JPS60121410A - Positioning device - Google Patents

Positioning device

Info

Publication number
JPS60121410A
JPS60121410A JP23016783A JP23016783A JPS60121410A JP S60121410 A JPS60121410 A JP S60121410A JP 23016783 A JP23016783 A JP 23016783A JP 23016783 A JP23016783 A JP 23016783A JP S60121410 A JPS60121410 A JP S60121410A
Authority
JP
Japan
Prior art keywords
measured
optical axis
air
face
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23016783A
Other languages
Japanese (ja)
Inventor
Koji Yoshimura
吉村 剛治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP23016783A priority Critical patent/JPS60121410A/en
Publication of JPS60121410A publication Critical patent/JPS60121410A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/242Devices for focusing with coarse and fine adjustment mechanism

Abstract

PURPOSE:To position a sample in the direction of an optical axis and to move it in the direction vertical to the optical axis with high precision by providing a machanical stopper in a position of operation distance from an object lens and jetting compressed air from minute holes of this stopper to a surface to be measured to avoid shock of contacting between the mechanical stopper and the face to be measured. CONSTITUTION:A distance A between an object lens 2 of a microscope and a contacting face 14 of a mechanical stopper 15 is fixed to the operation distance determined by magnifications of the object lens 2. A sample 13 is placed on a sample stage 12, and an air cylinder 7 is moved in the direction of the optical axis of an arrow B to generate a gap between the contacting face 14 and a face 5 to measured while jetting air from minute holes 3 of the mechanical stopper 15, and air jetting is stopped, and thus, the contacting face and the face 5 to be measured are brought into contact with each other without shock by the repulsive force of a spring 6. When the sample 13 is moved in the direction vertical to the optical axis, air is jetted from minute holes 3 to generate a gap between the contacting face 14 and the face 5 to be measured, and the stage is moved in the direction of an arrow C in this state.

Description

【発明の詳細な説明】 本発明は顕微鏡を使った微小寸法測定装置において、焦
点合せのように被測定物を高精度に位置決めを行なうた
めの装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for positioning an object to be measured with high precision, such as focusing, in a microscopic dimension measuring device using a microscope.

従来、顕微鏡の焦点調整は次の方法で行なっていた。す
なわち、光軸方向の焦点合せはレーザ方 ・式、或いは
空気マイクロメータ方式により顕微鏡の対物レンズと被
測定物間の距離をサブミクロンの精度にて測定し、被測
定物を載せているステー・ ジな上下に動かす駆動系域
には、対物レンズを支持している顕微鏡筒を上下に動か
す駆動系にフィードバックすることにより行なっていた
。また被測定物の測定ケ所の更新は、焦点合せなしたも
のでも、被測定物の形状精度及びステージの横行(光軸
に垂直な方向)性能に機械的限界があるため、更新を行
なう都度、焦合ずれを起こし正確な測定ができなくなる
ため、上記焦点合せは測定ケ所ごとに行なわなげねばな
らなかった。
Conventionally, the focus of a microscope has been adjusted using the following method. In other words, focusing in the optical axis direction is performed using a laser method or an air micrometer method to measure the distance between the microscope objective lens and the object to be measured with submicron accuracy, and then The drive system area that moves the objective lens up and down was achieved by feeding back to the drive system that moves the microscope tube that supports the objective lens up and down. Furthermore, even when updating the measurement location of the object to be measured, even without focusing, there are mechanical limits to the shape accuracy of the object to be measured and the performance of the stage's traversal (direction perpendicular to the optical axis). Since defocusing occurs and accurate measurements cannot be made, the above focusing has to be performed for each measurement location.

従って、このような方法では以下に示す問題があった。Therefore, such a method has the following problems.

■ レーザ方式、空気マイクロメータ方式ともに高精度
な光軸方向位置情報を得るためには、高感度のセンサを
用いなければならず、概して高感度のセンサは微弱な信
号しか出力できないので高増幅率の増幅器を用いなけれ
ばならない。従って常にノイズを低(してSN比を上げ
る電気回路に問題があるため、光軸方向位置情報を得る
には複雑な回路になりがちであった。
■ In order to obtain highly accurate optical axis direction position information for both the laser method and the air micrometer method, a highly sensitive sensor must be used. Generally speaking, a highly sensitive sensor can only output a weak signal, so a high amplification factor is required. amplifier shall be used. Therefore, since there is always a problem with the electric circuit that reduces noise and increases the signal-to-noise ratio, the circuit tends to be complicated in order to obtain position information in the optical axis direction.

■ 仮K、光軸方向位置情報を高精度に得たとしても、
顕微鏡の焦点のあっている長さ、即ち焦点深度内に対物
レンズと被測定物間距離を収めるためには、その駆動系
も高精度なものにし、かつフィードバックにて駆動する
ため時間がかかるものであった。最悪例においては、光
軸方向位置情報を越える駆動を行なうことも起きるため
、いつまでも最適な位置決めができない、いわゆる発散
を起こすこともあった。
■ Even if temporary K and optical axis direction position information are obtained with high precision,
In order to keep the distance between the objective lens and the object to be measured within the focal length of the microscope, that is, the depth of focus, the drive system must be highly accurate, and it takes time to drive with feedback. Met. In the worst case, the driving may exceed the positional information in the optical axis direction, which may result in so-called divergence, in which optimal positioning cannot be achieved forever.

■ フィードバック制御による焦点合せに費される時間
を小にするためには被測定物の横行を行なうステージの
横行性能も高性能圧する必要があり、そのためステージ
は大形に設計するが、省スペースに不利になりやすかっ
た。
■ In order to reduce the time spent on focusing through feedback control, the stage that traverses the object to be measured needs to have high performance in traversing. Therefore, the stage is designed to be large, but it is possible to save space. It was easy to be at a disadvantage.

■ このような焦点合せ方法では被測定物の形状精度、
即ち、平行度が零でないためステージを光軸に垂直に設
置しても測定面が光軸に垂直にならないため、焦点合せ
を行なった点の囲りでは焦点が合わないこともあり得る
ため、測定の精度圧影響を及ばず。
■ With this focusing method, the shape accuracy of the object to be measured,
In other words, since the parallelism is not zero, the measurement surface will not be perpendicular to the optical axis even if the stage is installed perpendicular to the optical axis, so it is possible that the area around the focused point will not be in focus. The accuracy of measurement is not affected by pressure.

本発明は、このよ5な問題点を解決するために顕微鏡の
焦点合せのような高精度の位置決めを、予め対物レンズ
から作動距離の位置に機械的ストッパーを設け、この機
械的ストッパーに被測定物をつきあてることにより行な
い、更に被測定物をつきあてる際、並びにつきあて方向
に垂直な方向に移動する際に被測定面に傷が発生するの
を防ぐために、上記機械的ストッパーに設けた微小孔よ
り圧縮空気を被測定面−噴出させることにより機械的ス
トッパーと被測定面間に間隙を生成せしめつきあてる時
の衝撃及び横行時の機械的接触を避けることにより高精
度光軸方向位置決め及び光軸に垂直な方向への移動を行
なう装置である。
In order to solve these five problems, the present invention provides high-precision positioning such as focusing of a microscope by providing a mechanical stopper in advance at a working distance from the objective lens, and attaching the mechanical stopper to the object to be measured. This is done by hitting an object against it, and in order to prevent scratches on the surface to be measured when the object to be measured hits it and moves in a direction perpendicular to the hitting direction, the mechanical stopper is provided with the above mechanical stopper. Compressed air is ejected from the surface to be measured through micro holes to create a gap between the mechanical stopper and the surface to be measured, thereby avoiding impact during abutment and mechanical contact during traverse movement, allowing for highly accurate positioning in the optical axis direction. This is a device that moves in a direction perpendicular to the optical axis.

以下本発明を実施例忙基づき説明する。The present invention will be explained below based on examples.

第1図は、本発明を実施するための一実施例を示す図で
ある。第1図において、顕微鏡の対物レンズ2と機械的
ストッパー15の接触面14との距離Aは対物レンズ2
の焦点距離内に収まるように固定されており、対物レン
ズ20倍率が決まるとこ・ 3 ・ の作動距離Aは決まるものである。
FIG. 1 is a diagram showing an embodiment for carrying out the present invention. In FIG. 1, the distance A between the objective lens 2 of the microscope and the contact surface 14 of the mechanical stopper 15 is the distance A between the objective lens 2 and the contact surface 14 of the mechanical stopper 15.
The working distance A is determined by determining the objective lens's 20 magnification.

一方、被測定物である試料13は測定面5を機械的スト
ッパー15の接触面14に向けて、スプリング6等の弾
性材によって支えられている試料搭載台12の上に載せ
られている。なお、スプリング6は試料13の形状精度
の低さをカバーし試料13の測定面5と機械的ストッパ
ー15の接触面14が平行に保つようにするためのもの
である。また機械的ストッパー15の接触面14には多
数の微小孔3が設けられており、圧縮空気1を背後より
供給可能にする。
On the other hand, a sample 13, which is an object to be measured, is placed on a sample mounting table 12 supported by an elastic member such as a spring 6, with the measurement surface 5 facing the contact surface 14 of the mechanical stopper 15. The spring 6 is used to compensate for the poor shape accuracy of the sample 13 and to keep the measurement surface 5 of the sample 13 and the contact surface 14 of the mechanical stopper 15 parallel. Further, the contact surface 14 of the mechanical stopper 15 is provided with a large number of microholes 3, so that the compressed air 1 can be supplied from behind.

試料搭載台12は光軸方向Bの駆動をエアシリンダ7等
によって行なう。エアシリンダ7はガイドレール8とボ
ールネジ9によりて光軸方向Bと垂直な方向CKモータ
11によりて動くようになっている。
The sample mounting table 12 is driven in the optical axis direction B by an air cylinder 7 or the like. The air cylinder 7 is moved by a CK motor 11 in a direction perpendicular to the optical axis direction B by means of a guide rail 8 and a ball screw 9.

第2図は、被測定物13の光軸方向Bの位置決め及び光
軸方向Bに垂直な方向Cに移動させる時の方法を説明し
たものである。
FIG. 2 explains a method for positioning the object to be measured 13 in the optical axis direction B and moving it in a direction C perpendicular to the optical axis direction B. FIG.

同図(a)は試料13を試料搭載台12の上に載せた、
4 。
In the same figure (a), the sample 13 is placed on the sample mounting stage 12.
4.

例であり、機械的ストッパー15の微小孔3がら空気は
噴出しておらず試料13の測定面5と機械的ストッパー
15の接触面14は、被測定物13の厚さが均一でない
場合には、図の通り平行にはならない。
This is an example, and air is not blown out from the micro holes 3 of the mechanical stopper 15, and the contact surface 14 of the measurement surface 5 of the sample 13 and the mechanical stopper 15 is , they are not parallel as shown in the figure.

次に同図0)に示すように機械的ストッパー15の微小
孔3がら空気を噴出させながらエアーシリンダー7を元
軸方向Bに動かすと接触面14と測定面50間に噴出し
た空気流により若干の間隙が生成され、しかも、スプリ
ング6が接触面14と測定面5が平行になるように自動
的に縮む。この状態になった時にエアーシリンダ7の駆
動を止める。
Next, as shown in FIG. 0), when the air cylinder 7 is moved in the original axial direction B while blowing out air from the micro holes 3 of the mechanical stopper 15, the air flow ejected between the contact surface 14 and the measurement surface 50 causes a slight A gap is created and the spring 6 automatically contracts so that the contact surface 14 and the measuring surface 5 are parallel. When this state is reached, the drive of the air cylinder 7 is stopped.

そして、機械ストッパー1め微小孔3からの空気の噴出
を停めると、スプリング90反発力により接触面14と
測定面50間に生成された間隙が除々になくなり、接触
面14と測定面5が衝撃なく接触し同図(C)のように
なる。
Then, when the air blowout from the mechanical stopper 1 and the microhole 3 is stopped, the gap created between the contact surface 14 and the measurement surface 50 due to the repulsive force of the spring 90 gradually disappears, and the contact surface 14 and the measurement surface 5 are affected by the impact. The result will be as shown in the same figure (C).

また試料13を光軸と垂直な方向へ動かす時は、同図の
)に示す状態、すなわち、ストッパー15の微6小孔3
より空気を噴出させる。すると、ストッパー15の接触
面14と資料13の測定面5との間に若千の間隙が生じ
る。この状態でモーター11を作動させて試料搭載台1
2をC方向に所定の距離移動させると、資料13の測定
面5にキズな生じさせることなく移動させることができ
る。
When moving the sample 13 in a direction perpendicular to the optical axis, the state shown in
Make more air blow out. Then, a small gap is created between the contact surface 14 of the stopper 15 and the measurement surface 5 of the material 13. In this state, operate the motor 11 to load the sample mounting table 1.
2 by a predetermined distance in the C direction, the measurement surface 5 of the material 13 can be moved without causing any scratches.

以上説明した本発明は次の効果を有している。The present invention described above has the following effects.

■ 位置情報を与えるセンサーが一切不要であり機械的
ストッパーを用いているため位置決めの信頼性は高い。
■ Positioning is highly reliable as it does not require any sensors to provide position information and uses a mechanical stopper.

■ 高′n1度の位置決めを行な5にもかかわらず制御
が簡単にできるため故障等の発生も少なく、それだけ稼
動時間が大になる。
(2) Even though the positioning is performed at a high degree, the control is easy, so there are fewer occurrences of failures, and the operating time is increased accordingly.

■ フィードバック制御でないため発散がなくしかも短
時間に位置決めできる。
■ Since it is not feedback control, there is no divergence and positioning can be done in a short time.

■ 試料の形状精度が低くても対応可能である。■ It can be used even if the shape accuracy of the sample is low.

■ 測定点を変えるために試料の位置を変えるとき、試
料の測定面に空気を噴出させながら試料を移動させるの
で試料の測定面′に傷を発生させることがない。
(2) When changing the position of the sample to change the measurement point, the sample is moved while blowing air onto the measurement surface of the sample, so there is no possibility of scratches on the measurement surface of the sample.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す位置決め装置の構想図
、第2図は位置決めの手順を示す図である。 1:圧縮空気、2:対物レンズ、3:微小孔、4:間隙
を流れる空気、5:測定面、6:スプリング、7:エア
シリンダ、8ニガイドレール、9:ボールネジ、10:
エアシリグに供給するエアー、11:モーター、12:
試料搭載台、13:試料、14.7 。 、8 。 (0−) 巳 ルー÷1・
FIG. 1 is a conceptual diagram of a positioning device showing an embodiment of the present invention, and FIG. 2 is a diagram showing a positioning procedure. 1: Compressed air, 2: Objective lens, 3: Microhole, 4: Air flowing through the gap, 5: Measurement surface, 6: Spring, 7: Air cylinder, 8 Guide rail, 9: Ball screw, 10:
Air supplied to air pump, 11: Motor, 12:
Sample mounting stage, 13: Sample, 14.7. , 8. (0-) Snake Ru ÷ 1・

Claims (1)

【特許請求の範囲】[Claims] 顕微鏡を利用した測定装置における被測定物の位置決め
装置において、対物レンズの前方に被測定物の測定面と
接触し多数個の微小孔を設けた接触面を有するストッパ
ーを設置し、該ストッパーの接触面の前方には該対物レ
ンズ方向及びこれと垂直な方向に移動可能なテーブルを
設け、該テーブル上には被測定物を載置する搭載台を弾
性材を介して設け、該ストッパーの接触面に設けた微小
孔から空気を噴出可能にしたことを特徴とする位置決め
装置。
In a device for positioning an object to be measured in a measuring device using a microscope, a stopper is installed in front of the objective lens and has a contact surface that contacts the measurement surface of the object and has a large number of microholes. A table movable in the direction of the objective lens and a direction perpendicular thereto is provided in front of the surface, and a mounting base for placing the object to be measured is provided on the table with an elastic material interposed therebetween, and the contact surface of the stopper A positioning device characterized in that air can be blown out from micro holes provided in the.
JP23016783A 1983-12-06 1983-12-06 Positioning device Pending JPS60121410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23016783A JPS60121410A (en) 1983-12-06 1983-12-06 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23016783A JPS60121410A (en) 1983-12-06 1983-12-06 Positioning device

Publications (1)

Publication Number Publication Date
JPS60121410A true JPS60121410A (en) 1985-06-28

Family

ID=16903646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23016783A Pending JPS60121410A (en) 1983-12-06 1983-12-06 Positioning device

Country Status (1)

Country Link
JP (1) JPS60121410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307672B1 (en) * 1996-12-31 2001-10-23 The United States Of America As Represented By The Department Of Energy Microscope collision protection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307672B1 (en) * 1996-12-31 2001-10-23 The United States Of America As Represented By The Department Of Energy Microscope collision protection apparatus

Similar Documents

Publication Publication Date Title
KR940003918B1 (en) Shape measuring instrument
KR100436323B1 (en) Stage apparatus and exposure apparatus provided with the stage apparatus
KR102386005B1 (en) Method and device for aligning substrates
JPS59101835A (en) Displacing device
JP2006343249A (en) Shape measuring device and shape measuring method
JP4513574B2 (en) Stage equipment
JP2012078344A (en) Three-dimensional shape measuring apparatus
JP2006118867A (en) Scanning probe microscope and measuring method using it
JP4353702B2 (en) Device for measuring or machining an object with a moving stage having a wedge-shaped guide
JPS60121410A (en) Positioning device
JP2004288262A (en) Xy stage, tester for head carriage, and magnetic head or magnetic disk
JP2000243693A (en) Stage device and aligner
JP5154149B2 (en) 3D measurement probe
JP2803440B2 (en) XY fine movement stage
US6573511B2 (en) Electron beam irradiation system and electron beam irradiation method
KR102228711B1 (en) Shape measuring probe
JP5292668B2 (en) Shape measuring apparatus and method
JP2002228411A (en) Two-dimensional measuring apparatus
JPH10267948A (en) Scanning probe microscope
JP4231436B2 (en) Moving stage, XY stage, head carriage, magnetic head or magnetic disk tester
JPH10144601A (en) Command value determining method and stage device
JP2560063B2 (en) Scale accuracy measuring device
JP3488842B2 (en) Shape measuring device
JP2711898B2 (en) Non-contact guide type positioning table
JPS615317A (en) Automatic focusing device