JPS6012119B2 - Wastewater purification method using vascular plants - Google Patents

Wastewater purification method using vascular plants

Info

Publication number
JPS6012119B2
JPS6012119B2 JP8612277A JP8612277A JPS6012119B2 JP S6012119 B2 JPS6012119 B2 JP S6012119B2 JP 8612277 A JP8612277 A JP 8612277A JP 8612277 A JP8612277 A JP 8612277A JP S6012119 B2 JPS6012119 B2 JP S6012119B2
Authority
JP
Japan
Prior art keywords
water
treated
pond
plants
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8612277A
Other languages
Japanese (ja)
Other versions
JPS5422950A (en
Inventor
良輔 三浦
精造 桝田
幸男 遠矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8612277A priority Critical patent/JPS6012119B2/en
Publication of JPS5422950A publication Critical patent/JPS5422950A/en
Publication of JPS6012119B2 publication Critical patent/JPS6012119B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は、下水ならびにその二次処理水、またはし尿処
理の脱離液ならびにその活性汚泥処理水、さらに汚濁し
富栄養化した湖沼水、河川水および地下水等から、環境
水域において植物プランクトン、動物プランクトンおよ
び湿原植物の異常な繁殖を促進するまでに過剰に溶存な
いし懸濁している窒素化合物その他光合成生物の異常増
殖の原因となる物質を、草本類や高木類などの維管束植
物を水中に水平に設けた棚上で生育せしめることによっ
て除去する廃水の浄化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of treating sewage and its secondary treated water, or desorbed liquid from human waste treatment and its activated sludge treated water, as well as polluted and eutrophic lake water, river water, groundwater, etc. Excessive dissolved or suspended nitrogen compounds and other substances that cause abnormal proliferation of photosynthetic organisms, such as those of herbs and tall trees, are removed to the extent that they promote the abnormal proliferation of phytoplankton, zooplankton, and wetland plants in environmental waters. The present invention relates to a method for purifying wastewater by growing vascular plants on shelves placed horizontally in water.

一般に光合成生物を用いた下水や排水などの汚水および
汚染され汚濁化した天然水の浄化方法には、下等な光合
成微生物を利用した酸化池法や光合成細菌培養法があり
、高等な植物(維管束植物を含む)を用いるものには水
田方式、浮皿方式、浮栗植物方式、その他畳右方式や渓
流方式および苗床方式等が従来から実施もしくは提案さ
れている。
In general, methods for purifying wastewater such as sewage and wastewater and contaminated natural water using photosynthetic organisms include the oxidation pond method and photosynthetic bacteria culture method using lower photosynthetic microorganisms, The rice field method, the floating tray method, the floating chestnut plant method, the tatami right method, the mountain stream method, the nursery method, etc. have been implemented or proposed in the past for those using plants (including tube bundle plants).

このうち光合成細菌培養法は、その培養液(排水や汚濁
水)が高濃度である必要がある。しかし、かかる排水や
汚濁水は栄養物が濃度が一般に低く、その適用は容易で
ない。酸化池法は繁殖した藻類を水と分離し難く、処理
コストが高くなという欠点がある。また、発生した藻体
や被処理水に懸濁している物質が酸化池内で沈澱し、底
に推積して処理水とは一時的に分離されるが、堆積した
有機物が分解してその一部もしくは殆どが再び水中に溶
出し、二次的な汚染源となる。従って酸化池の主たる機
能は汚濁物質の化学的形態を変化せしめるものでしかな
く、水浄化の基本である汚水中の不純物の除去を機能と
したものではない。以上のような光合成微生物を用いる
方法に鮫らべて、より高等な維管束植物を用いる方法は
、水処理の産物として発生する植物体が大形で除去が容
易であり、かつ酸化池法とは異って特定の水浄化に有効
な植物の種類を選択的に利用でき、そのため管理が容易
になるなどの利点があり「 この実装層の開発が望まれ
てきた。
Among these methods, the photosynthetic bacteria culture method requires that the culture solution (waste water or polluted water) be highly concentrated. However, such wastewater and polluted water generally have low concentrations of nutrients, making it difficult to apply them. The disadvantage of the oxidation pond method is that it is difficult to separate the grown algae from the water, and the treatment cost is high. In addition, algae that have formed and substances suspended in the water to be treated settle in the oxidation pond, accumulate on the bottom, and are temporarily separated from the treated water, but the accumulated organic matter decomposes and becomes part of the oxidation pond. Some or most of it is leached back into the water, becoming a secondary source of pollution. Therefore, the main function of the oxidation pond is only to change the chemical form of pollutants, but not to remove impurities from wastewater, which is the basis of water purification. Compared to the method using photosynthetic microorganisms as described above, the method using higher vascular plants has the advantage that the plants generated as a product of water treatment are large and easy to remove, and it is similar to the oxidation pond method. ``Development of this implementation layer has been desired because it has advantages such as being able to selectively use plant types that are effective for specific water purification, and therefore easier to manage.''

しかしながら水田方式は、水底の±糠中に根が深く入り
込むため発生する植物体の除去に多大の労力がかかり、
そのうえ被処理水とともに流入した有機物が士嬢に堆積
して腐敗し、植物の根圏を嫌気性にして植物の生長を阻
害するため、効率の悪いものである。この水田方式の他
の欠点は、植物が繁茂することによって被処理水の通路
に偏りが生じて処理水が一様に流れず、処理池の有効面
積を低下せしめることである。浮皿方式は、植物が生長
して重量が増加すると安定性を失安定時に捕捉した汚水
中の懸濁物が風波によって離脱し、処理水と共に流出し
てしまう。また強風時には転倒したり水没したりするの
で管理が非常に離かしいという欠点がある。浮葉植物方
式には、ホティアオィ(Eicholniacrass
lpes Solms〉池やウキクサ(比mmnami
nor)池を用いる。しかしながらホテイアオイやウキ
クサは、冬期になると防霜覆内でも枯れてしまう。この
ため年間を通して常時処理しなくてはならない排水や用
水原水の浄化法としては不適当である。苗床方式は、水
中に構成した砂層上に植物を植え付ける方式であり、ワ
サビやセリの栽培に用いられる畳石方式や渓流方式と同
一のものである。この方式は、水田方式と同様に植物体
の除去が簡単ではないことおよび処理すべき水の分配が
不均一になるという欠点があり、濃度の高い有機物や懸
濁物を含む一般の排水や汚濁水の処理に利用することは
操作を非常に難かしいものにする。ところで、一般的に
生物の生理活性を利用する。
However, in the paddy field method, the roots penetrate deep into the rice bran at the bottom of the water, so it takes a lot of effort to remove the plants.
Furthermore, the organic matter flowing in with the water to be treated accumulates in the soil and rots, making the rhizosphere of plants anaerobic and inhibiting plant growth, making it inefficient. Another drawback of this paddy field system is that the passage of the water to be treated becomes uneven due to the overgrowth of plants, and the treated water does not flow uniformly, reducing the effective area of the treatment pond. The floating dish method loses stability as plants grow and increase in weight, and the suspended matter in the wastewater that is trapped during the stabilization is released by wind and waves and flows out together with the treated water. Another drawback is that it is very difficult to maintain because it can topple over or be submerged in water during strong winds. For the floating-leaved plant method, Eicholniacras
lpes Solms〉Pond and duckweed (Philippines Solms)
nor) using a pond. However, water hyacinth and duckweed will wither even within the frost cover in winter. For this reason, it is inappropriate as a method for purifying wastewater or raw water for irrigation, which must be constantly treated throughout the year. The nursery method is a method in which plants are planted on a sand layer formed in water, and is the same as the tatami stone method and mountain stream method used for the cultivation of wasabi and parsley. Like the paddy field method, this method has the disadvantages that it is not easy to remove plants and that the water to be treated is unevenly distributed. Its use in water treatment makes it very difficult to operate. By the way, the physiological activity of living things is generally utilized.

排水や汚濁水の処理の重要な環境条件は温度である。他
栄養性の微生物である細菌や糸状菌、または光合成細菌
を用いる水の処理方法は、水温が10〜15qo以下に
なると急激に処理効果が悪くなり、とくに冬期には低負
荷にしたり加溢する必要があり、コストは高くなる。し
かし自栄養性の光合成植物には、水温が2〜5℃以上で
あれば生理活性の急激な低下を起こ′ごなし、ものが多
数存在する。従ってこれらを用いた排水や汚濁水の浄化
方法は、冬期対策のための処理コストを大幅に軽減でき
るという利点がある。寒帯や温帯さらに腰帯に産する多
年性の草本類や高木類には、生産速度(Product
Mty)が、穣発的な生長力をもつ光合成プランクトン
(藻類)と同程度である種類が多数ある。従ってこれら
の植物の生態学的かつ生理学的および化学組成的特質を
利用して、経済的にはマイナスの効用を有する排水や汚
濁水を浄化し、同時に水処理の副産物として発生する植
物体を有効利用できる高度な生物処理技術の開発が望ま
れるようになってきた。維管束植物は、より高等な植物
と言われるように、すべてその組織は根(水分と栄養素
の吸収)、茎(根と葉の間の物質輸送)、葉(炭酸同化
作用)および花(生殖作用)に分化している。
Temperature is an important environmental condition for the treatment of wastewater and polluted water. Water treatment methods that use heterotrophic microorganisms, such as bacteria, filamentous fungi, or photosynthetic bacteria, rapidly become less effective when the water temperature drops below 10 to 15 qo, and especially in winter, they require low loads or flooding. necessary, and the cost will be high. However, there are many autotrophic photosynthetic plants whose physiological activity rapidly declines if the water temperature exceeds 2 to 5°C. Therefore, methods for purifying wastewater and polluted water using these have the advantage of significantly reducing treatment costs for winter protection. Perennial herbs and trees that grow in the boreal and temperate regions as well as in the loin zone have a production rate (Product rate).
There are many species whose annual growth potential (Mty) is comparable to that of photosynthetic plankton (algae). Therefore, by utilizing the ecological, physiological, and chemical compositional characteristics of these plants, we can purify wastewater and polluted water that have negative economic benefits, and at the same time, we can use the plants generated as by-products of water treatment to become effective. It has become desirable to develop advanced biological treatment techniques that can be used. Vascular plants are said to be higher plants, and their tissues consist of roots (absorption of water and nutrients), stems (transport of substances between roots and leaves), leaves (carbon assimilation), and flowers (reproduction). action).

根は「一般に±壌中にあり水分や栄養素の吸収を司る一
方、土壌微生物や他の動物に生態的地位(Nishe)
を与え〜 いわゆる土壌と根圏(Rhizospher
e)を形成する。これらによって植物自体の生存が確保
される。すなわち生態学的かつ土壌微生物学的に植物の
根と土壌(無機物、有機物、微生物および動物より構成
されている)とは、水分と栄養物質の輸送と他の生育に
必要な物理的条件を構成する要件であることはすでに知
られている事実である。この事実は、一般の維管束植物
(以下植物と記す)の適切なる生育には土壌、すなわち
土壌微生物との共生が必要条件であることを意味してい
る。しかし植物は、かかる±壕、すなわち±嬢生物の介
在がなくとも生育し得ることも周知である。水栽培、す
なわち、れき耕法や水耕法といわれる溶液栽培法は、士
嬢微生物やその他の土壌生物との共生がなくとも植物が
正常に生長する事実に立却した育成方法である。しかし
、一般の排水や汚濁水の栄養濃度は溶液栽培に用いられ
る栽培液の濃度と鮫らべて低濃度であり、変動がはげし
く、かついまいま数種類の必須栄養素を欠くことがある
。また溶液栽培にとって不都合な被処理水の生物化学的
酸素要求量(以下80Dという)や懸濁物が多い。これ
らの理由で、溶液栽培方法を、そのまま排水や汚濁水の
浄化処理方法として応用することは全く困難である。さ
らに溶液栽培方法を、汚水の処理に利用することが困難
である他の理由は、汚水処理には細菌、糸状菌および真
菌の発生が不可避であるのに対し、栽培溶液中および栽
培植物の根にこれらの微生物が繁殖することは溶液栽培
にとっては好ましくない条件を形成するからである。以
上を要約すると、植物を用いた排水や汚濁水の浄化方法
を技術的に実現するためには、その装置は次に述べる諸
条件を満足していなければならない。
Roots are generally found in the soil and are responsible for the absorption of water and nutrients, while also providing an ecological niche for soil microorganisms and other animals.
So-called soil and rhizosphere (Rhizospher)
form e). These ensure the survival of the plant itself. That is, ecologically and soil microbiologically, plant roots and soil (composed of inorganic matter, organic matter, microorganisms and animals) constitute the transport of water and nutrient substances and other physical conditions necessary for growth. It is already a known fact that this is a requirement. This fact means that symbiosis with soil, that is, with soil microorganisms, is a necessary condition for the proper growth of general vascular plants (hereinafter referred to as plants). However, it is also well known that plants can grow without such trenches, ie, the intervention of microorganisms. Hydroponics, a solution cultivation method also known as pebble cultivation or hydroponics, is a cultivation method based on the fact that plants can grow normally even without symbiosis with microorganisms and other soil organisms. However, the nutrient concentration of general wastewater and polluted water is lower than that of the cultivation solution used for solution cultivation, fluctuates dramatically, and sometimes lacks several essential nutrients. Furthermore, the water to be treated has a large biochemical oxygen demand (hereinafter referred to as 80D) and suspended matter, which are disadvantageous for solution cultivation. For these reasons, it is completely difficult to apply the solution cultivation method as it is as a method for purifying wastewater or polluted water. Another reason why it is difficult to apply the solution cultivation method to the treatment of sewage is that the generation of bacteria, molds and fungi is inevitable in sewage treatment, This is because the proliferation of these microorganisms creates unfavorable conditions for solution cultivation. To summarize the above, in order to technically realize a method for purifying wastewater or polluted water using plants, the device must satisfy the following conditions.

(i) 低濃度かつ変動する栄養条件並らびに高いBO
Dを特徴とする排水や汚濁水との接触でも植物の生育が
旺生であること。
(i) Low and variable nutritional conditions and high BO
Plants should grow vigorously even when in contact with wastewater or polluted water characterized by D.

(ii) 収穫が容易で、環境水域の汚濁化や富栄養化
の原因となる物質を吸収し合成した植物体を経済的に除
去し、水と分離しうろこと。
(ii) Scales that are easy to harvest and that can be economically removed and separated from water by absorbing and synthesizing substances that cause pollution and eutrophication of environmental waters.

側 溶存酸素や水素イオン(pH)などが根の生理活性
の維持および水の腐敗を起こさない十分な濃度であるこ
と。
Side Dissolved oxygen and hydrogen ions (pH) must be at a sufficient concentration to maintain the physiological activity of roots and prevent water from rotting.

Gの 植物の生育に必要なマクロ栄養素(N,P,K,
S,Ca,Mg)の存在比が適正範囲内であり、かつミ
クロ栄養素(Fe,Cu,Zn,1,Mn,Co,Mo
,Se,Sn)が十分に根の周辺に存在しつづけること
G macronutrients (N, P, K,
The abundance ratio of S, Ca, Mg) is within the appropriate range, and the micronutrients (Fe, Cu, Zn, 1, Mn, Co, Mo
, Se, Sn) should continue to exist sufficiently around the roots.

M そもそも排水や汚濁水は、無菌・無生物ではない水
であるため、根の周辺や処理水中に発生する微生物など
を殺菌などによって除去する努力よりもむしろ、積極的
にそれらを効果的ならしむ事示を見つけその有効な応用
技術を開発すること。
M In the first place, wastewater and polluted water are not sterile or inanimate water, so rather than trying to remove microorganisms that occur around the roots or in the treated water through sterilization, it is necessary to actively make them effective. To find the evidence and develop effective application technology.

本発明の目的は、上記のような諸条件を満すべ〈なされ
たもので、水中に水平もしくは水平と微小角をなすよう
に設けられた棚上に植え付けた植物の水中根を、その周
辺に、無機性および有機性の微細固形物と水中微生物と
から成り、ミクロ栄養素が濃縮している凝集団塊とによ
り水中機土嬢を水溝池全体に効果的に形成させ、かっか
かる水中擬土壌を機械的に破壊に対して強固とすべく根
圏を通過する処理中の水に適度の運動エネルギーを与え
るために、水溝池を通過する水に適度の流速を加えかつ
その流れに若干の乱流を生ぜしめると共に、植物の生長
に伴う水分と栄養の要求量の増大に対応して徐々に根圏
域を拡大せしめるため水位を上昇せしめることを特徴と
する維管束植物を用いた廃水の浄化方法を提供すること
にある。
The purpose of the present invention is to satisfy the above-mentioned conditions, and the underwater roots of plants planted on a shelf installed horizontally in water or at a slight angle with the horizontal are placed in the surrounding area. The agglomerated aggregates, which are composed of inorganic and organic fine solids and aquatic microorganisms and are concentrated in micronutrients, effectively form an underwater soil over the entire water ditch pond, and eliminate the clinging underwater pseudo-soil. In order to impart an appropriate amount of kinetic energy to the water being processed as it passes through the rhizosphere in order to make it mechanically strong against destruction, an appropriate flow velocity is applied to the water passing through the ditch pond, and some turbulence is added to the flow. Purification of wastewater using vascular plants, which is characterized by generating water flow and raising the water level to gradually expand the rhizosphere area in response to increased water and nutrient requirements accompanying plant growth. The purpose is to provide a method.

本発明の原理は、植物による排水や汚濁水の浄化のメカ
ニズムが、光合成による植物の生長の緒果水分と栄養素
の要求量の増大と、それに対応して水中根と緩慢な水の
運動によって強固に形成された水中擬土壌より構成され
た根圏における根と微生物および他の動物との活動の増
大と、の相互作用に基づくものであるという本発明者の
研究結果に基礎をおくものである。ここで水中擬土壌と
は、前述の説明からも明らかな如く、その構成が土壌の
母材の構成要素である無機性、有機性の固形物と、土壌
生物とから成るものである。
The principle of the present invention is that the mechanism of purification of wastewater and polluted water by plants is strengthened by the increased demand for water and nutrients during plant growth through photosynthesis, and by the corresponding underwater roots and slow movement of water. This is based on the inventor's research results that the increase in activity between roots, microorganisms, and other animals occurs in the rhizosphere, which is composed of an underwater pseudo-soil formed in . As is clear from the above description, the underwater pseudo-soil is composed of inorganic and organic solids, which are the constituent elements of the soil base material, and soil organisms.

上述の水浄化機能をさらに効果的ならしめるためには次
の条件が必要である。
In order to make the water purification function described above even more effective, the following conditions are necessary.

{a’根圏中の被処理水をすばやく混合して部分的にも
溶存酸素の不足を生ぜしめないこと。{bー水中壌土嬢
を構成している無機性および有機性の微細固形物と微生
物の凝集体が根圏から離脱して根圏の生物活性を低下せ
しめて植物への栄養供給を低下せしめないこと。W離脱
した凝集体が水溝池の底部に堆積し無酸素的に分解する
ことによって、夏期によく発生する溶存酸素の減少によ
る好気的活動の低下を阻止すること。‘d}流入する被
処理水中の懸濁物および、万一離脱した水中擬士壕の破
片を、適度の乱流を伴った流水環境によく適応させて強
固になった板圏に効果的に付着せしめること。このため
に水溝池の流速と水位を高め、かつ流路の底部に凹凸を
もたせて適度の乱流を起こし、広い娘圏域に水を十分に
拡散させることが必要である。ただし板圏を通過する被
処理水の流速および乱流のエネルギーが必要以上に高い
と、機械的に水中擬土壌は崩壊し、処理水とともに流出
してしまう。このために水溝池を流れる水の通過方法を
工夫しなければならない。これに対しては、水溝池に底
部を凹凸状とした(例えば砂利または小石を敷いた)流
速の大きい水路と、水位を上昇せしめる装置(例えば可
動堰)とを設けることによって、対応することができる
{a' To quickly mix the water to be treated in the rhizosphere so as not to cause even a partial shortage of dissolved oxygen. {b-The aggregates of inorganic and organic fine solids and microorganisms that make up the aquatic loam do not separate from the rhizosphere and reduce the biological activity of the rhizosphere, thereby reducing the supply of nutrients to plants. thing. To prevent a decline in aerobic activity due to a decrease in dissolved oxygen, which often occurs in the summer, by depositing W-separated aggregates at the bottom of a water ditch pond and decomposing them anoxically. 'd} Effectively remove suspended matter in the inflowing water to be treated and fragments of underwater artificial shelters that may have broken away, into a solid plate that has been well adapted to the flowing water environment with moderate turbulence. To make it adhere. For this purpose, it is necessary to increase the flow velocity and water level of the water channel, and to create an appropriate amount of turbulence by making the bottom of the channel uneven, and to spread the water sufficiently over a wide daughter area. However, if the flow velocity of the water to be treated passing through the plate sphere and the energy of the turbulence are higher than necessary, the underwater pseudo-soil will mechanically collapse and flow out together with the treated water. For this purpose, it is necessary to devise a method for passing water through the water ditch pond. This can be countered by installing a channel with a high flow velocity in the ditch pond with an uneven bottom (for example, paved with gravel or pebbles) and a device to raise the water level (for example, a movable weir). I can do it.

すなわち娘圏域の下側に流速の大きい水路を設ける。水
はこの水路を速く流れるが、その運動エネルギーの一部
が底部の凹凸構造に起因する乱流となって根圏中の水に
与えられる。このため水は根圏中を混合しながら緩慢に
流れる。同時に被処理水は流速の大きい水路を通ってす
ばやく水溝池全体に分配し、溶存物質や懸濁物質、すな
わち、栄養物質を同時に各水中擬士嬢に一様に捕捉させ
ることによって、植物の生長および根圏の微生物活動を
最大とすることができる。また、植物の生長に伴う水分
と栄養要求量の増大に対応するために、水位を上昇せし
めて根圏を上層に拡大し根の量と水中機土壌の量を共に
増大させ、結果的に植物および水中擬土壌による栄養素
の捕捉量を増加せしめている。以上の原理を具体化する
ために、水溝池に植え付ける植物の種類としては、水耕
に通し増殖力が旺盛で平均生産量が固定炭素換算量で1
0夕/枕/他y以上であることが望ましい。
In other words, a channel with a high flow velocity is provided below the daughter area. Water flows quickly through this channel, and part of its kinetic energy is imparted to the water in the rhizosphere as turbulent flow due to the uneven structure at the bottom. For this reason, water flows slowly through the rhizosphere while mixing. At the same time, the water to be treated is quickly distributed throughout the pond through channels with a high flow rate, and dissolved and suspended substances, that is, nutrients, are uniformly captured by each underwater simulator at the same time. Growth and microbial activity in the rhizosphere can be maximized. In addition, in order to cope with the increase in water and nutrient requirements associated with plant growth, the water level is raised to expand the rhizosphere to the upper layer, increasing both the amount of roots and the amount of submerged soil. and increases the amount of nutrients captured by the underwater pseudo-soil. In order to embody the above principle, the types of plants to be planted in water ditch ponds should be those that have a strong propagation power through hydroponic cultivation and have an average production volume of 1 in fixed carbon equivalent.
It is desirable that the amount is 0 evening/pillow/other y or more.

以下あぶらな科のオランダガラシ(Nastunium
oHicinaleR.Br)を用いた場合の実施例を
説明する。実施例 1 第1図は、アンモニアを主体とする工場排水を生活排水
と合併し、酸化池で処理した排水を水溝池で浄化する場
合の平面図である。
Below is Nastunium, a member of the oil family.
oHicinaleR. An example using Br) will be described. Embodiment 1 FIG. 1 is a plan view of a case where industrial wastewater containing mainly ammonia is combined with domestic wastewater, and the wastewater treated in an oxidation pond is purified in a ditch pond.

水溝池1は、周囲の外壁2で囲まれ、内部に水導水路5
が形成されている。
The water ditch pond 1 is surrounded by a surrounding outer wall 2, and has a water conduit 5 inside.
is formed.

この水溝水路5は隔壁3で仕切られ、かつ互に隣接する
ものが一端部にて蓮通しており、かつ底部には砂利4が
敷かれている。この水溝水路5の水面近くの水中には、
第2図で示す如く、排水が通過する空隙を有する棚6が
水平に設けられており、この上部にオランダガラシ7を
生育させている。そして、この根圏の生長によって水中
擬士嬢8が形成される。又水溝池1の一方の隈部には、
第1段目の水導水路5に蓮適する受水ビット10を設け
ており、周知の酸化池9からの排水を流入させている。
また、他方の隅部には「最終段目の水溝水路5に蓮適す
る、可動堰11を設けた処理水ビット12を設ける。さ
らに、上部には防霜覆13と照明器14とを設けている
。曝気池15は、水溝池1からの処理水を可動堰11、
水路13を介して導入し、ェアレータ16によって爆気
するものであり、導入された処理水の溶存酸素、pH、
濁度、酸化還元電位、導電率、水温等や外気温度をモニ
タする周知の計測装置17が附属している。
The water channels 5 are partitioned by partition walls 3, and adjacent ones have a lotus passage at one end, and gravel 4 is spread at the bottom. In the water near the water surface of this water channel 5,
As shown in FIG. 2, a shelf 6 having a gap through which drainage water passes is provided horizontally, and a watercress 7 is grown on the upper part of the shelf 6. Then, the underwater simulator 8 is formed by the growth of this rhizosphere. Also, in one corner of Mizoike Pond 1,
A water-receiving bit 10 is provided in the first-stage water conduit 5 to allow drainage from a well-known oxidation pond 9 to flow therein.
In addition, a treated water bit 12 equipped with a movable weir 11 is provided at the other corner, which is suitable for the final stage of the water channel 5.Furthermore, an anti-frost cover 13 and an illuminator 14 are provided at the top. The aeration pond 15 transfers the treated water from the ditch pond 1 to the movable weir 11,
The treated water is introduced via the water channel 13 and atomized by the aerator 16, and the dissolved oxygen, pH,
A well-known measuring device 17 for monitoring turbidity, oxidation-reduction potential, conductivity, water temperature, etc., and outside temperature is attached.

秦荘機18,19は、栄養素の補給用のものである。The Qinzhuang machines 18 and 19 are for supplying nutrients.

すなわち、水溝池1内の排水は調整装置で栄養バランス
を計るが、それでもなお栄養素の一種ないし数種が欠乏
してオランダガラシ7の生育が制限されることがある。
この場合に、この補給用として設けられるもので、所要
量の栄養素を受水ビット10や中間の水導水路5に注入
するように構成されている。曝気池15からの処理水は
、河川に放流されるか、再利用されるが、一部はポンプ
20‘こよって受水ビットや中間の水導水路5に流入さ
れ、水溝池1内の排水の栄養バランスと溶存酸素やpH
の調整をする。
That is, although the nutrient balance of the drainage water in the ditch pond 1 is measured by a regulating device, the growth of the watercress 7 may still be restricted due to a lack of one or more nutrients.
In this case, it is provided for replenishment, and is configured to inject the required amount of nutrients into the water receiving bit 10 and the intermediate water conduit 5. The treated water from the aeration pond 15 is discharged into the river or reused, but some of it flows into the water receiving bit or the intermediate water conduit 5 by the pump 20', and is discharged into the water ditch pond 1. Nutrient balance, dissolved oxygen and pH of wastewater
Make adjustments.

水潜水路5には、水面のオランダガラシ7、この根圏に
よる水中擬土壌8、底部に敷かれた砂利4等が設けられ
ているから、第2図に示す如く、底部と娘圏との間で流
速の速い遠流ゾーンAが形成される。
The underwater submersible channel 5 is provided with water surface water 7, submerged pseudo-soil 8 made of its rhizosphere, gravel 4 spread on the bottom, etc., so that as shown in Fig. 2, there is a connection between the bottom and the daughter zone. A distant current zone A with a high flow rate is formed between the two.

また棚6の上側の根圏に流速の緩かな穣速ゾーンBが形
成される。さらに、オランダガラシ11の葉茎により光
合成ゾーンCが形成される。さらに水溝池11こは、上
部に防霜覆13と照明器14が設けられているから、こ
れによる保温・光照射ゾーン○が形成される。
In addition, a grain velocity zone B where the flow velocity is slow is formed in the rhizosphere above the shelf 6. Furthermore, a photosynthetic zone C is formed by the leaves and stems of the watercress 11. Furthermore, since the water ditch pond 11 is provided with a frost-proof cover 13 and an illuminator 14 on the upper part, a heat retention/light irradiation zone ○ is formed by these.

水溝水路5に植え付けたオランダガラシ7は、まず平面
拡張期に入り水面を全面に覆い同時に根は棚6と水面と
で分けられる部分にマット状に発達し、酸化池流出水に
よって運ばれた懸濁物を捕捉し水中擬土壌8を形成する
The Dutch oak 7 planted in the water ditch 5 first entered the planar expansion phase, covering the entire surface of the water, and at the same time, roots developed into a mat in the area separated by the shelf 6 and the water surface, and were carried by the oxidation pond runoff. Suspended matter is captured to form underwater pseudo-soil 8.

平面拡張期を過ぎて垂直拡張期に入り、さらに進んで極
相に達すると成長が減衰するためこれを再び増加させる
ために水導出刊こ設遣した可動堰11を動かし水位を上
昇せしめる。水溝池1への流入水のBODが高くなった
りまたは水温が急に上昇すると処理水の溶存酸素が低下
し、水中擬土壌8の崩壊が生じて濁度も高くなり甚だし
い場合は処理水に枯草臭がして処理効果が低下する。こ
のような場合には、爆気池15のェァレーター16を嫁
勤し処理水の溶存酸素が60パーセント以上になるよう
にする。これによって濁度は常時3脚以下になり透明度
も2の以上とすることができた。水溝池1への流入水の
BODと濁度は高くかつ変動するが、処理水のBODと
濁度はきわめて低く安定した。こ)で良好な処理水とす
るためのパラメータは、遂流ゾーンAでの流速、水の循
還比、水導水路5の水位(棚6と水面の距離)および水
深(棚と底部の距離)であり、それぞれ速流ゾーンAの
流速を30〜20物舷/sec、水の循還比を1〜5、
水位を50〜50W帆、水深を200〜100仇奴の範
囲で設定する。オランダガラシの成長速度は通年1〜2
5夕(炭素量換算)/〆/船yの範囲にあり、冬期では
霜除け等で保温すると約5夕−C/のノday以上とす
ることも可能である。本装置によるアンモニアと隣の除
去率はほぼ95〜100パーセントであり、全窒素の除
去率は通年20〜95ゞ−セントであった。実施例 2
大都市内の汚濁し黒化した小河川の浄化に適する場合の
フローダイヤフラムを第4図に示す。
After passing through the planar expansion phase and entering the vertical expansion phase, the growth decreases as it progresses further and reaches the peak phase, so in order to increase the growth again, the movable weir 11 installed in the water extraction facility is operated to raise the water level. When the BOD of the inflow water to the water ditch pond 1 increases or the water temperature suddenly rises, the dissolved oxygen in the treated water decreases, the underwater pseudo-soil 8 collapses, the turbidity increases, and in severe cases, the treated water becomes It smells like hay and reduces the effectiveness of the treatment. In such a case, the aerator 16 of the explosion pond 15 is used to increase the dissolved oxygen content of the treated water to 60% or more. As a result, the turbidity was always below 3, and the transparency was also above 2. The BOD and turbidity of the inflow water to the water ditch pond 1 were high and fluctuated, but the BOD and turbidity of the treated water were extremely low and stable. The parameters for obtaining good treated water in this case are the flow velocity in the final flow zone A, the water circulation ratio, the water level of the water conduit 5 (the distance between the shelf 6 and the water surface), and the water depth (the distance between the shelf and the bottom). ), respectively, the flow rate in fast flow zone A is 30 to 20 shipboard/sec, the water circulation ratio is 1 to 5, and
Set the water level in the range of 50 to 50W sail and the water depth in the range of 200 to 100 meters. The growth rate of Dutch cucumber is 1-2 throughout the year.
It is within the range of 5 evenings (carbon amount equivalent)/ship/ship y, and in winter, if kept warm with frost protection etc., it is possible to make it more than about 5 evenings-C/day. The removal rate of ammonia and nitrogen by this apparatus was approximately 95-100%, and the removal rate of total nitrogen was 20-95% throughout the year. Example 2
Figure 4 shows a flow diaphragm suitable for purifying polluted and blackened small rivers in large cities.

下水と下水処理場の二次処理水が放流され嫌気的となっ
て腐敗し、綾存酸素が全く無く、魚も住めなくなってい
る被処理水を、河川21からポンプ22でくみあげ、ま
ず沈砂池23に導き、その上燈水を第1水溝池24で浄
化する。次いで第1陽気池25で曝気しさらに第2水溝
池26で再び浄化し、処理水を第2曝気池27で再曝気
し一部を魚モニター池28を通して放流する。第1曝気
池25と第2濠気池27には、ェアレーター29,30
とポンプ31,32がそれぞれに設置されており、それ
ぞれ第1水溝池24、第2水溝池26に処理水の一部が
戻される。さらに第1爆気池25および第2曝気池27
の出口の処理水ビット33および34には、溶存酸素、
pH、濁度などをモニターする計測システム35を設置
している。なお本実施例では水溝水路の横断面を第5図
に示すようにした。この第5図の錘型部分36が根圏ゾ
−ンBで下部の桝状部分37が流速ゾーンAであり、こ
れらは棚38で分離されている。39は水溝水面であり
、その上部にオランダガラシの薬茎からなる光合成ゾー
ンCがある。
Sewage and secondary treated water from sewage treatment plants are discharged and become anaerobic and rotten, with no remaining oxygen and no fish to live in. The treated water is pumped up from the river 21 with a pump 22, and first sent to a settling pond. 23, and the light water is purified in the first water ditch pond 24. Next, the water is aerated in the first aeration pond 25 and further purified again in the second water ditch pond 26, and the treated water is re-aerated in the second aeration pond 27, and a portion is discharged through the fish monitoring pond 28. Aerators 29, 30 are installed in the first aeration pond 25 and the second aeration pond 27.
and pumps 31 and 32 are installed respectively, and a portion of the treated water is returned to the first ditch pond 24 and the second ditch pond 26, respectively. Furthermore, the first aeration pond 25 and the second aeration pond 27
The treated water bits 33 and 34 at the outlet of the
A measurement system 35 is installed to monitor pH, turbidity, etc. In this embodiment, the cross section of the water groove is shown in FIG. The weight-shaped portion 36 in FIG. 5 is the rhizosphere zone B, and the lower basin-shaped portion 37 is the flow velocity zone A, and these are separated by a shelf 38. 39 is the water surface of the ditch, and above it is the photosynthetic zone C consisting of medicinal stems of watercress.

沈砂池23から第1水溝池24に入る処理水は、BOD
が常時50脚以上であり、水溝池での好気的条件を保っ
ため流速ゾーンAの流速を100〜100仇舷/sec
、循還比を5に上げるための根圏ゾーンBの断面積に対
する流速ゾーンAの断面積の比を小さくしたものである
。本フロ−ダイヤグラムの装置により処理水のBOD敦
例以下および濁度は3脚以下ときわめて低くかつ叢性を
検出されず、第2爆気池27の後に設けた養魚モニター
池29ではコイ、フナ、金魚、メダカなどが正常に生息
できる水を得ることができた。
The treated water entering the first ditch pond 24 from the sand settling basin 23 is BOD
is always more than 50 feet, and in order to maintain aerobic conditions in the water ditch pond, the flow velocity in flow velocity zone A is set at 100 to 100 m/sec.
In order to raise the circulation ratio to 5, the ratio of the cross-sectional area of the flow velocity zone A to the cross-sectional area of the rhizosphere zone B is reduced. With the equipment shown in this flow diagram, the BOD and turbidity of the treated water are extremely low, less than 30 cm, and no plexus was detected. We were able to obtain water in which animals such as fish, goldfish, and killifish can normally live.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す平面図、第2図
は第1図のローD線に沿って矢印方向に断面図、第3図
は第1図のm−m線に沿って矢EO方向に見た断面図、
第4図は本発明の他の実施例を示すフローダイヤグラム
、第5図は本発明の他の実施例に適用した要部の断面図
である。 1・・・・・・水溝池、5・・・・・・水耕水路、6・
・・・・・柵、7・・・・・・オランダガラシ、8・・
・・・・水中擬土壌。 第2図第3図 第1図 第4図 第5図
FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, FIG. 2 is a sectional view taken along the low D line in FIG. 1 in the direction of the arrow, and FIG. A cross-sectional view taken along the arrow EO direction,
FIG. 4 is a flow diagram showing another embodiment of the present invention, and FIG. 5 is a sectional view of a main part applied to another embodiment of the present invention. 1... Water ditch pond, 5... Hydroponic waterway, 6.
...Fence, 7...Dutch cucumber, 8...
...Underwater pseudo-soil. Figure 2 Figure 3 Figure 1 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 被処理水が流通する水路内の水面下でかつ底部より
上方の位置に被処理水が通過する空隙を有する棚を略水
平に設け、その上部に葉茎の大部分が大気中に露出する
維管束植物の根を植付け、前記棚の下側の流速により棚
より上部に被処理水の緩速ゾーンを形成し、この緩速ゾ
ーンにおいて前記維管束植物の水中根と、これにより被
処理水から捕捉した被除去物質とにより水中擬土壤を形
成し、これによつて前記維管束植物を生育させると共に
、この維管束植物の生長に伴つて前記水路の水位を上昇
させ、水中擬土壤を有効に保持することを特徴とする維
管束植物を用いた廃水の浄化方法。
1. A shelf with voids through which the water to be treated passes is installed below the water surface and above the bottom in a waterway through which the water to be treated flows, and most of the leaves and stems are exposed to the atmosphere at the top. The roots of the vascular plant are planted, and a slow zone of the water to be treated is formed above the shelf by the flow velocity below the shelf, and in this slow zone, the underwater roots of the vascular plant and the water to be treated are Form an underwater pseudo-soil with the substances to be removed captured from the water, thereby growing the vascular plants, and raise the water level of the waterway as the vascular plants grow, making the underwater pseudo-soil effective. A method for purifying wastewater using vascular plants characterized by retaining the wastewater.
JP8612277A 1977-07-20 1977-07-20 Wastewater purification method using vascular plants Expired JPS6012119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8612277A JPS6012119B2 (en) 1977-07-20 1977-07-20 Wastewater purification method using vascular plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8612277A JPS6012119B2 (en) 1977-07-20 1977-07-20 Wastewater purification method using vascular plants

Publications (2)

Publication Number Publication Date
JPS5422950A JPS5422950A (en) 1979-02-21
JPS6012119B2 true JPS6012119B2 (en) 1985-03-29

Family

ID=13877887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8612277A Expired JPS6012119B2 (en) 1977-07-20 1977-07-20 Wastewater purification method using vascular plants

Country Status (1)

Country Link
JP (1) JPS6012119B2 (en)

Also Published As

Publication number Publication date
JPS5422950A (en) 1979-02-21

Similar Documents

Publication Publication Date Title
Mahapatra et al. Waste Stabilization Pond (WSP) for wastewater treatment: A review on factors, modelling and cost analysis
US10982400B2 (en) Structure for an aquatic space and method for conserving large bodies of water
Mashauri et al. Constructed wetland at the University of Dar es Salaam
US4169050A (en) Buoyant contact surfaces in waste treatment pond
US5337516A (en) Treatment of polluted water using wetland plants in a floating habitat
US4995969A (en) Treatment system for landfill leachate
US4678582A (en) Treatment system for landfill leachate
Bani Wastewater management
Craggs et al. Advanced pond system for dairy‐farm effluent treatment
KR20110136222A (en) Ecological sewage water treatment system
WO2004087584A1 (en) System and method for the treatment of wastewater using plants
Greenway Constructed Wetlands for Water Pollution Control‐Processes, Parameters and Performance
JP3435394B2 (en) Aquatic habitat management method and aquatic habitat management system
Craggs et al. Dairy farm wastewater treatment by an advanced pond system
Ellis et al. Stabilization ponds: design and operation
Davies et al. Application of constructed wetlands to treat wastewaters in Australia
Biddlestone et al. A botanical approach to the treatment of wastewaters
KR20000072363A (en) the nature purify method for a damp area to be made artificially and that equipment
Farooqi et al. Constructed wetland system (CWS) for wastewater treatment
CN109095728A (en) A kind of rainfall runoff purification device and purification method
Rahi et al. Using horizontal subsurface flow constructed wetland system in the treatment of municipal wastewater for agriculture purposes
CN101687675A (en) Process for biostabilization and humification of biological sludge in planted filtering beds
Shammas et al. Waste stabilization ponds and lagoons
CN207726821U (en) A kind of sewage treatment plant tail water artificial wet land treating system
RU2288894C1 (en) Method of the hydrobotanic purification of the industrial or household polluted water mediums in the climatic conditions of the middle latitudes