JPS60121656A - Latter step acceleration type ion implantation device - Google Patents

Latter step acceleration type ion implantation device

Info

Publication number
JPS60121656A
JPS60121656A JP22686183A JP22686183A JPS60121656A JP S60121656 A JPS60121656 A JP S60121656A JP 22686183 A JP22686183 A JP 22686183A JP 22686183 A JP22686183 A JP 22686183A JP S60121656 A JPS60121656 A JP S60121656A
Authority
JP
Japan
Prior art keywords
accelerator
quadruplex
ion
ion implantation
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22686183A
Other languages
Japanese (ja)
Other versions
JPH0612661B2 (en
Inventor
Katsumi Tokikuchi
克己 登木口
Kuniyuki Sakumichi
訓之 作道
Osami Okada
岡田 修身
Hidemi Koike
小池 英已
Norio Saito
徳郎 斉藤
Susumu Ozasa
小笹 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58226861A priority Critical patent/JPH0612661B2/en
Priority to US06/763,133 priority patent/US4801847A/en
Priority to DE8484904176T priority patent/DE3477528D1/en
Priority to PCT/JP1984/000557 priority patent/WO1985002489A1/en
Priority to EP84904176A priority patent/EP0163745B1/en
Publication of JPS60121656A publication Critical patent/JPS60121656A/en
Publication of JPH0612661B2 publication Critical patent/JPH0612661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators

Abstract

PURPOSE:To drive high energy ions without increasing the size of the captioned device while reducing the load on an operating power source by using a high- frequency quadruplex accelerator as an acceleration tube for the latter step acceleration of an ion implantation device. CONSTITUTION:An ion implantation device is formed of an ion source 1, a mass separator 2, a high-frequency quadruplex accelerator 10 and a driving chamber 5 with a sample 6 enclosed therein, while the high-frequency quadruplex accelerator 10 is formed of four electrodes having the periodically corrugated shape so that the two remaining electrodes may be concave at the part where the two opposing electrodes are convex. Further, the former step of the quadruplex accelerator 10 is provided with a two-step magnetic quadruplex lens 12 for converting a beam section in order to enable a driving current to be increased. Accordingly, the high-frequency quadruplex accelerator 10 makes it possible to accelerate with extremely good efficiency, thus making it possible to simply realize driving an mA class beam of 100KeV- several MeV with a light load on power source.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は所定のエネルギの特定のイオンを、所定の量だ
け試料にドープするイオン打込み装置に係り、特に数1
00keV〜数M e VのエネルギのmA級ビーム打
込みに好適な後段加速式イオン打込み装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ion implantation device for doping a sample with a predetermined amount of specific ions having a predetermined energy.
The present invention relates to a post-acceleration type ion implantation apparatus suitable for implanting mA class beams with energies of 00 keV to several M e V.

〔発明の背景〕[Background of the invention]

第1図を使い従来例を説明する。従来のイオン打込み装
置で100keV以上の高エネルギビームを得る場合、
質量分離したビームを加速リング3を並べた加速管で加
速する後段加速方式がとられている。しかしながら従来
例で実現できる実用上のエネルギは400keV前後で
あった。これは、エネルギの増大に伴い、加速管の長さ
が膨大になること、また400keV以上では電極リン
グ間の放電やコロナ放電等が発生し、実用に供する安定
なイオン打込み装置とならないためである。また従来例
の打込み装置では、質量分離器は一般に巨大である。こ
の寸法はビームエネルギの増加に伴い増大する。このた
め通常はイオン源から数10keVのエネルギでビーム
を引出して質量分離し、これを加速する手段をとってい
る。従って従来例では、質量分離器2.イオン源1の電
位は、加速管の最大電圧に維持しておく必要があった。
A conventional example will be explained using FIG. When obtaining a high energy beam of 100 keV or more with a conventional ion implantation device,
A post-acceleration method is used in which the mass-separated beam is accelerated by an acceleration tube arranged with acceleration rings 3. However, the practical energy that could be achieved in the conventional example was around 400 keV. This is because as the energy increases, the length of the accelerating tube becomes enormous, and at 400 keV or higher, discharge between electrode rings, corona discharge, etc. occur, making it impossible to create a stable ion implantation device for practical use. . Also, in conventional implant devices, the mass separator is typically large. This dimension increases with increasing beam energy. For this reason, a method is usually used to extract a beam from an ion source with an energy of several tens of keV, separate the beams by mass, and accelerate the beams. Therefore, in the conventional example, the mass separator 2. The potential of the ion source 1 had to be maintained at the maximum voltage of the accelerating tube.

このため、これらの駆動電源7,8も高電圧に浮かして
動作さ仕ねばならず、高圧電源7の必要電力は膨大とな
り、電源の負担が大きかった。以上の理由により、従来
のイオン打込み装置では、取得エネルギは高々数100
keVであり、その高圧電源の負担はビームエネルギ、
ビーム電流の増加で大きくなるため、ビーム電流も高々
数10μ八であった。
For this reason, these drive power supplies 7 and 8 must also be operated at a high voltage, and the power required by the high voltage power supply 7 is enormous, placing a heavy burden on the power supply. For the above reasons, with conventional ion implantation equipment, the acquired energy is several hundred at most.
keV, and the burden on the high voltage power supply is the beam energy,
Since the beam current increases as the beam current increases, the beam current was several tens of micrometers at most.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、後段加速管の代りに、高周波四重極共
振器による加速装置を使い、数100keV・〜数Me
Vの大電流イオンビームを実現し、かつ電源の負担の小
さい、小型の後段加速式イオン打込み装置を提供するこ
とにある。
The purpose of the present invention is to use an accelerator using a high-frequency quadrupole resonator instead of a post-acceleration tube, and to
It is an object of the present invention to provide a small-sized post-acceleration type ion implantation device that realizes a large current ion beam of V and has a small burden on a power source.

〔発明の概要〕[Summary of the invention]

本発明は加速効率及びビーム収束性に優れた高周波四重
極(RF Q)加速器に着目し、これをイオン打込み機
の後段加速用の加速管に使い、かつ質量分離器とRFQ
加速器の間に多段の磁気四重極レンズを設けたことに特
徴がある。
The present invention focuses on a radio frequency quadrupole (RFQ) accelerator with excellent acceleration efficiency and beam convergence, and uses it as an acceleration tube for the latter stage acceleration of an ion implanter.
The feature is that a multi-stage magnetic quadrupole lens is installed between the accelerators.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。第2図は、本発明に基
づ<RFQ加速器を用いた後段加速式イオン打込み装置
の一実施例である。
The present invention will be explained in detail below. FIG. 2 is an embodiment of a post-acceleration type ion implantation apparatus using an RFQ accelerator based on the present invention.

第2図の装置は、質量分離器2と打込み室5の間に高周
波四重横加速器IOを設け、数MeVまでの加速を効率
良く行うものである。高周波四重横加速器10の詳細図
を第3図に示す。第3図において高周波四重極共振器(
以下、RFQと略す)は、波うった形状をもつ四つの電
極からなり、相対する2ケの電極の出つばった部分では
、残りの2ケの電極がへこむような構成になっている。
The apparatus shown in FIG. 2 has a high frequency quadruple transverse accelerator IO between the mass separator 2 and the implantation chamber 5, and efficiently performs acceleration up to several MeV. A detailed diagram of the high frequency quadruple transverse accelerator 10 is shown in FIG. In Figure 3, a high-frequency quadrupole resonator (
The RFQ (hereinafter abbreviated as RFQ) consists of four electrodes with a wavy shape, and is configured such that where two opposing electrodes protrude, the remaining two electrodes are recessed.

この加速装置は一種の空洞共振器を構成しており、これ
に数10〜数100MI(2の周波数を持つ高周波電圧
を印加すると、中心軌道部分で軸方向の加速電界が生じ
、イオンは効率良く数MeVまで加速される。この場合
、RFQは直流的にはアース電位で動作するため、その
前段にあるイオン源。
This accelerator constitutes a kind of cavity resonator, and when a high frequency voltage with a frequency of several tens to several hundred MI (2) is applied to this, an axial accelerating electric field is generated in the central orbit, and the ions are efficiently The ion source is accelerated to several MeV.In this case, since the RFQ operates at ground potential in terms of direct current, the ion source in the preceding stage.

質量分離器は高電圧に持上げる必要がなく電源の負担が
極めて軽く済む。さらにRFQでは、印加される最大電
圧は数10keVで済むから、放電発生等による実用上
の加速限界の制限がない。本実施例によれば、数MeV
のイオンビームを効率良く実現でき、従来例のような大
容量高圧電源は不要となる効果がある。実際の実験では
、イオン源には特公昭57−4056号、特公昭57−
11094号、特公昭57−41059号に記載された
マイクロ波イオン源を使い、40keV前後に質量分離
されたB+。
The mass separator does not need to be raised to a high voltage, and the burden on the power source is extremely light. Furthermore, in RFQ, the maximum applied voltage is only several tens of keV, so there is no practical acceleration limit limit due to discharge generation or the like. According to this embodiment, several MeV
ion beam can be efficiently realized, and there is no need for a large-capacity, high-voltage power supply as in the conventional example. In the actual experiment, the ion source was
B+ was mass-separated to around 40 keV using the microwave ion source described in No. 11094 and Japanese Patent Publication No. 57-41059.

0” HN” HP” HAs十等のイオンビームをR
FQ共振器に入射させ、数M e VのmA級ビームを
シリコン基板に打込んだ。しかしながら、第2図の実施
例ではイオン源から出たビームのうち試料基板に到達す
るビーム電流の割合は小さくなる傾向があった。
0” HN” HP” HAs 10th grade ion beam R
The beam was input into an FQ resonator, and a mA-class beam of several M e V was implanted into the silicon substrate. However, in the embodiment shown in FIG. 2, the proportion of the beam current reaching the sample substrate in the beam emitted from the ion source tended to be small.

一般にイオンビームを質量分離する場合1分解能がビー
ム幅により変わるから、高分解能を得るために、イオン
ビ源出ロビーム断面を縦長にするのが普通である。従っ
て質量分離後のイオンビーケ断面も一般には縦長の断面
形状を有する。一方、RFQ共振器の入口断面のビーム
通過可能部分は直径数口の円形部分である。このため、
イオンビーム利用効率は高くできなかった。したがって
、ビーム電流の損失を減らすために、ビーム断面変化を
行う必要があることが実験的に明らかにされた。第4図
は本発明に基づく別の実施例を説明する図である。第4
図ではビーム断面変換に、二段の磁気四重極レンズ(直
流動作)12を使い、長方形断面ビームをRFQに導入
可能な円形状ビームに変換でき、打込み電流は倍以上増
大した。
Generally, when mass-separating an ion beam, the resolution varies depending on the beam width, so in order to obtain high resolution, the beam cross section of the ion beam source is usually made vertically long. Therefore, the ion beam cross section after mass separation also generally has a vertically elongated cross-sectional shape. On the other hand, the beam-passable portion of the entrance cross section of the RFQ resonator is a circular portion with a diameter of several holes. For this reason,
The ion beam utilization efficiency could not be increased. Therefore, it has been experimentally revealed that it is necessary to change the beam cross section in order to reduce the loss of beam current. FIG. 4 is a diagram illustrating another embodiment based on the present invention. Fourth
In the figure, a two-stage magnetic quadrupole lens (direct current operation) 12 is used to convert the beam cross section, and a rectangular cross-sectional beam can be converted into a circular beam that can be introduced into RFQ, and the implantation current is more than doubled.

〔発明の効果〕〔Effect of the invention〕

以上、述べた本発明によれば、後段加速方式の高エネル
ギビーム取得に対し、数100keV〜数M e Vの
mA級ビームを、軽い電源負担で実験でき、高エネルギ
イオン打込みを簡易に実現でき、実用に供してその効果
が著しく大である。
According to the present invention described above, when obtaining a high-energy beam using the post-acceleration method, it is possible to experiment with a mA-class beam of several 100 keV to several M eV with a light power supply burden, and it is possible to easily realize high-energy ion implantation. , the effect is extremely large when put into practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を説明する図、第2図はRFQ加速器を
使った本発明に基づく一実施例を説明する図、第3図は
高周波四重極共振器の構造を説明する図、第4図は本発
明に基づく別の実施例を説明する図である。 ■・・・イオン源、1′・・・イオンビーム、2・・・
質量分離器、3・・・加速リング電極、4・・・抵抗器
、5・・・打込み室、6・・・試料基板、7・・・高電
圧電流、8・・・質量分離器、9・・・イオン源動作電
源、IO・・・RFQ共振器、11 ・・高周波電圧電
源、】2・・・磁気四重極レンズ。 箇 1 図 第 Z 図 第1頁の続き ■発明者斉藤 徳部 0発 明 者 小 笹 進 国分寺市東恋ケ窪1丁目28幡地 株式会社日立製作所
中央研究所内
FIG. 1 is a diagram explaining a conventional example, FIG. 2 is a diagram explaining an embodiment based on the present invention using an RFQ accelerator, FIG. 3 is a diagram explaining the structure of a high frequency quadrupole resonator, FIG. 4 is a diagram illustrating another embodiment based on the present invention. ■...Ion source, 1'...Ion beam, 2...
Mass separator, 3... Acceleration ring electrode, 4... Resistor, 5... Implanting chamber, 6... Sample substrate, 7... High voltage current, 8... Mass separator, 9 ...Ion source operating power supply, IO...RFQ resonator, 11...High frequency voltage power supply, ]2...Magnetic quadrupole lens. Section 1 Figure Z Continuation of Figure 1 Page ■ Inventor: Saito Tokube 0 Inventor: Kosasa Susumu 1-28 Hata, Higashikoigakubo, Kokubunji City Hitachi, Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】 1、大電流ビームを引出すイオン源、イオンビームを質
量分離し目的とするイオン種のみを選別する質量分離器
、質量分離されたイオンを目的とするエネルギーまで加
速するための加速器、および該イオンを試料基板に打込
むための打込み室とからなるイオン打込み装置において
、上記加速管として高周波四重極(RF Q + Ra
1do −Frequency Quadrupole
)加速器髪使い、以って装置寸法を大きくすることなく
、また装置動作電源の負担を小さくして、数100ke
V〜数MeVの高エネルギイオンを打込みを可能とした
後段加速式イオン打込み装置。 2、特許請求の範囲第1項記載の発明において、質量分
離器とRFQ加速器の中間に多段の磁気四重極レンズを
とりつけ、質量分離器から出たイオンビーム断面をRF
Q加速器に導入可能な断面形状に変化せしめ、以ってビ
ーム電流損失を少なくせしめ、打込みビーム電流を増大
を実現可能とした後段加速式イオン打込み装置。
[Scope of Claims] 1. An ion source that extracts a large current beam, a mass separator that mass-separates the ion beam and selects only the target ion species, and a mass separator that accelerates the mass-separated ions to the target energy. In an ion implantation device consisting of an accelerator and an implantation chamber for implanting the ions into a sample substrate, a radio frequency quadrupole (RF Q + Ra) is used as the acceleration tube.
1do -Frequency Quadrupole
)Using an accelerator, it does not increase the size of the device and reduces the burden on the power source for operating the device.
A post-acceleration ion implantation device that can implant high-energy ions of V to several MeV. 2. In the invention described in claim 1, a multi-stage magnetic quadrupole lens is installed between the mass separator and the RFQ accelerator, and the ion beam cross section coming out of the mass separator is
A post-acceleration type ion implantation device that has a cross-sectional shape that can be introduced into a Q accelerator, thereby reducing beam current loss and increasing the implantation beam current.
JP58226861A 1983-11-28 1983-12-02 Ion implanter Expired - Lifetime JPH0612661B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58226861A JPH0612661B2 (en) 1983-12-02 1983-12-02 Ion implanter
US06/763,133 US4801847A (en) 1983-11-28 1984-11-22 Charged particle accelerator using quadrupole electrodes
DE8484904176T DE3477528D1 (en) 1983-11-28 1984-11-22 Quadrupole particle accelerator
PCT/JP1984/000557 WO1985002489A1 (en) 1983-11-28 1984-11-22 Quadrupole particle accelerator
EP84904176A EP0163745B1 (en) 1983-11-28 1984-11-22 Quadrupole particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58226861A JPH0612661B2 (en) 1983-12-02 1983-12-02 Ion implanter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7096529A Division JP2812242B2 (en) 1995-04-21 1995-04-21 Ion implantation method

Publications (2)

Publication Number Publication Date
JPS60121656A true JPS60121656A (en) 1985-06-29
JPH0612661B2 JPH0612661B2 (en) 1994-02-16

Family

ID=16851716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58226861A Expired - Lifetime JPH0612661B2 (en) 1983-11-28 1983-12-02 Ion implanter

Country Status (1)

Country Link
JP (1) JPH0612661B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396859A (en) * 1986-10-09 1988-04-27 Nec Kyushu Ltd Ion implanting device for semiconductor substrate
JPH01227345A (en) * 1988-03-04 1989-09-11 Shimadzu Corp High-frequency acceleration ion implanting apparatus
US5086256A (en) * 1988-11-24 1992-02-04 The Agency Of Industrial Science And Technology External resonance circuit type radio frequency quadrupole accelerator
JPH05287525A (en) * 1992-04-10 1993-11-02 Hitachi Ltd Ion implantation device
CN117393409A (en) * 2023-11-27 2024-01-12 青岛四方思锐智能技术有限公司 Periodic pulse high-energy ion implanter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834600A (en) * 1981-08-25 1983-03-01 株式会社東芝 High frequency quadruple pole accelerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834600A (en) * 1981-08-25 1983-03-01 株式会社東芝 High frequency quadruple pole accelerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396859A (en) * 1986-10-09 1988-04-27 Nec Kyushu Ltd Ion implanting device for semiconductor substrate
JPH01227345A (en) * 1988-03-04 1989-09-11 Shimadzu Corp High-frequency acceleration ion implanting apparatus
US5086256A (en) * 1988-11-24 1992-02-04 The Agency Of Industrial Science And Technology External resonance circuit type radio frequency quadrupole accelerator
JPH05287525A (en) * 1992-04-10 1993-11-02 Hitachi Ltd Ion implantation device
US5349196A (en) * 1992-04-10 1994-09-20 Hitachi, Ltd. Ion implanting apparatus
CN117393409A (en) * 2023-11-27 2024-01-12 青岛四方思锐智能技术有限公司 Periodic pulse high-energy ion implanter
CN117393409B (en) * 2023-11-27 2024-04-05 青岛四方思锐智能技术有限公司 Periodic pulse high-energy ion implanter

Also Published As

Publication number Publication date
JPH0612661B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
US5729028A (en) Ion accelerator for use in ion implanter
US20060152177A1 (en) Charged particle accelerator
US4851668A (en) Ion source application device
US4801847A (en) Charged particle accelerator using quadrupole electrodes
US5693939A (en) MeV neutral beam ion implanter
US5801488A (en) Variable energy radio-frequency type charged particle accelerator
JPS60121656A (en) Latter step acceleration type ion implantation device
US6414327B1 (en) Method and apparatus for ion beam generation
EP0685872A1 (en) Ion implanter
JP2723106B2 (en) High voltage ion implanter
Becker Electron beam ion sources and traps
JP2812242B2 (en) Ion implantation method
JP2954536B2 (en) High voltage ion implanter
JPS60121655A (en) High voltage ion driving device
JP3168776B2 (en) High-frequency charged particle accelerator
JP2713692B2 (en) Ion implantation equipment
Thomae Recent developments in ion implantation accelerators
JPH0757898A (en) High frequency type charged particle accelerating device
JP2804024B2 (en) Microwave ion source
JP2617240B2 (en) Control method of acceleration energy in high frequency quadrupole accelerator
RU2697186C1 (en) High-current ion source based on a dense plasma of ecr discharge, kept in an open magnetic trap
Fusellier et al. A microwave plasma cathode electron gun for ion beam neutralization
Reiser Comparison of Gabor lens, gas focusing, and electrostatic quadrupole focusing for low-energy ion beams
Shubaly et al. A high-current four-beam xenon ion source for heavy-ion fusion
Staples et al. Initial operation of the new Bevatron local injector