication number
JPS60122701A
JPS60122701A JP58230508A JP23050883A JPS60122701A JP S60122701 A JPS60122701 A JP S60122701A JP 58230508 A JP58230508 A JP 58230508A JP 23050883 A JP23050883 A JP 23050883A JP S60122701 A JPS60122701 A JP S60122701A
Authority
JP
Japan
Prior art keywords
gas
coke
partial oxidation
heavy hydrocarbon
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58230508A
Other languages
Japanese (ja)
Inventor
Kenji Matsubara
健次 松原
Yasuo Okuyama
奥山 泰男
Izumi Shimoyama
泉 下山
Takeo Fujimura
藤村 武生
Yukio Murakami
幸雄 村上
Masahiro Horiguchi
堀口 正裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP58230508A priority Critical patent/JPS60122701A/en
Publication of JPS60122701A publication Critical patent/JPS60122701A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Coke Industry (AREA)

Abstract

PURPOSE:To produce hydrogen at a low cost by the efficient partial oxidation of heavy hydrocarbon while saving energy and eliminating carbon trouble by utilizing a coke dry-quenching equipment used in the manufacture of coke as a gas producer. CONSTITUTION:The temp. of the prechamber 2 of a gas producer 1 is kept at about 920-980 deg.C. Heavy hydrocarbon such as petroleum asphalt is preheated with a preheater 4 and introduced into the prechamber 2. At the same time, O2 is blown into the prechamber 2 by a larger volume than the volume of O2 required by a reaction represented by equation I , and the reaction temp. is kept at about 1,000-1,100 deg.C. An excess of O2 prevents a drop in temp. due to the endothermic reaction represented by the equation I by an exothermic reaction represented by equation II. In the cooling chamber 3, endothermic reactions represented by equations III, IV are caused by blowing steam to accelerate the cooling of lump coke. Gas produced by the partial oxidation of the heavy hydrocarbon is fed to a boiler 6 through a dust collector 5 to recover the sensible heat. The gas is desulfurized in a desulfurizer 9 and introduced into a pressure swing adsorber 10, where H2 is separated.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はコークス乾式消火設備(CDQ)をガス発生炉
として有効活用し重炭化水素を部分酸化して水素を安価
に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing hydrogen at low cost by partially oxidizing heavy hydrocarbons by effectively utilizing coke dry fire extinguishing equipment (CDQ) as a gas generating furnace.

〔従来技術〕[Prior art]

従来の重炭化水素を部分酸化することによって(CO+
H11)ガスを多−INK得る方法には、テキサコ法と
TBG法が一般によく知られている。
By partially oxidizing conventional heavy hydrocarbons (CO+
H11) The Texaco method and the TBG method are generally well known as methods for obtaining multi-INK gases.

テキサコ法は、 (重炭化水素) +10z →mco + nFh +
 rH2S (It(重炭化水素)+pot→qcOx
 + tH20−f21(2)式の発熱反応と(1)式
の吸熱反応を組合せることによシ、1200〜1500
℃の高温で86に9/1−dGの高圧下で行なうことを
特徴としている。ところが原料中の約2%がススとなる
ことが欠点である。
The Texaco method is (heavy hydrocarbon) +10z →mco + nFh +
rH2S (It (heavy hydrocarbon) + pot → qcOx
+ tH20-f21 By combining the exothermic reaction of formula (2) and the endothermic reaction of formula (1), 1200-1500
It is characterized in that it is carried out at a high temperature of 86°C and a high pressure of 9/1-dG. However, the disadvantage is that about 2% of the raw material becomes soot.

一方、TBG法によって代表される触媒部分酸化は、8
16〜950℃で16 kQ/ crl G程度の条イ
′1で行なわれる。この場合、重要なのは、触媒でらシ
、硫黄毒% CH4生成を最小にスス発生を抑制するこ
とが要求される。
On the other hand, the catalytic partial oxidation represented by the TBG method is
It is carried out at a temperature of 16 to 950°C in a row i'1 of about 16 kQ/crl G. In this case, what is important is that the catalyst is required to suppress the soot generation by minimizing the sulfur poison % CH4 formation.

これ等の方式は、(2)式が必要なため必然的に02使
用量が多いので、TBG法では外熱式固定床方式を採用
している。
Since these methods require equation (2) and inevitably use a large amount of 02, the TBG method employs an externally heated fixed bed method.

また触媒も高価であシ、寿命は2年程度と言われている
Catalysts are also expensive, and their lifespan is said to be about two years.

従来法ではいまだスス発生皆無の触媒の製造には成功し
ておらず数チのスス発生は止むを得ないとされている。
Conventional methods have not yet succeeded in producing a catalyst that does not generate soot, and it is said that the generation of several tons of soot is unavoidable.

部分酸化法の欠点は、(2)式の反応設備費を多く要す
る@ そのため、従来法では安価な重炭化水素を原料とするK
もかかわらず、高価な、ナフサをスチームリフオーミン
グするH!製造法よシも経済性に劣る結果となっている
The disadvantage of the partial oxidation method is that it requires a high cost for reaction equipment for equation (2). Therefore, in the conventional method, K
However, it is expensive to steam reform naphtha! The manufacturing method is also less economical.

TBG法とTEXACO法とを比較すると、TBG法の
方が少しだけ割安と言われている。
When comparing the TBG method and the TEXACO method, the TBG method is said to be slightly cheaper.

高圧で反応させるのも、02原単位を減少させるためで
あり、これは07重炭火水素に1.10、85 (kg
/に、)に低下することに起因すると言われている。
The reason for the reaction at high pressure is to reduce the 02 basic unit, which is 1.10, 85 (kg
It is said that this is caused by a decline in /, ).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、重炭化水素の高付加価値化を図るプロ
セスにおいて、省エネルギー及びカーボントラブルの解
消を図シ、経済性ある重炭化水素の部分酸化による水素
製造法を開発するKある。
The purpose of the present invention is to save energy and eliminate carbon troubles in the process of adding high value to heavy hydrocarbons, and to develop an economical hydrogen production method by partial oxidation of heavy hydrocarbons.

〔発明の概要〕[Summary of the invention]

本発明者等は前述の従来技術並に目的に鑑み、コークス
製造工場に使用されているCDQ設備に着目し、これを
ガス発生炉として活用することによシ、重炭化水素を効
率良く部分酸化し水素を製造し得ることを知見し発明し
たものであり、その要旨は重炭化水素を部分酸化して水
素を製造する方法において、コークス要式消火設備のブ
レチャンバー部に重炭化水素と酸素を吹込み、生成ガス
一方コークスの冷却を該コークス消火設備のクーリング
チャンバ一部へのスチーム吹込みによる吸熱反応と、顕
熱回収した後の循環ガスを該クーリンクチャンバー下部
より吹込み冷却することを特徴とするCDQ設備による
重炭化水素の部分酸化による水素製造法にある。
In view of the above-mentioned conventional technology and purpose, the present inventors focused on the CDQ equipment used in coke manufacturing plants, and by utilizing it as a gas generating furnace, they were able to efficiently partially oxidize heavy hydrocarbons. This invention was invented based on the knowledge that hydrogen could be produced by partially oxidizing heavy hydrocarbons. Injecting the generated gas, on the other hand, the coke is cooled by an endothermic reaction by blowing steam into a part of the cooling chamber of the coke extinguishing equipment, and by blowing circulating gas after sensible heat recovery from the lower part of the cooling chamber. It is characterized by a hydrogen production method by partial oxidation of heavy hydrocarbons using CDQ equipment.

第1図は本発明法による工程図であシ、第1図に基いて
本発明を更に詳しく述べる。
FIG. 1 is a process diagram of the method of the present invention, and the present invention will be described in more detail based on FIG.

本発明は前述の(2)式の反応を極力抑制するために、
冶金用コークス製造のコークス炉(図示なし)から排出
された赤熱コークスの顕熱の利用を(2)式の反応熱の
代シに使用することを試みたものである。コークス顧熱
回収設備(ガス発生炉)1は従来のCDQ設備の一部を
改造したものである。このブレチャンバー部2の温度は
920〜980℃に保持されている。一方石油系重質油
例えばアスファルト等の重炭化水素を予熱器4で予熱し
、同時に(1)式の反応に必要な02奮よりも多くの0
2をブレチャンバー部2に吹込み反応温度を10000
〜1100℃に保持した。余剰02は次の(3)式の発
熱反応で(11式の吸熱反応による温度低下を防いだ。
In order to suppress the reaction of the above-mentioned formula (2) as much as possible, the present invention
This is an attempt to use the sensible heat of red-hot coke discharged from a coke oven (not shown) for producing metallurgical coke as a substitute for the reaction heat in equation (2). The coke waste heat recovery equipment (gas generation furnace) 1 is a partially modified conventional CDQ equipment. The temperature of this brake chamber portion 2 is maintained at 920 to 980°C. On the other hand, petroleum-based heavy oil, such as heavy hydrocarbons such as asphalt, is preheated in the preheater 4, and at the same time, the amount of 02
2 into the Brechamber part 2 and the reaction temperature was set to 10,000.
The temperature was maintained at ~1100°C. The surplus 02 was generated by the exothermic reaction of the following equation (3) (preventing the temperature drop due to the endothermic reaction of the equation 11).

(コークス) + 1/20x→Co −131一方り
リーングチャンパー6部ではスチームを吹込み (コークス)十 ルO−+ Co 十 山 −(4)(
コークス) + 2)hO−+ COz 千2Hz −
f51f4) F (51式の吸熱反応を生せしめコー
クス塊の冷却を促進させた。
(Coke) + 1/20x → Co -131 On the other hand, steam is blown into the 6th part of the ring champer (coke) 10 L O-+ Co 10 Mountains - (4) (
Coke) + 2)hO-+ COz 1,0002Hz -
f51f4) F (Produced the endothermic reaction of formula 51 and promoted cooling of the coke lump.

循環ガスは排出コークスの温度を250℃以下にさせる
ためボイラー6の排ガスの一部を循環カスライン7を経
てクーリングチャンバ一部6に循環させる。
A part of the exhaust gas from the boiler 6 is circulated through the circulation waste line 7 to the cooling chamber part 6 in order to reduce the temperature of the discharged coke to 250° C. or lower.

重炭化水素の部分酸化によって生成した生成カスはダス
トコレクター5でダストを除いた後ボイラー6で顕熱を
回収する。その後ガスtま脱做装b゛9で脱硫後PSA
(圧力スイング吸着装置i ) 10に導入され、Hz
が分離されるが、シフトコンパ−夕8を間に入れて、C
OをH2に変換後PSA10に導入することもできる。
The dust produced by the partial oxidation of heavy hydrocarbons is removed by a dust collector 5, and then sensible heat is recovered by a boiler 6. After that, after desulfurizing with gas t and de-sulfurizer b9, PSA
(Pressure swing adsorption device i) introduced at 10 Hz,
is separated, but with a shift comparator 8 in between, C
It is also possible to convert O into H2 and then introduce it into the PSA 10.

斯くして重炭化水素ecDQに導入し、CDQの機能を
有効に活用しく1)式反応をコークス顕熱の利用を図る
ことによシ02使用量を減少し高付加価値の水素を製造
するものである。
In this way, heavy hydrocarbons are introduced into ecDQ, and the function of CDQ is effectively utilized, and the amount of SI02 used is reduced by utilizing sensible heat of coke in the reaction of formula 1), and high value-added hydrogen is produced. It is.

次に実施例に基づき以下に詳細に説明する。Next, a detailed explanation will be given below based on examples.

〔実施例〕〔Example〕

実施例1 コークス炉から排出された赤熱コークスをT ′ 50/Hでガス発生炉に改造し九〇DQ設備1に供給し
、表1に示す 石油系重質油を180℃に予熱し、28
 /hrで吹込むと同時に酸素をプレチャンバ−2に1
5,680”/ h r割合で吹込んだ。
Example 1 Red-hot coke discharged from a coke oven was converted into a gas generating furnace at T' 50/H and supplied to 90DQ equipment 1. Petroleum-based heavy oil shown in Table 1 was preheated to 180°C and heated to 280°C.
/hr and at the same time oxygen was injected into prechamber 2.
It was injected at a rate of 5,680”/hr.

炉下部6でのスチーム吹込量は1400 kg//hr
で循環ガス量は30.000 ”/hr でアシ、生成
したガス組成は、ガス発生炉出口で、CH4’0.8 
容積チ CO12,2# % H365,0% CO□ 6.7 チ Hz S 0.3 チ N2 0.5 チ 軟化点 5a5℃ コンラドソンカーボン 20.8% CB 5.1 重量% H10,4# N O,7g S 3.2 。
The amount of steam blown into the lower part 6 of the furnace is 1400 kg//hr
The circulating gas amount was 30,000"/hr, and the generated gas composition was CH4'0.8 at the gas generator outlet.
Volume CH CO12,2#% H365,0% CO□ 6.7 CHHz S 0.3 CHN2 0.5 CH Softening point 5a5℃ Conradson Carbon 20.8% CB 5.1 Weight% H10,4# N O,7g S3.2.

Q O,5# 灰分 0.1# 排出されたコークスは、旨炉用コークスとして使用する
ことが出来るものである。
Q O, 5# Ash content 0.1# The discharged coke can be used as coke for the furnace.

またこの生成ガスを精製COGからH2分喘を目的とし
たPSA装置10に導き、H2を分離することが出来た
Furthermore, this generated gas was introduced from the purified COG to the PSA device 10 for the purpose of separating H2, and H2 could be separated.

実施例2゜ コークス炉から発生したガスは安水スダレ−後タールデ
カンタ−に導かれる。この時点でもこのガス中には次に
示すように相当量の重炭化水素が含まれている COI 6,9 重量%(乾きガスペース)”’Hm 
IaOt Ox 1,2 。
Embodiment 2 Gas generated from a coke oven is simmered with ammonium water and then led to a tar decanter. Even at this point, this gas still contains a considerable amount of heavy hydrocarbons as shown below. COI 6.9% by weight (dry gas space)"'Hm
IaOtOx 1,2.

市 10.8 。City 10.8.

Co 17.6 z C)I4 41.1゜ C2H@ (1B 。Co 17.6 z C) I4 41.1° C2H @ (1B.

Ni 3.6 。Ni 3.6.

この18重f#−〇重炭化水素の部分酸化を主目的とし
て、CDQ設備1に粗COGを吹込んだ。47/f(r
の赤熱コークス供給速度のとき、42,300 N”/
Hr(約200℃に予熱)の粗COGを吹込むと同時に
0□を 8.30 ONR/hr吹込み、次のガスn【
成を得た。勿論CDQT部3にスチーム吹込みを着千行
なつた。循環ガスサイクルも実施した。
Crude COG was blown into the CDQ equipment 1 with the main purpose of partially oxidizing this 18 heavy f#-〇 heavy hydrocarbon. 47/f(r
At a red hot coke feed rate of 42,300 N”/
At the same time, 0 □ was blown in at 8.30 ONR/hr, and the next gas n [
achieved success. Of course, I had to inject steam into the CDQT section 3. A circulating gas cycle was also implemented.

CO26,1′B積%(乾hトベース)Hz 69.7
 −チ CO18,1t% CI(a 5.4 #チ N* 0.7 lチ このガスをPSAloに導き、1(2分離することが出
来た。場合によっては、シフトコンバーター(8)でC
O勿H2に変換後、PSAI Oに導くことも出来る。
CO26,1'B volume % (dry ht base) Hz 69.7
-CH CO18, 1t% CI (a 5.4
After converting to O course H2, it can also be led to PSAI O.

高付加価値の水素と外科ガスを、CDQ設備を力士改造
することによシガス発生炉として利用し44することか
でき本炉によシ、赤熱コークスの顆ノ+−代の利用と同
時に、発生ススをそのコークス塊をコレクターとして利
用しうる安イ111な水素II!造法である。
High value-added hydrogen and surgical gas can be used as a gas generating furnace by modifying the CDQ equipment. Cheap 111 hydrogen that can use soot and its coke lumps as a collector! It is a construction method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発IJIJ法の工程図である。 1:CDQ 2:ブレチャンバー部 6:クーリングチ
ャンバ一部 6:ボイラー 7:循環ガス5イy 9 
:脱a装UR10: PSA0代理人9P理十木村三朗
FIG. 1 is a process diagram of the unexploded IJIJ method. 1: CDQ 2: Breech chamber part 6: Part of cooling chamber 6: Boiler 7: Circulating gas 5y 9
:Undressed UR10: PSA0 agent 9P Rito Kimura Saburo

Claims (1)

【特許請求の範囲】[Claims] (1)重炭化水素を部分酸化して水素を製造する方法に
おいて、コークス乾式消火設備のプレチャンバ一部に重
炭化水素と酸素を吹込み、生成ガスを取イOL、次いで
ボイラー等の排熱回収設備で該生成ガスの顕熱を回収し
、熱回収後のガスを要すれば脱硫装瞳を経由しPSAに
導入し、該ガスより水素を製造し、一方コークスの冷却
を該コークス消火設備のクーリングチャンバ一部へのス
チーム吹込みKよる吸熱反応と、顕熱回収した後の循環
ガスを該クーリングチャンバー下部より吹込み冷却する
ことを特徴とするCDQ設備による重炭化水素の部分酸
化による水素製造法。 (21前記ボイラー排ガスをシフトコンバータに導入し
水素を製造することを特徴とする特許請求の範囲ii項
記載の重炭化水素の部分酸化による水素製造法。
(1) In a method of partially oxidizing heavy hydrocarbons to produce hydrogen, heavy hydrocarbons and oxygen are blown into a part of the prechamber of a coke dry fire extinguishing equipment, the generated gas is taken from the OL, and then the exhaust heat from the boiler, etc. The recovery equipment recovers the sensible heat of the produced gas, and if necessary, the gas after heat recovery is introduced into the PSA via a desulfurization pupil to produce hydrogen from the gas, while the coke is cooled by the coke extinguishing equipment. Hydrogen is generated by partial oxidation of heavy hydrocarbons using CDQ equipment, which is characterized by an endothermic reaction by blowing steam into a part of the cooling chamber, and cooling by blowing circulating gas from the bottom of the cooling chamber after recovering sensible heat. Manufacturing method. (21) The method for producing hydrogen by partial oxidation of heavy hydrocarbons according to claim ii, characterized in that the boiler exhaust gas is introduced into a shift converter to produce hydrogen.
JP58230508A 1983-12-08 1983-12-08 Production of hydrogen by partial oxidation of heavy hydrocarbon in cdq equipment Pending JPS60122701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58230508A JPS60122701A (en) 1983-12-08 1983-12-08 Production of hydrogen by partial oxidation of heavy hydrocarbon in cdq equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58230508A JPS60122701A (en) 1983-12-08 1983-12-08 Production of hydrogen by partial oxidation of heavy hydrocarbon in cdq equipment

Publications (1)

Publication Number Publication Date
JPS60122701A true JPS60122701A (en) 1985-07-01

Family

ID=16908854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58230508A Pending JPS60122701A (en) 1983-12-08 1983-12-08 Production of hydrogen by partial oxidation of heavy hydrocarbon in cdq equipment

Country Status (1)

Country Link
JP (1) JPS60122701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264748U (en) * 1985-10-09 1987-04-22
US8398729B2 (en) 2005-12-15 2013-03-19 General Electric Company Gasification systems for partial moderator bypass
KR20150004985A (en) * 2013-07-03 2015-01-14 재단법인 포항산업과학연구원 Method of Coke Dry Quenching by using Coke Oven Gas and Recycle Method of Syngas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264748U (en) * 1985-10-09 1987-04-22
US8398729B2 (en) 2005-12-15 2013-03-19 General Electric Company Gasification systems for partial moderator bypass
KR20150004985A (en) * 2013-07-03 2015-01-14 재단법인 포항산업과학연구원 Method of Coke Dry Quenching by using Coke Oven Gas and Recycle Method of Syngas

Similar Documents

Publication Publication Date Title
US3194644A (en) Production of pipeline gas from
CN107128876A (en) The manufacture device and its manufacture method of forming gas containing carbon monoxide and hydrogen
CA1309589C (en) Method of producing a clean gas containing carbon monoxide and hydrogen
TW202140804A (en) Iron manufacturing facility and method for manufacturing reduced iron
TW202126819A (en) Method for operating blast furnace, and facility equipped with blast furnace
JP7192899B2 (en) Blast Furnace Operation Method and Blast Furnace Incidental Equipment
JPS5938161B2 (en) Method for producing synthesis gas for ammonia production
JPS60122701A (en) Production of hydrogen by partial oxidation of heavy hydrocarbon in cdq equipment
JPS5819601B2 (en) Method for producing reducing gas
US3069249A (en) Process for the production of fuel gas low in carbon monoxide
US1505065A (en) Process for the production of hydrogen or gases rich in hydrogen
JPS5851036B2 (en) Suiso Oyobi Itsusankatansogan Yuugasuno Seihou
JP2021152211A (en) Blast furnace operation method and blast furnace incidental facility
JPS6039050B2 (en) Methanol manufacturing method
JPS6148810B2 (en)
US2590869A (en) Manufacture of gas
JP7131698B2 (en) Blast Furnace Operation Method and Blast Furnace Incidental Equipment
JP7131694B2 (en) Blast Furnace Operation Method and Blast Furnace Incidental Equipment
JP7131697B2 (en) Blast Furnace Operation Method and Blast Furnace Incidental Equipment
JP7192901B2 (en) Blast Furnace Operation Method and Blast Furnace Incidental Equipment
JP7192845B2 (en) Blast Furnace Operation Method and Blast Furnace Incidental Equipment
TWI842335B (en) Blast furnace operating method, molten iron manufacturing method and blast furnace ancillary equipment
Cyprès Modern carbochemical processes for hydrogen production from coal
CN112920868A (en) Crude gas methane catalytic conversion system and method and coal gasification ammonia synthesis system
TW202336237A (en) Method for operating a blast furnace installation