JPS60122332A - Cathode luminescence device - Google Patents

Cathode luminescence device

Info

Publication number
JPS60122332A
JPS60122332A JP23009783A JP23009783A JPS60122332A JP S60122332 A JPS60122332 A JP S60122332A JP 23009783 A JP23009783 A JP 23009783A JP 23009783 A JP23009783 A JP 23009783A JP S60122332 A JPS60122332 A JP S60122332A
Authority
JP
Japan
Prior art keywords
slit
electron beam
scanning
optical spectrometer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23009783A
Other languages
Japanese (ja)
Other versions
JPH0579938B2 (en
Inventor
Kazuo Koyanagi
和夫 小柳
Yoshimi Murayama
村山 善美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP23009783A priority Critical patent/JPS60122332A/en
Publication of JPS60122332A publication Critical patent/JPS60122332A/en
Publication of JPH0579938B2 publication Critical patent/JPH0579938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To observe cathode luminescence with invariably high resolution regardless of a scanning range by displacing a slit or reflecting mirror synchronously with the scanning of an electron beam, and guiding light from a sample into the slit. CONSTITUTION:The sample 4 is scanned in two dimensions with the electron beam through a scanning control part 8 and a deflecting coil 6. The fluorescent light from the sample 4 is converged on a spectroscope 24 through condenser lenses 21-23. A control signal from a control part 8 is supplied to the servomotor 28a of a slit driving part 28 to displace slits 30 and 32 through an actuator 28b synchronously with the scanning of the electron beam. Therefore, the converged light with specific width is incident from the entrance slit 30 and diffracted spectrally by a diffraction grating 36 to enter a detector 26 through the exit slit 32. Therefore, cathode luminescence is measured with high resolution regardless of the scanning range.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、X線マイクロアナライザ(K P M A)
や走査電子顕微鏡(SFiM)などでカソードルミネッ
センス像を得るために付属装置として用いられるカソー
ドルミネッセンス装置に関する。
[Detailed description of the invention] (a) Industrial application field The present invention is directed to an X-ray microanalyzer (KPMA).
The present invention relates to a cathodoluminescence device used as an accessory device to obtain a cathodoluminescence image with a scanning electron microscope (SFiM) or the like.

(ロ)従来技術 一般に、カソードルミネッセンス装置でカソードルミネ
ッセンス像を得るには、試料に電子ビームを二次元走査
しながら照射し、試料からこれにより励起されて放射さ
れる光を光分光器へ導き、この光分光器で分光した特定
波長の光を検出器で検出する。このように、試料のカソ
ードルミネッセンス像を得るには電子ビームが二次元走
査されるので、これにとも々い光分光器に焦光される光
の位置も変化する。従って、光分光器のスリットを無関
係に固定したままではスリット自体が光の障害とカリ光
分光器へ導光できなくなる。このため、従来のものでは
電子ビームの走査領域の大きさに応じて光分光器のスリ
ット幅を広げ光分光器内へ光が支障なく導かれるように
している。ところがこのようにスリット幅を広げると光
分光器の分解能が低下し鮮明なカソードルミネッセンス
像が得られなくなるという難点がある。
(b) Prior Art Generally, in order to obtain a cathodoluminescence image using a cathodoluminescence device, a sample is irradiated with an electron beam while scanning in two dimensions, and the light excited and emitted from the sample is guided to an optical spectrometer. A detector detects the light of a specific wavelength separated by this optical spectrometer. In this way, since the electron beam is two-dimensionally scanned to obtain a cathodoluminescence image of the sample, the position of the light focused on the optical spectrometer changes accordingly. Therefore, if the slit of the optical spectrometer remains fixed regardless, the slit itself will interfere with the light and will not be able to guide the light to the optical spectrometer. For this reason, in conventional devices, the slit width of the optical spectrometer is widened in accordance with the size of the scanning area of the electron beam so that light can be guided into the optical spectrometer without any problem. However, when the slit width is widened in this manner, the resolution of the optical spectrometer decreases, making it impossible to obtain a clear cathodoluminescence image.

(ハ) 目的 本発明は上述の問題点に鑑みてなされたものであって、
カソードルミネッセンス像が倍率すなわち走査範囲に関
係りく常に高分解能で観察できるようにすることを目的
とする。
(C) Purpose The present invention has been made in view of the above-mentioned problems, and
It is an object of the present invention to enable cathodoluminescence images to be always observed with high resolution regardless of the magnification, that is, the scanning range.

に)構成 本発明はこのような目的を達成するため、電子ビ゛−ム
走査と同期してスリットあるいは反射用のミラーを変位
させ、試料からの光を支障なくスリットを通して光分光
器内へ導くようにしている。
In order to achieve the above object, the present invention displaces a slit or a reflecting mirror in synchronization with electron beam scanning, and guides the light from the sample through the slit into the optical spectrometer without any hindrance. That's what I do.

(ホ)実施例 以下、本発明を図面に示す一実施例に基づいて詳細に説
明する。なお、この実施例ではmPMAにカソードルミ
ネッセンス装置を取付けた場合について説明する。
(E) Example Hereinafter, the present invention will be explained in detail based on an example shown in the drawings. In this example, a case will be described in which a cathode luminescence device is attached to mPMA.

図はEPMAとこれに取付けられたカソードルミネッセ
ンス装置の構成図である。同図において1はEPMA、
2はカソードルミネッセンス装置、4は試料である。6
は電子銃(図示せず)から放出される電子ビームを偏向
させる偏向コイル、8はこの偏向コイル8に電子ビーム
制御信号を出力して電子ビームの走査制御を行なう走査
制御部である。10.12は反射対物レンズ、14は反
射ミラー、16は電子ビーム収束用の対物レンズ、18
は二次電子検出器でこれらは通常のEPMAに設けられ
ている。一方、カソードルミネッセンス装置2は、BP
MAlの反射ミラー16からの光を再び反射するだめの
ハーフミラ−20、このハーフミラ−20で反射された
光を焦光する複数の焦光レンズ21,22,23、焦光
された光を分光する光分光器24、この光分光器24で
分光された光を検出する検出器26およびスリット駆動
部2Bを主体に構成される。検出器24は入口用および
出口用の両スリツ)30.32の間に、複数の反射ミラ
ー34.34・・と回折格子36とが配置されてなる。
The figure is a configuration diagram of an EPMA and a cathode luminescence device attached to it. In the same figure, 1 is EPMA,
2 is a cathode luminescence device, and 4 is a sample. 6
8 is a deflection coil that deflects an electron beam emitted from an electron gun (not shown), and 8 is a scan control section that outputs an electron beam control signal to the deflection coil 8 to control scanning of the electron beam. 10.12 is a reflective objective lens, 14 is a reflective mirror, 16 is an objective lens for electron beam convergence, 18
is a secondary electron detector, which is installed in a normal EPMA. On the other hand, the cathodoluminescence device 2
A half mirror 20 for re-reflecting the light from the MAl reflecting mirror 16, a plurality of focusing lenses 21, 22, 23 for focusing the light reflected by this half mirror 20, and separating the focused light into spectra. It is mainly composed of an optical spectrometer 24, a detector 26 for detecting the light separated by the optical spectrometer 24, and a slit driving section 2B. The detector 24 includes a plurality of reflection mirrors 34, 34, . . . and a diffraction grating 36 arranged between the entrance and exit slots 30, 32.

この両スリット30.32は、光の入射方向に対して直
交し、かつ、互いに並行に配置されており、しかも、電
子ビームのラスクスキャン方向(図上紙面に垂直方向)
にスリット穴の長手方向が一致させである。また、回折
格子36も、その溝に直交する方向がスリット30.3
2穴の長手方向と一致するよう配置されている。
Both slits 30 and 32 are arranged perpendicularly to the direction of incidence of light and parallel to each other, and in the rask scanning direction of the electron beam (perpendicular to the plane of the paper in the figure).
The longitudinal direction of the slit holes should match. In addition, the diffraction grating 36 also has slits 30.3 in the direction perpendicular to the grooves.
It is arranged to match the longitudinal direction of the two holes.

スリット駆動部2Bはスリン)30.32を電子ビーム
のラスクスキャン方向と直交する方向(図中矢印Xで示
す左右方向)に駆動させるもので、たとえばサーボモー
タ28aとアクチュエータ28bとで構成され、サーボ
モータ28aが前記走査制御部8に、また、アクチュエ
ータ28bが両スリット30.32に共通にそれぞれ接
続されている。なお34は接眼レンズである。
The slit drive unit 2B drives the slit drive unit 30, 32 in a direction perpendicular to the rask scan direction of the electron beam (in the left-right direction indicated by the arrow X in the figure). A motor 28a is commonly connected to the scanning control section 8, and an actuator 28b is commonly connected to both slits 30 and 32. Note that 34 is an eyepiece lens.

上記構成において、カソードルミネッセンス像を得る場
合には走査制御部8から電子ビーム制御信号を偏向コイ
ル6に出力し、偏向コイル6の磁界を変えることによっ
て、試料4に照射される電子ビームをラスクスキャンし
つつこれと直交する方向(X方向)に順次移動させる。
In the above configuration, when obtaining a cathodoluminescence image, the scan controller 8 outputs an electron beam control signal to the deflection coil 6, and by changing the magnetic field of the deflection coil 6, the electron beam irradiated onto the sample 4 is scanned by a rask. while sequentially moving in a direction perpendicular to this (X direction).

このように電子ビームを試料4上で二次元走査すること
により試料4から放射された光は、反射対物レンズ10
゜12、反射ミラー14、ハーフミラ−20を介して焦
光じンズ21,22.23で光分光器24に焦光される
。この焦光位置は電子ビームの二次元走査に同期して変
位する。走査制御部8から出力される電子ビーム制御信
号は同時にスリット駆動部28のサーボモータ28aに
も与えられる。サーボモータ28aはこの電子ビーム制
御信号に応答して、電子ビームがX方向に移動する間の
みアクチュエータ28bを介してスリッ)30.32を
駆動する。従って、スリット30.32は電子ビームが
1つのラスクスキャンから次のラスクスキャンに移る間
にこれに同期して順次左方向(あるいは右方向)に変位
される。これによシ、スリット30.32は分解能上必
要な一定の幅を保ったままで焦光された光が入口用のス
リット3oを通って光分光器24内に導入され、かつ、
回折格子36で分光された特性波長の光が出口用のスリ
ット32を通って検出器26で検出される。
The light emitted from the sample 4 by two-dimensionally scanning the electron beam on the sample 4 is transmitted through the reflective objective lens 10.
12, the light is focused into a light spectrometer 24 by focusing lenses 21, 22, and 23 via a reflecting mirror 14 and a half mirror 20. This focal position is displaced in synchronization with the two-dimensional scanning of the electron beam. The electron beam control signal output from the scan control section 8 is also given to the servo motor 28a of the slit drive section 28 at the same time. In response to this electron beam control signal, the servo motor 28a drives the slit 30.32 via the actuator 28b only while the electron beam is moving in the X direction. Therefore, the slits 30, 32 are sequentially displaced to the left (or right) in synchronization with the electron beam as it moves from one rask scan to the next. As a result, the focused light is introduced into the optical spectrometer 24 through the entrance slit 3o while the slits 30 and 32 maintain a constant width necessary for resolution, and
Light having a characteristic wavelength separated by the diffraction grating 36 passes through the exit slit 32 and is detected by the detector 26 .

上記実施例では電子ビーム走査に同期してスリットを変
位させるようにしているが、光分光器のスリットは固定
しておき、その代りに試料4から光分光器24までの光
路中に配置されたミラー(本例ではたとえばハーフミラ
−20)に、このハーフミラ−20を電子ビームのラス
クスキャン方向と直交する方向(図中X方向)に駆動す
るミラー駆動部36を接続するとともに、このミラー駆
動部36を走査制御部8に接続し、これによって、ハー
フミラ−20を電子ビーム走査に同期して微動し、常に
光をスリット位置に焦光させるようにしても同じ効果が
得られる。
In the above embodiment, the slit is displaced in synchronization with the scanning of the electron beam, but the slit of the optical spectrometer is fixed, and instead, it is placed in the optical path from the sample 4 to the optical spectrometer 24. A mirror drive unit 36 that drives the half mirror 20 in a direction perpendicular to the rask scan direction of the electron beam (X direction in the figure) is connected to the mirror (for example, the half mirror 20 in this example), and the mirror drive unit 36 The same effect can be obtained by connecting the half mirror 20 to the scanning control unit 8, thereby slightly moving the half mirror 20 in synchronization with the electron beam scanning, and always focusing the light on the slit position.

(へ)効果 以上のように本発明によれば電子ビーム走査と同期して
スリットあるいはミラーを変位させるようにしているの
で、常に光はスリットを通して光分光器内に導かれるこ
とになりスリット幅を拡げる必要がない。従って、カソ
ードルミネッセンス像が走査範囲に影響されず常に高分
解能で観察できるようになるという優れた効果が得られ
る。
(f) Effect As described above, according to the present invention, the slit or mirror is displaced in synchronization with electron beam scanning, so light is always guided into the optical spectrometer through the slit, so the slit width can be reduced. No need to expand. Therefore, an excellent effect can be obtained in that the cathodoluminescence image can always be observed with high resolution without being affected by the scanning range.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例のEPMAに取付けたカソード
ルミネッセンス装置の構成図である。 1・・KPMA12・・カソードルミネッセンス装置、
4・・試料、8・・走査制御部、24・光分光器、26
・・検出器、2B・・スリット駆動部、30,32・・
スリット、36・・回折格子。
The drawing is a configuration diagram of a cathode luminescence device attached to an EPMA according to an embodiment of the present invention. 1... KPMA12... cathodoluminescence device,
4. Sample, 8. Scanning control unit, 24. Optical spectrometer, 26
...Detector, 2B...Slit drive section, 30, 32...
Slit, 36...diffraction grating.

Claims (2)

【特許請求の範囲】[Claims] (1)試料から電子ビームで励起されて放射される光を
分光する光分光器と、この光分光器で分光された光を検
出する検出器とを備え、前記光分光器はスリットと回折
格子とを配置して構成されたカソードルミネッセンス装
置において、前記スリットには、このスリットを光の入
射方向に対して垂直な平面内で電子ビームのラスクスキ
ャン方向と直交する方向に駆動させるスリット駆動部を
接続するとともに、このスリット駆動部を前記電子ビー
ムの走査制御部に接続し、前記スリットを電子ビーム走
査と同期して変位させるようにしたことを特徴とするカ
ソードルミネッセンス装置。
(1) Equipped with an optical spectrometer that separates light emitted from a sample by being excited by an electron beam, and a detector that detects the light separated by the optical spectrometer, and the optical spectrometer includes a slit and a diffraction grating. In the cathode luminescence device, the slit is provided with a slit drive unit that drives the slit in a direction perpendicular to the rask scan direction of the electron beam in a plane perpendicular to the direction of incidence of the light. and the slit driving section is connected to the scanning control section of the electron beam, so that the slit is displaced in synchronization with scanning of the electron beam.
(2)試料から電子ビームで励起されて放射される光を
分光する光分光器と、この光分光器で分光された光を検
出する検出器とを備え、前記光分光器はスリットと回折
格子とを配置して構成されたカソードルミネッセンス装
置において、前記試料から光分光器までの光路中に光分
光器のスリットに向けて光を反射させるミラーを配置し
、このミラーにミラーを電子ビームのラスクスキャン方
向と直交する方向に駆動させるミラー駆動部を接続する
とともに、このミラー駆動部を前記電子ビームの走査制
御部に接続し、前記ミラーを電子ビーム走査と同期して
変位させるようにしたことを特徴とするカソードルミネ
ッセンス装置。
(2) It is equipped with an optical spectrometer that separates light emitted from a sample by being excited by an electron beam, and a detector that detects the light separated by the optical spectrometer, and the optical spectrometer includes a slit and a diffraction grating. In the cathode luminescence device, a mirror that reflects light toward the slit of the optical spectrometer is placed in the optical path from the sample to the optical spectrometer, and a mirror is attached to the mirror to reflect the light toward the slit of the optical spectrometer. A mirror driving section for driving in a direction perpendicular to the scanning direction is connected, and this mirror driving section is connected to the scanning control section of the electron beam, so that the mirror is displaced in synchronization with the scanning of the electron beam. Characteristic cathodoluminescence device.
JP23009783A 1983-12-05 1983-12-05 Cathode luminescence device Granted JPS60122332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23009783A JPS60122332A (en) 1983-12-05 1983-12-05 Cathode luminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23009783A JPS60122332A (en) 1983-12-05 1983-12-05 Cathode luminescence device

Publications (2)

Publication Number Publication Date
JPS60122332A true JPS60122332A (en) 1985-06-29
JPH0579938B2 JPH0579938B2 (en) 1993-11-05

Family

ID=16902499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23009783A Granted JPS60122332A (en) 1983-12-05 1983-12-05 Cathode luminescence device

Country Status (1)

Country Link
JP (1) JPS60122332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392650B1 (en) * 2013-05-16 2022-08-31 Carl Zeiss Microscopy GmbH Device for spectroscopic analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392650B1 (en) * 2013-05-16 2022-08-31 Carl Zeiss Microscopy GmbH Device for spectroscopic analysis

Also Published As

Publication number Publication date
JPH0579938B2 (en) 1993-11-05

Similar Documents

Publication Publication Date Title
US7239384B2 (en) Laser-scanning fluoroscopy apparatus
US5065008A (en) Scanning microscope and scanning mechanism for the same
JP3330617B2 (en) Optical scanning device
KR100215690B1 (en) A scanning optical device
US5220450A (en) Scanning optical system capable of automatic focusing
US5084612A (en) Imaging method for scanning microscopes, and confocal scanning microscope
JP2002502044A (en) A device that detects multiple spectral bands of a light beam simultaneously
JP3235733B2 (en) Laser beam scanning optical system
JP2002228934A (en) Scanning microscope
US7151633B2 (en) Scanning microscope
JP2023513729A (en) Optical imaging system and biological substance detection system applying it
JP2007500368A (en) Scanning microscope
JPH07109484B2 (en) Radiation image information reader
US5438450A (en) Optical scanning apparatus
JPS60122332A (en) Cathode luminescence device
US5587825A (en) Scanning optical system
JPH02149814A (en) Monitor mechanism for scanning type optical device
US7561338B2 (en) Microscope objective system
JP2631666B2 (en) Laser light source device for multiplexing
JPH09325278A (en) Confocal type optical microscope
JPH0829692A (en) Fluorescence microscope
JP2608483B2 (en) Confocal scanning microscope
JPH03131811A (en) Confocal scanning type transmission microscope
JP2675863B2 (en) Light beam scanning device
JPS586267B2 (en) scanning electron microscope