JPS60122405A - Control system of power generating water flow of connecting water system - Google Patents

Control system of power generating water flow of connecting water system

Info

Publication number
JPS60122405A
JPS60122405A JP59240639A JP24063984A JPS60122405A JP S60122405 A JPS60122405 A JP S60122405A JP 59240639 A JP59240639 A JP 59240639A JP 24063984 A JP24063984 A JP 24063984A JP S60122405 A JPS60122405 A JP S60122405A
Authority
JP
Japan
Prior art keywords
water
dam
amount
gate
dams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59240639A
Other languages
Japanese (ja)
Other versions
JPH0650441B2 (en
Inventor
Shiyouichi Masui
増位 庄一
Fumio Wakamori
和歌森 文男
Seiju Funabashi
舩橋 誠寿
Mikihiko Onari
大成 幹彦
Kenichi Morita
憲一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59240639A priority Critical patent/JPH0650441B2/en
Publication of JPS60122405A publication Critical patent/JPS60122405A/en
Publication of JPH0650441B2 publication Critical patent/JPH0650441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To simplify the control by the intervention of the operator by computing the optimum control calculation of the entire water system including all dams and power generating stations of the water system in high speed altogether so as to attain the optimum control in following to the dynamic change in the water system. CONSTITUTION:Plural power generating dams 1-3 are arranged in series from the upper stream to a river and reservoirs 4-6 are provided corresponding to the dams 1-3. Moreover, power generating stations 7-9 are installed to the dams 1-3 and power is generated by water stored in the reservoirs 4-6. Furthermore, water ways 13-15 are connected to the dams 1-3 so as to give ineffective effuluent to the reservoirs 4-6. Moreover, a power generating gate 16 and a direct effuluent gate 17 are provided to the dams 1-3 respectively and setting value controllers 18, 19 are installed to them. The controllers 18, 19 controls the gates 16, 17 so as to discharge set water flows W1, W2. The controllers 18, 19 are provided with a gate opening converter 24 converting the set water flow 20 into a gate opening 21 and a gate driver 25 outputting a motor drive signal 22 by using the opening 21 and gate opening information 23.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、連接水系中の各ダム貯水位と、各ダム集水域
からの流入水量(以下渓流という)の一定時開先までの
予測値に基づき、水系全体の無効放流量を最小化するた
め、各発電所の発電水量を高速にめ、発電ゲートの制御
を、水系のダイナミックな変化に対応できるようにする
連接水系発電水量制御方式に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention uses predicted values of the water storage level of each dam in a connected water system and the amount of inflow water from each dam catchment area (hereinafter referred to as a mountain stream) up to a certain time. Based on this, in order to minimize the amount of ineffective discharge of the entire water system, this paper relates to a system for controlling the amount of water generated in a connected water system, which allows the amount of water generated at each power plant to be set at high speed and controls the power generation gate to respond to dynamic changes in the water system.

〔発明の背景〕[Background of the invention]

連接水系における発電水量制御を行なう方式として、次
の方式を先に提案した。すなわち、この方式では制御を
行なう前日に、各ダムの当日0時の貯水量予測値当日の
24時間の渓流予測値をもとに、当日24時の貯水量指
定値を満たした上で、各ダム毎に無効放流量を最小化す
るように計画決定した発電水量に従ってダム制御を行な
っていた。
We previously proposed the following method to control the amount of water generated in a connected water system. In other words, in this method, on the day before the control is performed, each dam is calculated based on the predicted water storage volume at 0:00 of each dam and the predicted value of the mountain stream for 24 hours on that day, and after satisfying the specified water storage volume at 24:00 on that day. Dam control was carried out according to the amount of generated water planned for each dam to minimize the amount of ineffective discharge.

渓流予測値の誤差は、主に貯水池のバッファ能力によっ
て吸収するか、熟練した運転員によるヒユーリスティツ
タな発電水量、ゲート放流量の変更という手段で調整し
ていた。また誤差が大きくなりすぎた場合は、当日補正
計算により計画値を修正し、その後は修正値に従った制
御が行なわれていた。この制御方法は、(1)計算に要
する時間が長く、水系の変化に対するオンライン的制御
が容易でない。このため、しばしば計画値を意味をなさ
ない場合が生じる。(2)各ダム毎に上流から順次発型
水量、ゲート放電量を決めていくため、水系全体として
の無効放流の最小化ができない。
Errors in mountain stream prediction values were mainly absorbed by the buffer capacity of the reservoir, or adjusted by experienced operators by manually changing the amount of generated water and gate discharge. In addition, if the error becomes too large, the planned value is corrected by correction calculation on the day, and thereafter control is performed according to the corrected value. This control method requires (1) a long calculation time, and online control of changes in the water system is not easy; For this reason, the planned value often becomes meaningless. (2) Since the amount of water generated and the amount of gate discharge are determined sequentially from upstream for each dam, it is not possible to minimize the ineffective discharge of the water system as a whole.

(3)予測誤差に対する修正を人手で行なうため、水系
全体の最適化が図れない、などの多くの問題点を有して
おり、エネルギー資源としての水の有効活用の面から新
しい制御方式が望まれている。
(3) Since prediction errors are manually corrected, there are many problems such as the inability to optimize the entire water system, and a new control method is desired from the perspective of effective use of water as an energy resource. It is rare.

また、(2)の無効放流の水系全体の観点からの解法と
して線形計画法を用いる方法も考えられるが、その解を
めるための計算機容量が大きく、かつ計算に時間を要す
るため、オンライン制御にはむかない。降雨の予測が難
しく、水系への出水予測の精度向上が急には期待できな
い現状の下では、以上の水系計算法は、水系のダイナミ
ックな変化を反映できないという重大な欠点を有してい
ると考えざるを得ない。
Another option is to use linear programming to solve (2) invalid discharge from the perspective of the entire water system, but the computer capacity required to solve it is large and the calculation takes time, so online control is I don't like it. Under the present circumstances, where rainfall is difficult to predict and we cannot expect any sudden improvement in the accuracy of water flow prediction into water systems, the above water system calculation methods have the serious drawback of not being able to reflect dynamic changes in water systems. I have no choice but to think about it.

〔発明の目的〕 本発明は、上記の問題点を解決し、水系の全ダム・発電
所を一括し、水系全体の最適化制御計算を、極めて高速
に計算する手段を用いることにより、水系のダイナミッ
クな変化に追従した最適制御する方式を提供することを
目的とする。更に、オペレータが理解容易なモデル化を
行ない、オペレータの介入が容易で、人間のノウハウを
計算結果に反映しやすい方式とすることも目的の−っで
ある。
[Objective of the Invention] The present invention solves the above-mentioned problems, integrates all dams and power plants in a water system, and uses a means to perform optimization control calculations for the entire water system at extremely high speed. The purpose is to provide an optimal control method that follows dynamic changes. Furthermore, another objective is to create a model that is easy for an operator to understand, to facilitate operator intervention, and to provide a system that facilitates reflection of human know-how in calculation results.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、連接水系において、水が
上流から下流へ、ある場合は時間遅れをもって、また他
の場合は、はとんど時間遅れなしに、流下するという自
然現象が、連接水系中の発電所をノードとし、そのノー
ド間を水路で連結させた時空間ネットワークに極めて自
然に表現できるという点に着目し、ネットワーク計画法
という高速解法の利用により、制御のための操作量を、
時々刻々の水系の変化に対応して、逐次決定し、水利用
の最適化を図ろうとする点にある。更に、線形計画法で
は取り扱いが不可能であるある種の非線形性を取り扱う
ことにより、発電機の効率を考慮した、より最適な発電
水量制御の実施が可能となる利点をも有する。これは、
発電水量の決定3− には、例えば、発電機の最高効率が最大水量のやや下の
水量の時に実現されることや、無効放流に対するペナル
ティを、その量が多い程大きくしたいということなどの
非線形性の取り扱いが必要となることが多いが、この種
の問題の取り扱いを容易化するものである。本発明を総
括的に言うと次の様になる。
A feature of the present invention is that in a connected water system, the natural phenomenon of water flowing from upstream to downstream, sometimes with a time delay, and in other cases almost without a time delay, We focused on the fact that power plants in a water system can be represented as nodes and can be expressed very naturally in a spatio-temporal network that connects the nodes with waterways, and by using a high-speed solution method called network planning, we can calculate the amount of operation for control. ,
The aim is to make sequential decisions and optimize water use in response to changes in the water system from time to time. Furthermore, by handling a type of nonlinearity that cannot be handled by linear programming, it has the advantage that more optimal control of the amount of generated water can be performed in consideration of the efficiency of the generator. this is,
Determining the amount of water to be generated 3- involves non-linear considerations, such as the fact that the maximum efficiency of the generator is achieved when the amount of water is slightly below the maximum amount of water, and that the penalty for ineffective discharge increases as the amount of water increases. This facilitates the handling of this type of problem, which often requires handling of gender. The present invention can be summarized as follows.

(1) 水系全体を、ダムというノードが水路という枝
によって連結された時空間ネットワークとして表現する
(1) The entire water system is expressed as a spatiotemporal network in which nodes called dams are connected by branches called waterways.

(2) ネットワークのソース節点に対し、現在の各ダ
ム貯水量および一定時間先までの渓流予測値を与える。
(2) Provide the current water storage volume of each dam and the predicted mountain stream value for a certain period of time to the source node of the network.

同時に、ネットワークの各枝に、その枝の特性を示すコ
スト関数を設定する。
At the same time, a cost function that indicates the characteristics of that branch is set for each branch of the network.

(3) 前記ネットワークの最小費用流れをめる。(3) Determine the minimum cost flow of the network.

(4) 現時点に対応するネットワーク流量を、発電水
量、ゲート放流量として、各ゲート制御装置に設定する
(4) Set the network flow rate corresponding to the current moment in each gate control device as the generated water amount and gate discharge amount.

(5)各ゲート制御装置が、その流量の実現を行4− う。(5) Each gate control device performs the process 4- cormorant.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を参照して詳細に説明する。実施
例として、第1図に示す連接水系の発電水量制御を考え
る。同図において、同一河川に、ダム1.ダム2.ダム
3が、上流から直列に設置され、それぞれ貯水池4,5
.6を形成しているものとする。各ダムには、発電所7
,8.9がそれぞれ設置され、貯水池4,5.6に貯留
されている水を用いて発電機を回転させ、所要の発電を
行うものとする。各ダムには、各ダム集水域の降雨によ
る出水が、10,11.12のルートを通して、ダムに
流入するものとする。また、13゜14.1.5は、そ
れぞれ海道を示し、ダムのゲートからの無効放流水は、
この海道を流れて下流ダムに到達すると考える。発電所
7,8.9を通った水は、計算上無視できる時間で下の
ダムの貯水池に到達するとし、海道13,14,15を
流れる水は、Δを時間後に下のダムの貯水池に流入する
ものとする。
Hereinafter, the present invention will be explained in detail with reference to Examples. As an example, consider controlling the amount of power generated in the connected water system shown in FIG. In the same figure, there are dams 1 and 1 on the same river. Dam 2. Dam 3 is installed in series from upstream, with reservoirs 4 and 5 respectively.
.. 6. Each dam has seven power plants.
, 8.9 are installed, and the water stored in the reservoirs 4, 5.6 is used to rotate the generator to generate the required power. It is assumed that water from rainfall in each dam catchment area flows into each dam through routes 10, 11, and 12. In addition, 13°, 14.1.5 respectively indicate the coastal road, and the invalid discharge water from the dam gate is
It is assumed that the water will flow along this seaway and reach the downstream dam. It is assumed that the water that has passed through power stations 7, 8, and 9 reaches the reservoir of the lower dam in a time that can be ignored in calculations, and that the water that flows through seaways 13, 14, and 15 reaches the reservoir of the lower dam after Δ time. It is assumed that there is an inflow.

各ダムには、第2図に示すように、発電用水ゲート16
およびダム直接放流ゲート17があり、それぞれに対し
て、設定値制御装置]、8.19が設置されているとす
る。この設定値制御装置18゜19は、この装置に与え
られた設定領分の水量W1.W2を放流するよう各ゲー
トを制御することを目的としたもので、いずれも、第3
図に示すような構成をとる。第3図では、水量−ゲート
開度変換装置24が、設定された水量20を、ゲート開
度21に変換し、そのゲート開度21が、ゲート駆動装
置25により、ゲート開度情報23と比較され、開度2
1が達成されるように、モータ駆動信号22が出−力さ
れる構成となっている。さて、以上の連接水系において
、時々刻々変化する水系の状態に対応して、発電用水ゲ
ート16およびダム直接放流ゲート17に与える設定水
量を決定する本発明の主要部について述べる。本発明は
、前述のように、連接水系をネットワーク表現するとこ
ろにその特徴がある。第1図に示した連接水系のネット
ワーク表現の例を第4図に示す。この図は、2Δを時間
先までの計画用ネットワークである。このネットワーク
を詳しく説明する。ネットワーク中の数字ノードは、ダ
ムに対応する。アルファベットノードは、計算用の付加
ノードである。横に並んだノード例は、同一時刻の空間
的ネットワークを構成し、縦に並んだノードは、同一空
間位置の時間的ネットワークを構成している。
Each dam has a power generation water gate 16 as shown in Figure 2.
and a dam direct discharge gate 17, and a set value control device], 8.19 is installed for each. This set value control device 18, 19 controls the amount of water W1. The purpose of this is to control each gate to release W2.
The configuration is as shown in the figure. In FIG. 3, the water amount/gate opening converter 24 converts the set water amount 20 into a gate opening 21, and the gate driving device 25 compares the gate opening 21 with gate opening information 23. and opening degree 2
1 is achieved, the motor drive signal 22 is output. Now, in the above-mentioned connected water system, the main part of the present invention will be described, which determines the set amount of water to be supplied to the power generation water gate 16 and the dam direct discharge gate 17 in response to the constantly changing state of the water system. As mentioned above, the present invention is characterized by expressing a connected water system as a network. An example of a network representation of the connected water system shown in FIG. 1 is shown in FIG. This figure is a planning network for 2Δ up to the time ahead. This network will be explained in detail. Number nodes in the network correspond to dams. Alphabet nodes are additional nodes for calculations. Examples of nodes arranged horizontally constitute a spatial network at the same time, and nodes arranged vertically constitute a temporal network at the same spatial position.

例えばノード101,102,103は、時刻0゜Δt
、2Δtの、ダム1の状態を表現し、またノード101
,201,301は時刻0におけるダム1,2.3の状
態を示す。この算計モデルにおいては、制御単位時間を
Δtとし、海道流下時間と一致させている。各ノードを
結ぶ枝は、水路を表現する。例えば枝401は、時刻0
(制御時刻)において、発電所1で発電ゲートから放流
され発電に供される水が流れる枝である。枝401〜4
09は、全て上記と同じ様な発電用水が流れる枝である
。前記の仮定から発電用水は、時間遅れなしに、下流ダ
ムに到達するとしているため401〜409の枝は、全
て同一時間のノード間7− を連結している。枝501〜506は、ダム貯留水量を
表現する枝である。例えば、枝501は時刻Δtにおけ
るダム1の貯留水量を示す。枝801〜803もダム貯
留水量を示すがこれは、時刻0の各ダム貯水量、即ち現
時点の水位観測値から計算される貯水量を流す枝である
。枝601〜606は、ダム直接放流ゲートからの放流
水量を流す枝で、海道がΔを時間の時間遅れを有するた
め、例えばノード101→202と斜めの枝となってい
る。これは時刻0にダム1から海道I3へ放流された水
が、時刻Δtにダム2に流入するという事実に対応する
。701〜703は、第1図で示した流入量10,11
.12を表現する枝である。901〜908は計算のた
めの付加枝で、多入力多出力網となるネットワークを、
1人力1出力に変換するためのものである。付加ノード
は、計算の便宜上のもので、Aは、時刻0の各ダム貯水
量を、Hは計算終了時刻の各ダム貯水量をネットワーク
に供給または引き込むためのノード、B。
For example, nodes 101, 102, and 103 are at time 0°Δt
, 2Δt, represents the state of dam 1, and node 101
, 201, 301 indicate the states of dams 1, 2.3 at time 0. In this calculation model, the control unit time is set to Δt, which is made to coincide with the coastal flow time. The branches connecting each node represent waterways. For example, branch 401 is at time 0
(control time), this is the branch through which water is discharged from the power generation gate at the power plant 1 and used for power generation. Branches 401-4
09 are branches through which water for power generation flows, all similar to the above. From the above assumption, it is assumed that water for power generation reaches the downstream dam without any time delay, so branches 401 to 409 all connect nodes 7- at the same time. Branches 501 to 506 are branches expressing the amount of water stored in the dam. For example, branch 501 indicates the amount of water stored in dam 1 at time Δt. Branches 801 to 803 also indicate the amount of water stored in the dam, and these are branches that flow the amount of water stored in each dam at time 0, that is, the amount of water stored in the dam calculated from the current observed water level. Branches 601 to 606 are branches through which the amount of water discharged from the dam direct discharge gate flows, and since the seaway has a time delay of Δ, they are diagonal branches such as nodes 101→202. This corresponds to the fact that water discharged from dam 1 to seaway I3 at time 0 flows into dam 2 at time Δt. 701 to 703 are the inflow amounts 10 and 11 shown in FIG.
.. This is a branch that represents the number 12. 901 to 908 are additional branches for calculation, and the network is a multi-input multi-output network,
This is for converting one person's power into one output. The additional nodes are for convenience of calculation; A is a node for supplying or drawing the water storage amount of each dam at time 0, H is a node for supplying or drawing the water storage amount of each dam at the calculation end time to the network, and B is a node for supplying or drawing in the water storage amount of each dam at time 0.

C,Dは、各時刻のルート10,11.12から8− の流入量をネットワークに供給するノード、E。C, D are routes 10, 11, 12 to 8- at each time. A node, E, supplies an inflow of , to the network.

F、Gは、海道15への流出量を吸収するノードである
。更に、S、Tは、全時間ソース、全時間シンクと称し
、多入力多出力網を1人力1出力網に変換するための付
加ノードである。
F and G are nodes that absorb the amount of outflow to the seaway 15. Further, S and T are called all-time sources and all-time sinks, and are additional nodes for converting a multiple-input multiple-output network into a single-power single-output network.

以上のネットワークは、次の手順で作成される。The above network is created using the following steps.

(1)水系中のダムの数だけノードを作る。(1) Create nodes equal to the number of dams in the water system.

(2)発電用水を示す枝401,402,403を設定
する。
(2) Set branches 401, 402, and 403 indicating water for power generation.

(3) 時間ソース89時間シンクEを作り、Bから各
ノードに701,702,703をそれぞれ設定し、4
03をEに結合する。
(3) Create a time source 89 time sink E, set 701, 702, 703 from B to each node, and set 4
Connect 03 to E.

(4) 同様の手続きを計画期間分繰り返す。即ち、1
01〜303.B−Gのノードと401〜409.70
1〜709までの枝が設定される。
(4) Repeat the same procedure for the planning period. That is, 1
01-303. B-G nodes and 401-409.70
Branches 1 to 709 are set.

(5)枝501〜509,601〜609を設定する。(5) Setting branches 501 to 509 and 601 to 609.

(6)ノードA、Hをつくり、Aから801〜803の
枝を各ダムノードに設定すると同時に507〜509の
枝をHに結合する。
(6) Create nodes A and H, set branches 801 to 803 from A to each dumb node, and at the same time connect branches 507 to 509 to H.

(7)全時間ソースS、全時間シンクTをつくり必要な
枝901〜908を設定する。
(7) Create all-time source S and all-time sink T, and set necessary branches 901 to 908.

以上 以上の作り方かられかるように、本方式は、水の流れる
ノード間にのみ枝を設定するため、計算機を用いる場合
に、メモリ容量を大きく節減することができる。(線形
計画法の場合に比して)。
As can be seen from the above method, in this method, branches are set only between nodes through which water flows, so when using a computer, the memory capacity can be greatly reduced. (compared to linear programming).

第2図に示したネットワークの各校に対してはその枝を
流れる最大流量と、その枝に水が流れることにより発生
するコストが付加される。このコストは、流量の関数と
して設定されたが、その基本的な考え方は、次の通りで
ある。
For each school in the network shown in FIG. 2, the maximum flow rate flowing through that branch and the cost incurred by water flowing through that branch are added. This cost was set as a function of flow rate, and the basic idea is as follows.

(1) その枝に水を流すことが利得を生む場合にはそ
の枝のコストを小さくする。発電用水を示す枝401〜
409はそれにあたる。
(1) If flowing water to that branch produces a profit, reduce the cost of that branch. Branch 401 showing water for power generation
409 corresponds to that.

(2) その枝に水を流すことが損失につながる場合に
は、その枝のコストを大きくする。ゲート放流601〜
606はそれにあたる。
(2) Increase the cost of that branch if allowing water to flow through that branch will result in a loss. Gate discharge 601~
606 corresponds to that.

(3)指定流量を流したい枝については、0乃至以下具
体的に、コスト設定法をのべる。まず発電用水401〜
409のコスト関数を、第5図に示す。最高効率点での
発電の時のコストが最も安くなるような非線形関数であ
るが、本方法ではこのような非線形を取り扱える点に、
一つの特長がある。
(3) Describe the cost setting method in detail for the branch where the designated flow rate is to flow from 0 to less. First, power generation water 401~
The cost function of 409 is shown in FIG. This is a non-linear function such that the cost of power generation at the highest efficiency point is the lowest, but this method has the advantage of being able to handle such non-linearity.
There is one feature.

貯留水501〜506のコスト関数は第6図、ゲート放
流水601〜606のコスト関数は第7図のようになる
。また、701〜709,801〜803,901〜9
08には指定流量、即ち、701〜709の場合は、渓
流量の予測値(予測値はオペレータが決めるものとして
いる)、801〜803の場合は、現在の各ダムの貯水
量をそれぞれ流す必要があり、この場合のコストは第8
図のようになる。各コストの具体値は、オペレータが適
宜判断して設定すればよい。例えば、401より402
により多くの水を流したい場合(時刻0の発電所1の発
電量を時刻Δ1oのそれより多くしたい)には402の
コストを401の11− コストより小さくすればよい。
The cost function for the stored water 501-506 is as shown in FIG. 6, and the cost function for the gate discharged water 601-606 is as shown in FIG. Also, 701-709, 801-803, 901-9
08 is the specified flow rate, that is, in the case of 701 to 709, the predicted value of the stream flow (the predicted value is determined by the operator), and in the case of 801 to 803, the current water storage volume of each dam must be discharged. , and the cost in this case is the 8th
It will look like the figure. The specific value of each cost may be determined and set by the operator as appropriate. For example, 402 than 401
If you want to flow more water (you want to make the power generation amount of the power plant 1 at time 0 greater than that at time Δ1o), the cost of 402 may be made smaller than the 11-cost of 401.

以上で第1図に示した連接水系をネットワーク表現し、
その枝にコスト関数を設定することができた。この例は
、簡単なものであるが、より複雑な場合にも容易に拡張
できることがわかる。更にコストの具体的設定がオペレ
ータに任されている点で、オペレータの意図する計画が
容易に得やすいという利点がある。この点と、計算が高
速である点から、通常の線形計画法の場合のような、オ
ペレータの不可視性(最適値はまったが、どのようにし
てめられたかがオペレータにはわからず、その結果の修
理が不可能)が取り除ける。
The connected water system shown in Figure 1 is now expressed as a network,
We were able to set a cost function on that branch. Although this example is simple, it can be seen that it can be easily extended to more complex cases. Furthermore, since the specific setting of costs is left to the operator, there is an advantage that the plan intended by the operator can be easily obtained. This, and the fact that calculations are fast, makes the operator invisible (the optimum value has been hit, but the operator does not know how it was reached, and the resulting (impossible to repair) can be removed.

本発明の一つの要点である連接水系のネットワーク表現
方式を以上に示した。次に、このネットワークの解法の
一例を示す。上記ネットワークにはコストが付けられて
おり、各時刻での計画値には、このネットワークの最小
費用流れをめることにより得られる。ネットワークの最
小費用流れの解法は、種々提案されており、そのいずれ
を用いてもよい。ここでは、現在量も速い解法と考え1
2− られるプライマルデュアル(原双対)法を説明する。こ
の算法の特徴は、全ての枝流量が0の状態から計算を開
始し、最小費用経路の発見と、その経路上に最大流すと
いう操作を繰り返し、与えられた指定流量が全て満足さ
れるまで続けるというものである。即ち、次の手続きを
行う。
The network representation method of a connected water system, which is one of the key points of the present invention, has been shown above. Next, an example of a solution method for this network will be shown. A cost is attached to the above network, and the planned value at each time is obtained by calculating the minimum cost flow of this network. Various methods have been proposed for solving the network minimum cost flow, and any of them may be used. Here, we consider the current quantity as a fast solution1.
2- Explain the primal dual method. The feature of this algorithm is that the calculation starts from a state where all branch flow rates are 0, and the operation of finding the minimum cost route and the maximum flow on that route is repeated until all the specified flow rates given are satisfied. That is what it is. That is, perform the following procedure.

(1)全ての枝の流量を0とする。(1) Set the flow rate of all branches to 0.

(2)全時間ソースSから全時間シンクTへの最小費用
経路をみつける。
(2) Find the least cost path from all-time source S to all-time sink T.

(3)上記経路に流しうる最大流量を径路上の各校に割
り当てる。
(3) Allocate the maximum flow rate that can flow through the above route to each school on the route.

(4)上記、 (2)、 (3)の手続きを指定流量を
もつ枝が全て指定流量流れるまでつづける。
(4) Continue the procedures in (2) and (3) above until all branches with the specified flow rate flow at the specified flow rate.

以上のプライマルデュアル法についての詳細は成書を参
照の事(システム最適化理論 志水清孝コロナ社等)。
For details on the above primal dual method, please refer to books (System Optimization Theory, Kiyotaka Shimizu, Coronasha, etc.).

以上の手続きで、ネットワークの各校の流量が定まると
、現時刻である時刻0の枝、即ち401゜4.02,4
03および601,602,603がそれぞれダム1.
ダム2.ダム3からの発電ゲート水量およびダム直接放
流量となる。したがって、これを前記18および19の
設定値制御装置に送ればよい。このネットワーク解法を
用いた連接水系発電水量制御方式の一例を第9図に示す
。第9図で、26は渓流予測装置で、ネットワーク計算
装置28への入力となる渓流予測値32を算出する。こ
の26の機能は、オペレータが代替しても良い。27は
水位・貯水量変換装置で各ダム貯水池4,5.6からの
観測水位をもとに、各ダム貯水池の現在貯留量31を計
算する。28は、ネットワーク計算装置で、前述のネッ
トワーク計算が可能な計算機である。これは、まずはじ
めに26および27からのデータ31.32をそれぞれ
801〜803,701〜709の枝の指定流量として
設定し、前述の最小費用法計算を実行する。
With the above procedure, when the flow rate of each school in the network is determined, the branch at time 0, which is the current time, is 401°4.02,4
03 and 601, 602, 603 are dam 1.
Dam 2. This is the power generation gate water amount from dam 3 and the dam direct discharge amount. Therefore, it is sufficient to send this to the set value control devices 18 and 19 above. An example of a system for controlling the amount of water generated in a connected water system using this network solution method is shown in Fig. 9. In FIG. 9, 26 is a mountain stream prediction device that calculates a mountain stream predicted value 32 that is input to the network calculation device 28. These 26 functions may be replaced by an operator. 27 is a water level/water storage amount conversion device that calculates the current storage amount 31 of each dam reservoir based on the observed water level from each dam reservoir 4, 5.6. Reference numeral 28 denotes a network calculation device, which is a computer capable of performing the network calculation described above. This first sets the data 31.32 from 26 and 27 as the designated flow rates of branches 801-803 and 701-709, respectively, and performs the above-mentioned least cost method calculation.

実行結果33は、それぞれ各ダムの設定値制御装置に、
次の対応で送られ、制御に供せられる。
The execution results 33 are sent to the set value control device of each dam, respectively.
It is sent in the next response and is used for control.

401→1.18402→218 403→318 601→1.19601→219 603→319 但し11.8,218,318は発電ゲート水量設定値
制御装置119,219,319は直接放流ゲート水量
設定値制御装置である。またこの計算は、十分速いので
、表示装置34を介して、オペレータに計算結果を表示
しその承認を得て、出力33を送るということも可能で
ある。オペレータが結果の変更を必要とする場合は、キ
ーボード35により、ネッ1−ワークの各校のコストを
調整すればよい。
401 → 1.18402 → 218 403 → 318 601 → 1.19601 → 219 603 → 319 However, 11.8, 218, 318 are power generation gate water volume set value controllers 119, 219, 319 are direct discharge gate water volume set value controllers It is. Moreover, since this calculation is sufficiently fast, it is also possible to display the calculation result to the operator via the display device 34, obtain his approval, and send the output 33. If the operator needs to change the results, he can use the keyboard 35 to adjust the costs for each school in the network.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、渓流の予測値と
、現在水位を与えるのみで、瞬時に各ダムからの無効放
流量を最小化する発電水量、ダムゲート放流量を計算し
、制御することができる。
As explained above, according to the present invention, by only providing the predicted value of the mountain stream and the current water level, the amount of generated water and dam gate discharge amount that minimizes the amount of invalid discharge from each dam can be instantaneously calculated and controlled. be able to.

このことから次の効果が生れる。This results in the following effects.

(1)渓流の予測値の誤差に対し、容易に制御の修正が
可能であり、水系のダイナミックにマツチした制御方策
が提供される。
(1) Control can be easily corrected for errors in predicted values of mountain streams, and control measures that match the dynamics of water systems are provided.

(2)水系全体としての無効放流の最小化が可能15− (3)計算結果に対して、オペレータの介入が容易で、
制御の不可視性が取り除ける。またネットワーク表現は
、ダムと水路という具体的なものに完全に対応している
ので、理解しやすい。
(2) It is possible to minimize the ineffective discharge of the water system as a whole15- (3) It is easy for the operator to intervene in the calculation results,
It removes the invisibility of control. In addition, network representations are easy to understand because they fully correspond to concrete objects such as dams and waterways.

(4)現状の計算法のように長期の予測値を必要とせず
、比較的短期の予測のみで、その時点の最適解がめられ
るため、制御性能を向上させることができる。
(4) Unlike current calculation methods, long-term predicted values are not required, and the optimum solution at that point in time can be determined only by relatively short-term prediction, so control performance can be improved.

【図面の簡単な説明】 第1図は1本発明の適用対象例として示す連接水系の一
構成を示す図、第2図は、ダムのゲート操作法の説明図
、第3図は、ダムゲート制御装置の簡単な構成図、第4
図は、第1図の連接水系をネットワーク表現した図、第
5図〜第8図は、それぞれ、第4図中の発電用水を流す
枝401〜409、ダム貯留水を示す枝501〜5o6
.ゲート放流を示す枝601〜606.指定流量をもつ
枝701〜709,801〜803,901〜908に
それぞれ付加するコスト関数の概形を示16− す図、第9図は、ネッI〜ワークを利用した発電水量制
御装置の一構成例を示す図である。 オI M 矛 2 図 第3 図 沖5図 音6 図 貫入有水! オ 7 図 θ ブニi賛代量 +8 図
[Brief Description of the Drawings] Fig. 1 is a diagram showing the configuration of a connected water system as an example of the application of the present invention, Fig. 2 is an explanatory diagram of a dam gate operation method, and Fig. 3 is a diagram showing dam gate control. Simple configuration diagram of the device, No. 4
The figure is a network representation of the connected water system in Figure 1, and Figures 5 to 8 are branches 401 to 409 that flow water for power generation in Figure 4, and branches 501 to 5o6 that indicate dam storage water, respectively.
.. Branches 601 to 606 showing gate discharge. Figure 9 shows an outline of the cost functions added to branches 701 to 709, 801 to 803, and 901 to 908 with designated flow rates, respectively. It is a figure showing an example of composition. OI M Spear 2 Figure 3 Figure Oki 5 Zuon 6 Figure Penetration Arisui! E 7 Figure θ Buni i support amount + 8 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、 河川に設けられた複数個の発電用ダムと、各ダム
に設備された1つ以上の発電所から構成される連接水系
において、各ダムの現在の水位観測値と、各ダム毎の集
水域からの流入水量予測値にもとづき、その水系全体か
ら最大の発電量をひきだすために必要な各ダム毎の現時
点の発電用水量およびダムゲートからの放水量を高速に
決定し、各ダム毎の上記発電用水量および放水量を制御
する水量制御装置を備えたことを特徴とする連接水系発
電水量制御方式。
1. In a connected water system consisting of multiple power generation dams installed on a river and one or more power plants installed at each dam, the current water level observation value of each dam and the collection of data for each dam. Based on the predicted amount of inflow water from the water area, the current amount of power generation water for each dam and the amount of water discharged from the dam gate required to extract the maximum amount of power generation from the entire water system are determined at high speed, and the above-mentioned amount for each dam is determined. A connected water system power generation water amount control method characterized by being equipped with a water amount control device that controls the amount of water used for power generation and the amount of water discharged.
JP59240639A 1984-11-16 1984-11-16 Method for controlling the amount of generated water Expired - Lifetime JPH0650441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59240639A JPH0650441B2 (en) 1984-11-16 1984-11-16 Method for controlling the amount of generated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59240639A JPH0650441B2 (en) 1984-11-16 1984-11-16 Method for controlling the amount of generated water

Publications (2)

Publication Number Publication Date
JPS60122405A true JPS60122405A (en) 1985-06-29
JPH0650441B2 JPH0650441B2 (en) 1994-06-29

Family

ID=17062485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59240639A Expired - Lifetime JPH0650441B2 (en) 1984-11-16 1984-11-16 Method for controlling the amount of generated water

Country Status (1)

Country Link
JP (1) JPH0650441B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084809A (en) * 2012-10-24 2014-05-12 Matsumoto Tekkosho:Kk Hydraulic power generation system
JP2014105548A (en) * 2012-11-29 2014-06-09 Ebara Corp Method and device for utilizing and maintaining river water
CN113268881A (en) * 2021-05-31 2021-08-17 四川华能康定水电有限责任公司 Reservoir warehousing flow measuring and calculating method based on interpolation calculation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS482552U (en) * 1971-05-26 1973-01-12
JPS4949460A (en) * 1972-09-14 1974-05-14
JPS52135980A (en) * 1976-05-10 1977-11-14 Hitachi Ltd Plant control equipment
JPS53147182A (en) * 1977-04-08 1978-12-21 Inst Vysokikh Temperatur Akade Self optimizing control system for object with single mode charactelistic function
JPS5524121A (en) * 1978-08-10 1980-02-21 Sanwa Kagaku Kogyo Kk Hydrolysis of benzotrihalide
JPS5527682A (en) * 1978-08-19 1980-02-27 Mitsubishi Electric Corp Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS482552U (en) * 1971-05-26 1973-01-12
JPS4949460A (en) * 1972-09-14 1974-05-14
JPS52135980A (en) * 1976-05-10 1977-11-14 Hitachi Ltd Plant control equipment
JPS53147182A (en) * 1977-04-08 1978-12-21 Inst Vysokikh Temperatur Akade Self optimizing control system for object with single mode charactelistic function
JPS5524121A (en) * 1978-08-10 1980-02-21 Sanwa Kagaku Kogyo Kk Hydrolysis of benzotrihalide
JPS5527682A (en) * 1978-08-19 1980-02-27 Mitsubishi Electric Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084809A (en) * 2012-10-24 2014-05-12 Matsumoto Tekkosho:Kk Hydraulic power generation system
JP2014105548A (en) * 2012-11-29 2014-06-09 Ebara Corp Method and device for utilizing and maintaining river water
CN113268881A (en) * 2021-05-31 2021-08-17 四川华能康定水电有限责任公司 Reservoir warehousing flow measuring and calculating method based on interpolation calculation

Also Published As

Publication number Publication date
JPH0650441B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
Zou et al. Simulation-based emergency evacuation system for Ocean City, Maryland, during hurricanes
Wong* et al. Dynamic coast control of train movement with genetic algorithm
CN111710167A (en) Single-point optimization control method and device based on online traffic simulation
CN110136456A (en) Traffic lights anti-clogging control method and system based on deeply study
CN103971198A (en) System for distributing loads among plants of cascade hydropower stations in real time and implementation method of system
KR102578639B1 (en) Stepwise solar power generation forecast apparatus using machine learning and the method thereof
KR102179433B1 (en) System and method for controlling traffic signals based on distributed prediction
CN103177589A (en) Self-adaptive control method for period of traffic signal based on evolutionary game
Atic et al. NERC compliant decentralized load frequency control design using model predictive control
JPS60122405A (en) Control system of power generating water flow of connecting water system
Wei et al. Study of self-organizing control of traffic signals in an urban network based on cellular automata
He et al. Heuristic algorithms to solve 0–1 mixed integer LP formulations for traffic signal control problems
Karimi et al. Integrated model predictive control of dynamic route guidance information systems and ramp metering
Wey et al. Network traffic signal optimization formulation with embedded platoon dispersion simulation
Ghobadi et al. Developing a Web-based decision support system for reservoir flood management
Jeong et al. Implementation of simplified sequential stochastic model predictive control for operation of hydropower system under uncertainty
Shahriar et al. Intersection traffic efficiency enhancement using deep reinforcement learning and V2X communications
Nouasse et al. Contribution to a flood situation management: a supervisory control scheme to reduce disaster impact
Talsma et al. Anticipatory real-time management in the Lake IJssel: implementation and practical application
Pfuetzenreuter et al. Library ILM-River for simulation and optimal control of rivers and hydropower plants
JP7155689B2 (en) Power generation pattern generator and power generation pattern generation program
JPS59146303A (en) Controlling method of connecting water system
JP6624266B2 (en) Power control device
Niewiadomska-Szynkiewicz et al. FC-VS: a decision support system for flood control in multireservoir systems
Caini et al. Development of a simulation environment for water drinking networks: Application to the validation of a centralized MPC controller for the barcelona case study