JPS60121983A - Controlling method of synchronous motor - Google Patents

Controlling method of synchronous motor

Info

Publication number
JPS60121983A
JPS60121983A JP59235063A JP23506384A JPS60121983A JP S60121983 A JPS60121983 A JP S60121983A JP 59235063 A JP59235063 A JP 59235063A JP 23506384 A JP23506384 A JP 23506384A JP S60121983 A JPS60121983 A JP S60121983A
Authority
JP
Japan
Prior art keywords
synchronous motor
voltage
speed
rotation speed
synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59235063A
Other languages
Japanese (ja)
Other versions
JPH0117358B2 (en
Inventor
Akio Hirata
平田 昭生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59235063A priority Critical patent/JPS60121983A/en
Publication of JPS60121983A publication Critical patent/JPS60121983A/en
Publication of JPH0117358B2 publication Critical patent/JPH0117358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Abstract

PURPOSE:To reduce the capacity of a field input power source by reducing the radio of the rotating speed of a motor to the armature voltage at that time in a low speed rotating range lower than that of the rated rotating speed to the armature voltage at that time, thereby reducing the reactive power. CONSTITUTION:An exciting reference generator 25 inputs an output signal from a D/A converter 18, and an output is generated on the basis of a function of N/Va shown in the drawing. This output is compared with a signal of the armature voltage Va of a synchronous motor 15 detected by a voltage detector 23, and a voltage controller 24 controls a thyristor switch 22 so that the armature voltage Va is proportional to the rotating speed N as shown in the drawing on the basis of the compared result. Thus, the power source capacity of the field input power source 21 is reduced to largely improve the power factor of the power source.

Description

【発明の詳細な説明】 [発明の技術分#fコ 本発明は2乗トルク負荷をliA勤する同期電動機を周
波数変換装置によってd1変運転する場合における同期
′亀動機の制御方法に関する〇[発明の技術的背景] 近年の技術進歩によって同期電動機を可変速運転する方
式は種々の方式が実用化でれており1強制転流の周波数
変換装置を採用した方式や自然転流(負荷転流)の周波
数変換装置を採用した方式などがある。またこの適用分
野永年々拡大し中小容針から中大容針分子Mまで幅広く
採用されるようになってきた。これら同期tKiJJ機
で駆動される負荷機器にも種々の物がおるが、回転数に
関係なく概略一定トルクを要求する定トルク負荷と、回
転数の1〜2乗5二比例して゛要求トルクが変化する2
うに巧みに利用してなされたものであり、回転数の1〜
2乗で負性トルクが変化するポンプ・プロワ・ファン・
コンプレッサなどの負荷を駆動する同期電wJ機の縮動
制御システムにおいてのみその特徴が活かされる〇 まず、同期電動機の駆動制御システムについて説明する
。第5図は従来の同期電動機の駆動制御システムの一例
を示す。周波数変換装置の種類などによって公知の種々
の方式があるが第5図でにサイリスタモータシステム又
は負荷転流そ一タ、システムと称される直流式サイリス
タモータシステムを図示している。この詳細な動作原理
については既に公知の技術であるため、要点を中心に以
下第5図を説明する。この図で11は入力交流官、源、
J2f′i整流器、l:3は電流リアクトル、 14は
インバータ、15は同期電!11機、151は同期電動
機15の界磁巻線、152は回転整流器、15Bは誘導
周波数変換機、154i、tセンサー、+6f′i速度
基準設定器、17は速度制御器、18はD/人変換器、
19はα制御器。
DETAILED DESCRIPTION OF THE INVENTION [Technical Part of the Invention] The present invention relates to a method for controlling a synchronous motor in the case where a synchronous motor carrying a square torque load is operated at d1 variable speed using a frequency converter. [Technical background] Due to recent technological advances, various methods of variable speed operation of synchronous motors have been put into practical use, including methods that employ a forced commutation frequency converter and natural commutation (load commutation). There are methods that use a frequency conversion device. In addition, the field of application has expanded over the years, and it has come to be widely adopted from small and medium sized needles to medium and large sized needles. There are various load devices driven by these synchronous tKiJJ machines, but there are constant torque loads that require approximately constant torque regardless of the rotation speed, and constant torque loads that require approximately constant torque regardless of the rotation speed, and constant torque loads that require approximately constant torque regardless of the rotation speed. change 2
This was done by skillfully utilizing sea urchins, and the number of revolutions from 1 to
Pumps, blowers, fans, etc. whose negative torque changes with the square of the
Its features are utilized only in the contraction control system of synchronous motor WJ machines that drive loads such as compressors. First, the drive control system of synchronous motors will be explained. FIG. 5 shows an example of a conventional synchronous motor drive control system. Although there are various known systems depending on the type of frequency converter, FIG. 5 shows a DC type thyristor motor system called a thyristor motor system or a load commutation system. Since this detailed operating principle is already a well-known technique, the main points will be mainly explained with reference to FIG. 5 below. In this figure, 11 is the input exchange officer, source,
J2f'i rectifier, l:3 is current reactor, 14 is inverter, 15 is synchronous voltage! 11 machines, 151 is the field winding of the synchronous motor 15, 152 is the rotary rectifier, 15B is the induction frequency converter, 154i, t sensor, +6f′i speed reference setter, 17 is the speed controller, 18 is D/person converter,
19 is an α controller.

191は電流検出器、21Jrjβ制御器、21は界磁
入力電源、22はサイリスタスイッチ、2:3は電圧検
出器、24は電圧制御器、241は市、?IC1検出輸
である0人力交流電源11の交流′電力は整流器12で
直流電力に変換さ′rL、これ′f!−直流リアクすル
13で平滑化し、インバータ14で異なる周波数の交流
電力に逆変換して同期電動機15を可変速運転する。こ
の時同期電動機15に与えられる交流電力の周波数は速
度基準設定器16で設足され、同期電動機15の回転速
度をセンサー154で検出し、この検出信号なり/A変
換器18でアナログ信号に変換して速度制御器17で速
度基準と比較し同期電動機■5の回転数を閉ループ制御
する。速度制御器17の出力信号シ二よってα制御器1
9を介して整流器12の出力直流電力を可変して同期電
動a15に供給する電力を可変制御するが、α制御器1
9は世流器■2の入力電流を電流検出器191によって
検出して、整流器12の出力電流を閉ループ制御する。
191 is a current detector, 21 is a Jrjβ controller, 21 is a field input power supply, 22 is a thyristor switch, 2:3 is a voltage detector, 24 is a voltage controller, 241 is a city, ? The AC' power of the zero-power AC power source 11, which is the IC1 detection output, is converted to DC power by the rectifier 12, 'rL, this'f! - The DC reactor 13 smoothes the power, and the inverter 14 converts it back into AC power of a different frequency, thereby operating the synchronous motor 15 at variable speed. At this time, the frequency of the AC power given to the synchronous motor 15 is set by the speed reference setting device 16, the rotational speed of the synchronous motor 15 is detected by the sensor 154, and this detection signal is converted into an analog signal by the A/A converter 18. Then, the speed controller 17 compares the speed with a speed reference and controls the rotation speed of the synchronous motor 5 in a closed loop. α controller 1 according to the output signal S2 of speed controller 17
The output DC power of the rectifier 12 is varied through the α controller 1 to variably control the power supplied to the synchronous motor a15.
Reference numeral 9 detects the input current of the rectifier 2 with a current detector 191, and controls the output current of the rectifier 12 in a closed loop.

他方インバータ14ハ、センサー154によって同期電
動機15の界磁の回転位置を検出した検出信号によって
β制御外20を介゛して制御される。この時インバータ
14は同期電動機15の逆起電力を利用して負荷転流(
自然転流)を行なうが、この負荷転流のタイミングをセ
ンサー154とβ制御器20によって制御する。他方同
期電動機15の磁束は、界磁入力電源21の交流電力を
サイリスタスイッチ22で電圧制御し、この出力を誘導
周波数変換器15Bに入力し、誘導周波数変換機15B
の2次側交流電力を回転整流器152で直流電力に変換
し、これを界磁巻線151に与えることによって作られ
る。この時D/A変換器18の出力信号(速度検出信号
)と同期W動機15の電機子電圧を電圧検出器23で検
出した電圧検出信号を比較する。電圧制御器24ニこの
比較結果と11流検出器241で検出したサイリスタス
イッチ22の入力電流にもとすいてサイリスタスイッチ
22の電圧制御を行なうことで同期電動機15の磁束を
制御する。
On the other hand, the inverter 14 is controlled via the β control unit 20 by a detection signal obtained by detecting the rotational position of the field of the synchronous motor 15 by the sensor 154. At this time, the inverter 14 utilizes the back electromotive force of the synchronous motor 15 to perform load commutation (
The timing of this load commutation is controlled by the sensor 154 and the β controller 20. On the other hand, the magnetic flux of the synchronous motor 15 is generated by voltage-controlling the AC power of the field input power source 21 using the thyristor switch 22, and inputting this output to the induction frequency converter 15B.
It is generated by converting secondary side AC power into DC power with a rotary rectifier 152 and applying this to the field winding 151. At this time, the output signal (speed detection signal) of the D/A converter 18 and the voltage detection signal obtained by detecting the armature voltage of the synchronous W motor 15 by the voltage detector 23 are compared. The voltage controller 24 controls the voltage of the thyristor switch 22 based on the comparison result and the input current of the thyristor switch 22 detected by the eleventh current detector 241, thereby controlling the magnetic flux of the synchronous motor 15.

以上説明したような同期電動機15の駆動制御システム
の特性を鮎6図及び第7図で駅、明する。第6図は同期
電動機15のに接子電圧Va(インバータ14の出力電
圧)と同期電動[15の負荷トルク1′を縦軸に、極軸
は同期電U 41i15の回転数Nを示す。
The characteristics of the drive control system for the synchronous motor 15 as described above will be explained with reference to FIGS. 6 and 7. In FIG. 6, the vertical axis shows the armature voltage Va (output voltage of the inverter 14) of the synchronous motor 15 and the load torque 1' of the synchronous motor [15], and the polar axis shows the rotational speed N of the synchronous motor U41i15.

この図に示すように負荷トルクが2乗トルク特性を示す
場合に従来の同期′電動機15t/′i電機子電圧Vn
と回転数Nの比を一足(二制御するのが一般的であった
。このよう(ユVa/Nを一定に制御した場合の同期宵
1動機の駆動制御システムの特性を第7図で説明する。
As shown in this figure, when the load torque exhibits square torque characteristics, the conventional synchronous motor 15t/'i armature voltage Vn
It was common to control the ratio of the rotational speed N and the rotation speed N by one (two).The characteristics of the drive control system of the synchronous engine when controlling Va/N to a constant value in this way are explained in Fig. 7. do.

第7図において(R)は同期電動機15の電機子電流1
aを、(b)げ界磁巻線151を流れる界磁電流Ifを
、(C)は誘導周波数変換機158の励磁入力電力Pf
lと励磁入力電圧Bflを、(d)Fi整流器12の入
力力率PFαを図示している。2乗トルク負荷の場合、
第7図で電機子電流Iaは負荷トルクTに概略比例し、
界磁電流Ifは同様に比例して変化するがペース分とし
て最高回転数の約1/2が残る。励磁入力電圧Efl 
Tri誘導周波数変換機158の励磁入力電圧の相回転
方向と同期電動機15の回転方向を反対にしているため
1回転数Nが岑の時最大で100%の時的1/2になる
。他方励磁入力電力Pflは界磁電流Ifの2乗に比例
して概略変化する。1整流器12の入力力率PFαは回
転数Nに概略比例して変化する。これは第6図でVa/
Nがほぼ一定のためである。
In FIG. 7, (R) is the armature current 1 of the synchronous motor 15.
a, (b) the field current If flowing through the field winding 151, and (C) the excitation input power Pf of the induction frequency converter 158.
1 and the excitation input voltage Bfl, and (d) the input power factor PFα of the Fi rectifier 12. For square torque load,
In Fig. 7, the armature current Ia is approximately proportional to the load torque T,
The field current If changes proportionally in the same way, but about 1/2 of the maximum rotational speed remains as the pace. Excitation input voltage Efl
Since the phase rotation direction of the excitation input voltage of the Tri induction frequency converter 158 and the rotation direction of the synchronous motor 15 are reversed, when the number of revolutions N is small, the maximum time is 1/2 of 100%. On the other hand, the excitation input power Pfl changes approximately in proportion to the square of the field current If. The input power factor PFα of the rectifier 12 changes approximately in proportion to the rotation speed N. This is shown in Figure 6 as Va/
This is because N is approximately constant.

[背景技術の問題点] 以上第5図〜第7図で説明した従来の2乗トルク負荷を
駆動する同期電動機の駆動制御システムでは1次の問題
がめった。
[Problems with Background Art] The conventional drive control system for a synchronous motor that drives a square torque load, as described above with reference to FIGS. 5 to 7, often suffers from the first problem.

一般に2乗トルク負荷では所要動力が回転数N(7,)
 3乗で変化するため、同期電動機15の回転数N<5
定格の50〜80%al&で運転する期間が比較的長い
。ところで第7図(C)より明らかなよう(二同期電動
模I5の回転数Nが零の時励磁入力電圧Eflが最大に
なる。このため肪導周波数変換橘158の励磁電源容量
はこの時の励磁入力電力Bflの最大値と励磁入力電力
Pflの最大の時(回転数Nが100チの時)の電流と
で決る0この結果界磁入力電源21のt源容量が太きく
1!諒力率も悪くなる欠点があったC 「発明の目的」 本発明は前述の従来の同期軍N機の駆動制御システムの
欠点に鑑みてなされたもので、界磁人力交流電源の無効
゛電力や′喝源容轍を低減できる同期′亀動機の制御方
法を提供することを目的としてしする。
Generally, for a square torque load, the required power is the rotational speed N (7,)
Since it changes by the third power, the rotation speed of the synchronous motor 15 N<5
The period of operation at 50 to 80% of the rated value is relatively long. By the way, as is clear from FIG. 7(C) (when the rotation speed N of the two-synchronous electric model I5 is zero, the excitation input voltage Efl is maximum. Therefore, the excitation power supply capacity of the fat conduction frequency conversion Tachibana 158 at this time is 0 determined by the maximum value of the excitation input power Bfl and the current at the maximum of the excitation input power Pfl (when the rotation speed N is 100 degrees).As a result, the t source capacity of the field input power supply 21 is large. ``Purpose of the Invention'' The present invention was made in view of the above-mentioned shortcomings of the drive control system of the conventional synchronous force N aircraft. The purpose of this paper is to provide a control method for a synchronous motor that can reduce the rutting of the engine.

「発明の概要」 本発明は、この目的を構成するために、同期電動機の回
転数Nが定格回転4vN(100)の25チ以下の低速
回転数範囲で同期電動(幾の回転数Nとそのときの電機
子電圧Vaとの比Va/Nが、定格回転数N(100)
とそのときの電機子電圧va (100)との比Va(
loo) /N(too)よりも小さくなるように制御
することを特徴とするものである。
"Summary of the Invention" In order to achieve this object, the present invention provides a synchronous electric motor (a synchronous motor with a rotational speed N and its The ratio Va/N to the armature voltage Va at the time is the rated rotation speed N (100)
The ratio Va(
loo)/N(too).

[発明の実施例] 以下、本発明の実施例を図面を用いて説明するO第1図
は本発明方法を実施するための同期電動機の駆動システ
ムの構成の一例を示す図であり、年5図C二示すシステ
ムに対して、励磁基準発生器25が付加されたことが特
徴でめる。励磁基準発生器25はD/A変換器18から
の出力信号(速度検出信号)を入力し、この入力の関数
とし、て第2図6二刀すN−Vaの関係を有する関数を
発生する関数発生器で構成されている。第5図に示すシ
ステム(二おいてはD / A変換器■8の出力信号(
速度検出信号)と電圧検出器甜で検出した同期電動機1
5C)電機子電圧Vaの信号とを比較し、この比較結果
シニもとすき電圧制御器24はt様子電圧Vaが第6図
(二示すごとく回転数Nに比例するよう(二閉ループ制
御する。ところで第1図に示すシステムC二おし1ては
D/A変換器18の出力信号を受けて励磁基準発生器2
5は第2図6二刀くすN−Vaの関数にもとすき出力を
発生する。この励磁基準発生器25の出力と同期電動機
15の市1機子電圧Vaの信号とを比較シ1、この比較
結果にもとずいて袖―圧制御器24け、第5図に示すシ
ステムと全く同様に1に根子電圧Vaを閉ループ制御す
る。この結果電機子電圧Vaは回転数Nに対して第2図
に示すVaの値に制御されることになる0 以下励磁基準発生器25について説明するが回転数Nに
対して励磁基準発生器z5の出力信号は同期電動機15
のti; jr!!子電圧Vaと同一のため第2図を使
用して励磁基準発生器25の作用を説明する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described with reference to the drawings. The system shown in FIG. C2 is characterized by the addition of an excitation reference generator 25. The excitation reference generator 25 inputs the output signal (speed detection signal) from the D/A converter 18, and generates a function having the relationship N-Va shown in FIG. 26 as a function of this input. It consists of a function generator. The system shown in Figure 5 (in the second case, the output signal of the D/A converter ■8)
Synchronous motor 1 detected by speed detection signal) and voltage detector
5C) The armature voltage Va is compared with the signal of the armature voltage Va, and as a result of this comparison, the voltage controller 24 performs two-closed loop control so that the t-state voltage Va is proportional to the rotational speed N as shown in FIG. 6 (2). By the way, the system C2 shown in FIG.
5 also generates an output for the function of N-Va shown in FIG. The output of the excitation reference generator 25 is compared with the signal of the voltage Va of the synchronous motor 15.Based on the result of this comparison, the sleeve pressure controller 24 is installed and the system shown in FIG. In exactly the same way, the root voltage Va is controlled to 1 in a closed loop. As a result, the armature voltage Va is controlled to the value of Va shown in FIG. The output signal of the synchronous motor 15
ti; jr! ! The operation of the excitation reference generator 25 will be explained using FIG. 2 since it is the same as the slave voltage Va.

第2図は従来の第6図(二対応したVa −N 、 ’
l’−N特性図である。この図で負荷トルクTt/′i
同期奄動機15の回転数Nの関数として第6図のT−N
%性と同様に変化する。他力回期箋、動機■5の電機子
電圧Vaij回転数Nの全範囲でVa−Nを一定としな
いように界磁基準発生器25ヤ$、b子電圧をパターン
制御する。即ち第2図の例では第6図と比較して回転数
Nが、0〜25%の範囲では篭、様子電圧Vaは低い方
向に、25%〜75チの範囲ではVa/Nを一足に保ち
つつ電機子電圧Vaは高い方向に、75%〜100%の
範囲でU電機子電圧Vaを高い方向でほぼ一定値に制御
する。このように制御した場合の同期電動機15の駆動
制御システムの特性を第3図に示す。第3図において第
7図(a)〜(d)に示した従来システムの特性を点線
で示し、本発明の特性を実線で示す。この図で電機子電
流1aは回転数Nが75%〜100チの範囲は回転数へ
の3乗に概略比例し、25%〜75%は負葡トルクT(
回転数Nの2乗)に比例し、0〜25%の間は負荷トル
ク1以上に増加する。回転数へか75%〜100チの範
囲は界磁’M161Elfの変化が小さく、25−〜1
00%の範囲では第7図(b)J:り界磁電流1fが増
加する。励磁入力電力Pflは回転数Nが2b%〜10
0%の範囲では増加するが、この範囲では回転数100
%の点が最大であり1本発明によって増加することはな
い。他方励磁入力筆圧grl F1回転数Nが0〜25
%の範囲では!7図(C)に比較して減少する0整流器
12の入方力率PFαは回転数75%〜100チの範囲
が第7図(d)の最大値とほぼ一足であり1回転数Nが
25饅〜75チの範囲は第7図(d)より大幅に向上す
る。
Figure 2 shows the conventional figure 6 (two corresponding Va −N, '
It is an l'-N characteristic diagram. In this figure, load torque Tt/'i
T−N in FIG. 6 as a function of the rotational speed N of the synchronous motor 15
It changes in the same way as percentage. The field reference generator 25 and the b voltage are pattern-controlled so that Va-N is not constant over the entire range of the armature voltage Vaij and the rotational speed N. That is, in the example of Fig. 2, compared to Fig. 6, the rotational speed N is lower in the range of 0 to 25%, the voltage Va is lower, and Va/N is lower in the range of 25% to 75%. While maintaining the U armature voltage Va in a high direction, the U armature voltage Va is controlled to a substantially constant value in a high direction within a range of 75% to 100%. FIG. 3 shows the characteristics of the drive control system for the synchronous motor 15 when controlled in this manner. In FIG. 3, the characteristics of the conventional system shown in FIGS. 7(a) to (d) are shown by dotted lines, and the characteristics of the present invention are shown by solid lines. In this figure, the armature current 1a is roughly proportional to the cube of the rotation speed when the rotation speed N is 75% to 100 degrees, and when the rotation speed N is 25% to 75%, it is proportional to the negative torque T (
The load torque increases to 1 or more between 0 and 25%. The change in the field 'M161Elf is small in the range of 75% to 100 degrees to the rotation speed, and it is 25% to 1%.
In the range of 00%, the field current 1f increases as shown in FIG. 7(b). The excitation input power Pfl has a rotation speed N of 2b% to 10
It increases in the 0% range, but in this range the rotation speed is 100
% is the maximum and cannot be increased by 1 according to the present invention. On the other hand, excitation input pen pressure grl F1 rotation speed N is 0 to 25
In the range of %! The input power factor PFα of the zero rectifier 12, which decreases compared to FIG. 7(C), is almost the same as the maximum value in FIG. The range from 25 buns to 75 chips is much improved compared to FIG. 7(d).

以上説明したように、綿導周波数変換器15Bの励磁を
源容量ニ励磁入力Tlj、’圧Eflの最大値が回転数
Nが零の点で第7図(C)より低下するから界磁入力電
源21の1!、源答量も減少し、電源力率も大幅に向上
する。このような効果利点が得らjるのは、本発明が2
乗トルク負#Iに適用されるためである。
As explained above, the excitation of the cotton frequency converter 15B is controlled by the source capacity excitation input Tlj and the maximum value of the pressure Efl is lower than that shown in FIG. Power supply 21 in 1! , the power supply capacity is also reduced, and the power supply power factor is also significantly improved. Such effects and advantages can be obtained because the present invention has two advantages.
This is because the multiplication torque is applied to the negative #I.

すなわち回転iNが0〜25%の範囲で第2図に示すよ
うに本発明で第6図より電機子電圧Vaを低く設定する
ことができるのは負荷トルクがこの領域で小さくなるた
めであり、同期電動機15の発生トルクも小さくするこ
とができ、2乗トルク負りfの場合のみに前記する効果
利点が得らiする。以上説明したように本発明は同期′
6動(賎15の特性と2乗トルク負荷特性を充分に検削
り、 ’Cなされたものであって、2乗トルク負衛に適
用される場合にのみ同期電動機15の容量やTh、−G
et増大やコストアップを生じることなく前記する効果
利点が得られる。
That is, in the range of rotation iN from 0 to 25%, as shown in FIG. 2, the armature voltage Va can be set lower than in FIG. 6 in the present invention because the load torque becomes small in this range. The torque generated by the synchronous motor 15 can also be reduced, and the above-mentioned advantages can be obtained only in the case of the squared torque negative f. As explained above, the present invention
The capacity of the synchronous motor 15, Th, and
The above effects and advantages can be obtained without increasing et or cost.

本発明の他の実施例による特性を第4図に示す。Characteristics according to another embodiment of the present invention are shown in FIG.

第2図に対応した他の実施例である従来の第6図に比較
して電機子電圧Vaと回転λ夕Nとの比Va/Nが一足
の直線より低く制御される回転数領域を第5図の如く特
に限定するものではなく、第7図の如く設定することも
でき、同期電動機15の通常の運転領域に合わせて前記
の回転数Nの各領域を任意に選べる。以上第2図、第4
図に示すように。
Compared to the conventional FIG. 6, which is another embodiment corresponding to FIG. It is not particularly limited as shown in FIG. 5, but can be set as shown in FIG. 7, and each range of the rotation speed N can be arbitrarily selected according to the normal operating range of the synchronous motor 15. Figures 2 and 4 above
As shown in the figure.

本発明は回転数Nに対する電機子’it(圧Vaの大き
さを!ト′15′!!値に限定するものではなく、同期
電動機15の回転射Nが定格回転数N(100)の少く
とも25%以下の低速回転数範囲で同期ち1動機15の
定格電機子1七、圧Va(100)と定格回転数N(1
00) (何4も100%の点の値)との比Va (1
00) / NBoo)よりも小さいVa/Nに電機子
電圧Vaを設定すれば前記の効果が伶らハることが明ら
かである。
The present invention does not limit the magnitude of the armature'it (pressure Va) to the value of !'15' with respect to the rotational speed N. 1 motor 15, rated armature 17, pressure Va (100) and rated rotation speed N (1
00) (value of 100% point for anything 4)
It is clear that the above effect is diminished if the armature voltage Va is set to Va/N smaller than Va/N.00)/NBoo).

また励磁基準発生器25の回路構成を特(ユ限定するも
のではなく、所望の出力信号を発生させることができる
関数発生器の技術に既に公知であり、これらの関数発生
器を励磁基準発生器25として使用できる。
Further, the circuit configuration of the excitation reference generator 25 is not limited to a particular one, but is already known in the art of function generators capable of generating a desired output signal, and these function generators can be used as an excitation reference generator. It can be used as 25.

他方、同期電動機15をol変運転する周波数変換装置
として第1図では直流式サイリスタモータシステムを図
示したが、サイクロコンバータや強制転流式のインバー
タシステムなどが使用できることが明らかであり、周波
数変換装置の構成を特に限定するものではない。
On the other hand, although a DC thyristor motor system is shown in FIG. 1 as a frequency converter for operating the synchronous motor 15 in an OL variable manner, it is clear that a cycloconverter or a forced commutation type inverter system can also be used. The configuration is not particularly limited.

その他本発明の帯行を饅更しない範囲において、(11
X々の変形回路?構成することができる。
In addition, within the scope of the present invention, (11)
A modified circuit of X? Can be configured.

「発明の効果」 以上説明したように本発明によ才1ば、同期’i4i、
’動機の駆動制御システムの界磁人力′電源の力辞1(
3善が可能であり、無効地力が低減さ才する結果、界磁
入力電源の容量低減がi」能となる等の効果を会するC
"Effects of the Invention" As explained above, the present invention has advantages in that the synchronization i4i,
'Field human power of motive drive control system' Power statement 1 (
The three advantages are possible, and as a result of reducing the reactive force, the capacity of the field input power source can be reduced, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための同Jul ’ft
I’、動機の駆動システムの構成の一例を示す図、8I
42IAは本発明の実施例でのVa−N特性及びT−N
%件図、第3図は本発明での同期電動機の駆動制御シス
テムの特性図、第4図は本発明の他の実施例におけるV
a−N%性及びT−N特性図、第5図は従来の同期電動
機のる動制御システムの構成図、第6図は従来のVa−
N%性及びT−N特性図、第7図は従来の同期電動機の
駆動制御装置の特性図である。 I1・・・入力交流電源 I2・・・整流器13・・・
直流リアクトル 14・・・インバータI5・・・同期
電動機 151・・・界磁巻線152・・・回転整流器
 15B・・・誘導周波数変換機154・・・センサー
 16・・・速度基準17・・・速度制御器 18・・
・1)/A変換器19・・・α制御器 191・・・電
流検出器20・・・β制御器 21・・・界磁入力電源
22・・・サイリスクスイッチ 23・・・電圧検出器
24・・・東圧制両器 241・・・電流検出器2b・
・・励磁基準発生器 T・・・負荷トルク Va・・・電徴子宵、圧N・・・
回転Fila・・・電機予算1流If・・・界磁電流 
Pf、・・・励磁人力′屯力Efl・・・励磁入力電圧 PFα・・・整流器12の入力カ率 代理人 弁理士 則 近 短 佑(はが1名)第1図 第3図 第4図 第5図
Figure 1 shows the same Jul'ft for carrying out the method of the present invention.
I', Diagram showing an example of the configuration of the motive drive system, 8I
42IA is the Va-N characteristic and T-N characteristic in the example of the present invention
Figure 3 is a characteristic diagram of a drive control system for a synchronous motor according to the present invention, and Figure 4 is a characteristic diagram of a drive control system for a synchronous motor according to another embodiment of the present invention.
a-N% characteristic and T-N characteristic diagram, Fig. 5 is a configuration diagram of a motion control system with a conventional synchronous motor, and Fig. 6 is a diagram of a conventional Va-
FIG. 7 is a characteristic diagram of a conventional drive control device for a synchronous motor. I1... Input AC power supply I2... Rectifier 13...
DC reactor 14... Inverter I5... Synchronous motor 151... Field winding 152... Rotating rectifier 15B... Induction frequency converter 154... Sensor 16... Speed reference 17... Speed controller 18...
・1)/A converter 19...α controller 191... Current detector 20... β controller 21... Field input power supply 22... Cyrisk switch 23... Voltage detector 24...East control system 241...Current detector 2b.
...Excitation reference generator T...Load torque Va...Electric power, pressure N...
Rotation Fila...Electrical budget 1st class If...Field current
Pf, ... Excitation force 'tonne force Efl ... Excitation input voltage PFα ... Input power of rectifier 12 agent Patent attorney Noriyuki Chika Takashi (one person) Fig. 1 Fig. 3 Fig. 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 2乗トルク負荷を駆動する同期電動機を出力電圧及び出
力周波数を可変制御可能な周波数変換装置によって可変
速運転する同期電動機の駆7++/I制御装置において
、前記同期%N1FIlの回転数Nが足格回転数N(1
00)の25%以下の低速回転数範囲では前記同期電動
機の前記回転数Nとそのときの11機根子電圧aとの比
Va/Nが、前記同期電動機の011記走格回転数N(
100Jとそのときの?44. 根子電圧va(Ioo
)との比Va (100) / N(10G)よりも小
さくなるように前記同期電動機の前ム己電機子嵐圧Va
を制惧することを特徴とする四期電!lI/l様の制御
方法。
In a synchronous motor drive7++/I control device that operates a synchronous motor that drives a square torque load at variable speed using a frequency converter that can variably control the output voltage and output frequency, the rotation speed N of the synchronous %N1FIl is sufficient. Number of revolutions N (1
In the low speed rotation speed range of 25% or less of the synchronous motor, the ratio Va/N between the rotation speed N of the synchronous motor and the 11th machine root voltage a at that time is equal to
100J and that time? 44. Root voltage va (Ioo
) The front armature storm pressure Va of the synchronous motor is set so that the ratio Va (100) / N (10G) is smaller than
A four-term electric train that is characterized by the control of! lI/l-like control method.
JP59235063A 1984-11-09 1984-11-09 Controlling method of synchronous motor Granted JPS60121983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59235063A JPS60121983A (en) 1984-11-09 1984-11-09 Controlling method of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59235063A JPS60121983A (en) 1984-11-09 1984-11-09 Controlling method of synchronous motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57166014A Division JPS6041556B2 (en) 1982-09-25 1982-09-25 Control method of synchronous motor

Publications (2)

Publication Number Publication Date
JPS60121983A true JPS60121983A (en) 1985-06-29
JPH0117358B2 JPH0117358B2 (en) 1989-03-30

Family

ID=16980523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59235063A Granted JPS60121983A (en) 1984-11-09 1984-11-09 Controlling method of synchronous motor

Country Status (1)

Country Link
JP (1) JPS60121983A (en)

Also Published As

Publication number Publication date
JPH0117358B2 (en) 1989-03-30

Similar Documents

Publication Publication Date Title
Smith et al. Wind-energy recovery by a static Scherbius induction generator
US6262555B1 (en) Apparatus and method to generate braking torque in an AC drive
US6611438B2 (en) Power generation apparatus using permanent-magnet generator
JPH03502398A (en) Variable speed constant frequency starter with selectable input power limit
US4656413A (en) Stabilized control system and method for coupling an induction generator to AC power mains
Steigerwald et al. Analysis of a novel forced-commutation starting scheme for a load-commutated synchronous motor drive
Koreboina et al. Modelling and simulation of switched reluctance generator control for variable speed wind energy conversion systems
Deleroi et al. Analysis and application of three-phase induction motor voltage controller with improved transient performance
Le-Huy et al. A self-controlled synchronous motor drive using terminal voltage system
JPS6041556B2 (en) Control method of synchronous motor
Smith Static Scherbius system of induction-motor speed control
JPS60121983A (en) Controlling method of synchronous motor
Subramanian et al. Modeling and simulation of grid connected wind energy conversion system based on a doubly fed induction generator (dfig)
JPH09149689A (en) Operation controller for pole change motor
Hess et al. Modulation strategies for a new SCR-based induction motor drive system with a wide speed range
Jacovides et al. A cycloconverter-synchronous motor drive for traction applications
JPS605796A (en) Power source switching controller of motor
JPH06225598A (en) Electric power generation system
Hazra et al. A partially-rated active filter enabled power architecture to generate oscillating power from wave energy converter
JPS61269686A (en) Braking device of wound-rotor induction machine
Pan Analysis of The DFIG Structure and Its Grid-connecting Mode
JPH0323834Y2 (en)
JPS6043099A (en) Wind power generator
SU720654A1 (en) Reversible a-c electric motor
JPS59125413A (en) Servomechanism using alternating-current induction motor