JPS60121183A - Anchor structural body - Google Patents

Anchor structural body

Info

Publication number
JPS60121183A
JPS60121183A JP22876583A JP22876583A JPS60121183A JP S60121183 A JPS60121183 A JP S60121183A JP 22876583 A JP22876583 A JP 22876583A JP 22876583 A JP22876583 A JP 22876583A JP S60121183 A JPS60121183 A JP S60121183A
Authority
JP
Japan
Prior art keywords
anchor
force
claw
pressure
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22876583A
Other languages
Japanese (ja)
Inventor
Sojiro Nakamura
中村 宗次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22876583A priority Critical patent/JPS60121183A/en
Publication of JPS60121183A publication Critical patent/JPS60121183A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/24Anchors
    • B63B21/26Anchors securing to bed
    • B63B2021/262Anchors securing to bed by drag embedment

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

PURPOSE:To make a thrust into a seabed part and anchoring force ever so large, by pivoting an anchor shank on a point of gravitational center of an anchor body free of turnover motion, while installing an anchor box projecting an anchor fluke being halved in making this axial center a base point, and forming both upper and lower pressure receiving parts into a sideward incline in section rhombiform. CONSTITUTION:An anchor body 1 is set down to an isosceles triangle as a basis looking from a plane surface, and an anchor fluke 2 is halved with its intervals narrowed, while an anchor box 3 is solidly constituted in one. An anchor shank 5 is pivoted on a gravitional center point 4 of the anchor box 3 free of turnover motion. On the other hand, both upper and lower pressure receiving parts of the anchor box 3 are formed into a sideward incline in section rhombiform. In time of scanning on a seabed surface, owing to these upper and lower pressure receiving parts of the sectional rhombiform anchor box 3 and the anchor shank 5 capable of turnover motion, a sufficient thrust and anchoring force can be secured.

Description

【発明の詳細な説明】 本発明は、船舶に使用される繋泊用錨、特に重要な錨の
水平効果を保ち、高い安定性をもって静止、或は移動時
にても強力な把駐力を発揮する機能的な無稈錨の基本構
成に係る。
[Detailed Description of the Invention] The present invention is a mooring anchor used for ships, which maintains the horizontal effect of the anchor, which is particularly important, and exhibits strong holding power even when stationary or moving with high stability. This relates to the basic structure of a functional sterless anchor.

現在使用されている大型船の錨の多くは、海底土床に緊
圧の後、許零される把駐力を超過すると移動し、やがて
安定を失い質M内で回転する事実が知られている。原因
は、土質の垂1Kに累積する重量が深度に従い増大する
により、錯体が挙動中の傾ける爪側に土圧力がより強く
偏行し、爪面を片側え抑圧する作用力が加えられ、錨幹
を中心として回転のモーメントを生じるとされ、現用錨
の爪間隙の広いもの4多くが、この弊害を持つ。
It is a known fact that many of the anchors of large ships currently in use move when the holding force exceeds the allowable hold force after being compressed by the sea bed, and eventually lose stability and rotate within the mass M. There is. The reason is that the weight accumulated per 1K of soil increases with depth, and as a result, the soil pressure is more strongly biased towards the tilting claw side when the complex is behaving, and an acting force that suppresses the claw surface on one side is applied, causing the anchor to It is said that a moment of rotation is generated around the trunk, and many modern anchors with wide claw gaps have this problem.

錨が?/g床上で挙動不安定となり、爪掛りせず移動す
るを走錨と称し、船舶が荒天錨泊中の遭難原因となり、
屡々由々しき事故を発生している。
An anchor? /g An anchor that becomes unstable on the floor and moves without being hooked is called dragging anchor, and can cause a ship to be in trouble while anchored in rough weather.
Serious accidents often occur.

古来、錨は船体に加えられる自然からの力を支え、原質
上層部に留まるのみでなく爪を有効に掻きながら移動し
、曳行力を大地に伝える媒体として常に水平を保ち、か
つ能動的な運動体として土質層に作用力を及ばずと定義
される。
Since ancient times, anchors have supported the forces of nature that are applied to the hull of a ship, not only staying in the upper layer of the stratum but also moving while effectively scraping their claws, and acting as a medium to transmit the towing force to the earth, always keeping it level and acting as an active anchor. It is defined as a moving body that does not exert any force on the soil layer.

以上の理由から、海床上の錨の把駐力の持続は姿勢の安
定に託され、同時に性能の目安となり。
For the above reasons, the anchor's ability to maintain its grip on the seabed depends on its stability, and at the same time serves as a measure of its performance.

錨は与えられた運動のヱネルギーを曳行力として受け、
静止から移動に至る挙動の全域にて機能的に大地に還元
し、これを消尽するものとなる。
The anchor receives the energy of the given motion as a pulling force,
It functionally returns to and exhausts the earth in its entire range of behavior, from rest to movement.

従来から錨の基本要素は鉤であり、と71に重量効果を
加えたもので、爪の投影形状と錨幹えの取付角度も大切
とされている。この基本的な有程錨は、錨幹に固定した
両爪と交差する錨稈を備え。
Traditionally, the basic element of an anchor has been the hook, and the weight effect has been added to 71, and the projected shape of the hook and the angle at which the anchor is attached are also important. This basic fixed anchor has two claws fixed to the anchor trunk and an intersecting anchor culm.

我国では、これを十字型錨と称している。幾千年も続い
て来たこの型式は、長大な錨程で安定たが、爪の有効面
積が小に過ぎ、大きさの割合に把駐力は劣り、爪を大と
すれば掻込力が不足する欠陥もあり、長い帆船の時代と
共に使用されながら。
In our country, this is called a cross-shaped anchor. This type, which has been used for thousands of years, is stable with a long anchor, but the effective area of the claws is too small, and the gripping force is inferior to its size, and if the claws were made larger, the raking force would be lower. While being used for a long time with the era of sailing ships, there are also deficiencies in the lack of them.

汽船への移行と、この変化に不適とされ、これを改めだ
中間的な十山字型錨を介して、更に完全に錨鎖口に収容
される取扱−にの改善をΦ視せる山字型錨へと発展し、
一般にこれをストックレスアノカーと称している。この
船舶用主補とされるこれらが、多くの型式を含有しなが
ら、構成にの基本部分に長い習慣に由来する欠陥が、こ
の最も代表的トされるJIS型ストックレスアンカーに
示され、船舶を走錨の危険に晒している事実は、すてに
1919年、特許第35022号の文中に記載されてい
る。第1図は、このヱールス型錨を示し、該錨は両爪の
左右外側に後傾する強い斜1bit:構成し、土質層の
深度綽よる圧力差と、これにλ・J応する爪■f0角度
による姿勢11il制御を実現している。
With the transition to steamships, it was deemed unsuitable for this change, and this was revised.The chevron-shape anchor, which can be seen as an improvement in handling, is now completely accommodated in the anchorage port, through the intermediate crisscross-shape anchor. Develops into an anchor,
This is generally called a stockless anchor car. These are considered to be the main auxiliary anchors for ships, but while they include many types, the most representative JIS type stockless anchors have defects that stem from long customs in their basic structure. The fact that the ship is at risk of dragging anchor is already mentioned in the text of Japanese Patent No. 35022 of 1919. Figure 1 shows this Valles-type anchor, which has a strong slope of 1 bit tilting backwards to the left and right sides of both claws, and the pressure difference due to the depth of the soil layer and the claw corresponding to λ・J. Attitude 11il control is realized using the f0 angle.

然し、この錨は安シを性に優れなから両爪が並イJし、
爪の中間が広く隙間があき、土質の変位差による水平保
持がなされても、質層に押圧力を伝えられず、把駐力の
増大は期待されなかった。
However, since this anchor has excellent sex, both claws are parallel to each other,
There was a wide gap in the middle of the claw, and even if horizontal holding was achieved by the difference in soil displacement, the pressing force could not be transmitted to the soil layer, and no increase in gripping force was expected.

第2図は、上記の欠陥を除くものとして特許第1127
762号を示し2両爪の間隙をせばめ。
Figure 2 shows the patent No. 1127 which eliminates the above defect.
Show No. 762 and narrow the gap between the two claws.

左右に後傾する爪面に、垂直方向から作用する押圧力を
利用し、広い土質体積に力を及ぼし錨受圧簡に作用力の
集中と、変位差の均衡による把駐力の増大、水平安定の
確保を得た。
Utilizes the pressing force applied from the vertical direction to the claw surface that tilts backward from side to side, applying force to a wide soil volume, concentrating the acting force on the anchor receiving pressure, increasing the holding force by balancing the displacement difference, and horizontally stabilizing. was secured.

本発明では、これらを更に発展せしめるにより、従来か
らの錨構成上の諸要素に加え、この爪斜面の効果による
把駐勾の増大と、安定性を骨子とし、これに土質^(度
による圧力比と、錨受圧面となる錨幹基部軸心にて両断
される錨爪と、錨鎖部分の面積による釣合が密接に関係
するを述べ、土質圧力と錨の均衡により常に水平を指向
し、同時に自から最も適する土庄深度にて機能する。制
御されたものとして極めて能動的な挙動を可能とし、こ
れを運動体として定義し得るものとしだ。
In the present invention, by further developing these, in addition to the conventional elements of anchor construction, the key points are increased grip slope and stability due to the effect of the claw slope, and in addition, soil quality (pressure due to degree) The ratio is closely related to the balance between the area of the anchor claw, which is bisected at the axis of the base of the anchor trunk, which serves as the anchor pressure receiving surface, and the area of the anchor chain. At the same time, it functions at its most suitable depth.As a controlled object, it is capable of extremely active behavior, and this can be defined as a moving body.

第6図は、この錨構成体を斜祝し、錯体1は二等辺三角
形を基本とし、錨爪2は間隙をせばめて部分され錨鎖6
は一体となり、この重心点4には錨幹5が回転軸乙によ
り軸架され2図示する正面図Aでは、爪先端から底i、
’+i f、での長さaを錯体の横幅すに准するを示ず
。側面図13では中立線で錨の左右が対称となり、横断
面図Cはa゛−a2線にて錯体の軸心部分が髪型に構成
されるを示し、どちらにも反転自在に同じ姿勢を保ち、
土質中にて単動状態にある錨の上面側を受圧面とすれば
、この下面は掻込み時、爪下面となる先端が土質えの喰
い込みで土砂を抱えず、左右に形成さ1tた傾斜面で両
(fillに排除し、爪は迅速に下向となり、従来の&
1’l’iが両爪の間に土砂が詰り海床上で爪が滑る欠
陥を除き9両爪をせばめた効果が発(111される。
Fig. 6 shows this anchor structure obliquely, the complex 1 is basically an isosceles triangle, the anchor claw 2 is divided into parts by narrowing the gap, and the anchor chain 6
are integrated, and the anchor trunk 5 is pivoted at the center of gravity 4 by the rotating shaft B. In the front view A shown in Figure 2, from the tip of the claw to the bottom i,
'+if, the length a at f is equal to the width of the complex. In the side view 13, the left and right sides of the anchor are symmetrical at the neutral line, and the cross-sectional view C shows that the axial center of the complex is configured in a hairstyle along the a-a2 line, and it can be reversed in either direction and maintains the same posture. ,
If the upper surface side of the anchor, which is in a single-acting state in the soil, is the pressure-receiving surface, when the lower surface is raked, the tip, which becomes the lower surface of the claw, digs into the soil and does not hold earth and sand, and is formed on the left and right. Excludes both sides (fill) on the inclined surface, and the claw quickly turns downward, unlike the conventional &
1'l'i removes the defect of the claws slipping on the sea bed due to dirt getting stuck between the two claws, and the effect of narrowing the nine claws is produced (111).

第4図、Aは質層内で垂直に点線で結ぶ定圧ガLにある
a点とb点の圧力差が9層のJ −Dに至る変化を9図
Bにてグラフに示し、縦軸線Pは圧力、横軸線1(は深
さとなる。この上圧比は上層で大きく下層で小となり2
次才に抛物線を画きながら圧力を高め、深部では土質粒
子が双互に干渉し。
Figure 4A shows a graph in Figure 9B of the change in the pressure difference between points a and b at a constant pressure point L connected vertically by a dotted line within the mass layer until it reaches J-D in the 9th layer, with the vertical axis line P is the pressure, and horizontal axis 1 (is the depth. This upper pressure ratio is large in the upper layer and small in the lower layer, and 2
The pressure is increased while drawing a parabolic line, and soil particles interfere with each other in the deep part.

互に横方向への力で支え合い、垂直から加えられる土圧
力を拡散すると推定されている。
It is estimated that they support each other with lateral force and diffuse the vertically applied earth pressure.

第5図では、これをモデル化した錨1を作り。In Figure 5, we created anchor 1 that models this.

縮尺を定め、錨が有効に掻くとさオLる上質層の深さI
Iを決>i(し、第6図の如く、土質層を模擬化した箱
に入れ、乾燥せる砂質中でこの模型錨の受圧面に等しく
、錨爪と錨鎖の両面積比に准した二枚の受圧枚aと1)
を矢印方向に曳き、この両者の加えられる力が均衡する
なら供試飾体は安定する。
Determine the scale and determine the depth of the fine layer I when the anchor effectively scrapes.
As shown in Figure 6, place the model anchor in a box simulating the soil layer and dry it in a sandy environment with a surface equal to the pressure-receiving surface of this model anchor and equal to the area ratio of both the anchor hook and the anchor chain. Two pressure receiving plates a and 1)
is pulled in the direction of the arrow, and if the forces applied by both are balanced, the test decoration will be stable.

この場合、土質層に准じた砂質に於て上部にある受圧4
Raの面積が大であり、同じくbは小となるが下層の圧
力が高く、この両者に□h <力の差が大となる上層で
は、圧力は1)板に強く作用し、この差が小となる下層
では圧力は面積の大きなa板の側に働き、該実験ではこ
の中間層に錨の最も有効な深度と、受圧面比率をめるイ
、のとなる。
In this case, the upper pressure receiving layer 4 is sandy similar to the soil layer.
The area of Ra is large and b is also small, but the pressure in the lower layer is high and there is a large difference in □h < force between them.In the upper layer, the pressure acts 1) strongly on the plate, and this difference In the lower layer, where the pressure is smaller, the pressure acts on the side of plate A, which has a larger area, and in this experiment, the most effective depth of the anchor and the pressure-receiving surface ratio are set in this middle layer.

オフ図は、錨が土質層の中で作用力を受けながら、この
上圧比と自己の錨爪、錨鎖受圧而か錨幹支軸を重心点に
設け、挙動するを模擬的に示し。
The off-line diagram simulates the behavior of the anchor while receiving acting force in the soil layer, with the upper pressure ratio, the anchor claw, the anchor chain receiving pressure, and the anchor shaft supporting shaft set at the center of gravity.

質Wt−l:部1にある錨は、引張力によって矢印方向
に曳かれながら爪側に強く力を受け、下方を指向し進入
する。更に深く≦1゛6が進入し下部2の質層に達した
なら9両[111の圧力差は減少し鉛相側に土圧力がj
liJJき、錨は]一方に曳かれやがて両受圧面が均衡
する土庄比となる。定腐点6に到達する。
Quality Wt-l: The anchor in part 1 receives a strong force on the claw side while being pulled in the direction of the arrow by a tensile force, and enters in a downward direction. If ≦1゛6 penetrates deeper and reaches the lower layer 2, the pressure difference of 9 cars [111 will decrease and the earth pressure will increase on the lead phase side.
liJJ, the anchor is pulled to one side, and eventually reaches a position where both pressure-receiving surfaces are balanced. The constant rot point 6 is reached.

かくて綿体は、自から最も適切な圧力下に釣合い挙動制
御が可能となり、爪と錨鎖の面積比を変え爪側を大とす
れば深く、鉛相側を大と−j−ILば/qく進入し、海
床質層の比重により硬く締った砂質等の海底土層では、
比較的上層で必要な繋留力を得られ、概ね土質の比重密
度と把駐力は比例し。
In this way, the cotton body is able to control its equilibrium behavior under the most appropriate pressure, and by changing the area ratio between the claw and the anchor chain, increasing the claw side makes it deeper, and increasing the lead phase side -j-IL/ In the sandy and other seabed soil layers that have penetrated q and become hard due to the specific gravity of the seabed layer,
The necessary anchoring force can be obtained at a relatively upper layer, and the specific gravity density of the soil and the anchoring force are generally proportional.

綿体の大きさと貫入飽和深度もこれに倣う。The size of the cotton body and the saturation depth of penetration also follow this pattern.

以」二の理由により、錨は後回1するノビ右の爪斜面に
より水平を保持され、土質作用力を四重する二等辺三角
形を基本とする錨体効果を盛り、従来からの綿体が土質
層中で偏在する力を受けるに対し、部分された稀少圧而
の比率で、これと釣合う深度圧力と均衡せしめ、能動体
として力の偏在を除き、必要条件の全てにパーフヱクト
な性能を確保した。これに更に完壁を期すものとして、
綿体と錨幹の大きさによる指向性能を紹介し、その論拠
とする錨と、との錨鎖の長さ、これがfI+LI:にあ
る船の位114′と水深比による把駐力の大きさと、互
に密接に関係するを説明する。
For these two reasons, the anchor is held horizontally by the slope of the claw on the right side of the knob, which will be explained later.The anchor body effect is based on an isosceles triangle that quadruples the soil action force, and the conventional cotton body is In response to the uneven distribution of force in the soil layer, it is balanced with the depth pressure that balances it with the ratio of the partial rare pressure, and as an active body, it achieves perfect performance in all necessary conditions except for the uneven distribution of force. Secured. In order to complete this,
Introducing the pointing performance depending on the size of the cotton body and anchor trunk, and the length of the anchor chain between the anchor and the anchor, which is fI + LI: The size of the holding power due to the ship's position 114' and the water depth ratio, Explain that they are closely related to each other.

第8図Vよ、この海−ににある船舶1と+ 6’l’^
鎖2及び錨6を示し、水深をHとする。実験では、錨幀
長が水深比、即ちHの6〜4倍に於て最も強度の把駐力
を得た。通常、海床−にで錨は水平に挙動し、錨鎖は全
体の7割程度を横だえ、この他の長さはカテリーナ曲線
をもって水面上に達し、錨鎖1」に続かれている。この
時、錨と船体との間には。
Figure 8 V, ships 1 and 6'l' in this sea.
A chain 2 and an anchor 6 are shown, and the depth of the water is H. In experiments, the strongest holding force was obtained when the anchorage length was 6 to 4 times the water depth ratio, that is, H. Normally, the anchor moves horizontally on the seabed, with the anchor chain lying about 70% of the length, and the rest of the length reaches above the water surface with a Katerina curve and continues with the anchor chain 1. At this time, between the anchor and the hull.

直線としての指向線4が存在すると賄定され、この綿体
からの仰角りは18〜22瓜の範囲になる。
It is assumed that there is a directing line 4 as a straight line, and the elevation angle from this cotton body is in the range of 18 to 22 degrees.

挙動中の錨の受圧面圧力中心5は、この重心点6と一致
せず、曳行力は重心に加えられる。圧力の平均点は錯体
基本三角形の頂点から、底辺間の中央9重心点の−1・
側に位置しこれをここでは綿体の圧力中心として扱い、
錨は諸点を土圧力の最も集中する焦点として運動し、爪
面基点から延長され、更にこの錨幹先端7を介して、指
向線は、’j′rユ直ぐに、洋」二の船舶に達している
The center of pressure on the pressure receiving surface 5 of the anchor in motion does not coincide with this center of gravity point 6, and the towing force is applied to the center of gravity. The average point of pressure is from the apex of the basic triangle of the complex to the center 9 center of gravity between the bases.
This is located on the side and is treated here as the pressure center of the cotton body,
The anchor moves with the points where the earth pressure is most concentrated, and is extended from the base point of the claw plane, and furthermore, via this anchor stem tip 7, the line of orientation immediately reaches the ship in the ocean. ing.

−に質からの反作用力を受け、錨の受圧面に土圧力が集
中し、この圧力中心を結ぶととわ英国のブルース型錨に
よる出願父性等にて知ら牙り、これら平型を含む凹型状
錨爪に見るものより9本発明になる左右への傾斜面を持
つ凸型状錨爪は、これ−までのどの爪形状より強い土圧
力の圧縮集中効果を与えるものものとなり、オ9図のA
では、錨爪の受圧面上にめられる圧力中心点1は1作用
力が爪面と垂直に働く理由からこの傾ける爪面で両側か
ら押圧され、矢印方向に土質は圧縮力を受け。
The earth pressure is concentrated on the pressure-receiving surface of the anchor due to the reaction force from the surface of the anchor. The convex-shaped anchor claw of the present invention, which has sides sloping to the left and right, has a stronger compressive concentration effect on soil pressure than any other claw shape to date, and the shape of the anchor claw is much stronger than that seen in Figure 9. A of
In this case, the pressure center point 1 set on the pressure receiving surface of the anchor claw is pressed from both sides by this inclined claw surface because the acting force acts perpendicularly to the claw surface, and the soil is subjected to compressive force in the direction of the arrow.

同時に、この爪巾央部では前方からの反作用力と錨爪の
押圧力が衡突し、矢印の突合せ位置を中心にこの周囲に
圧密部分を形成するとされ、Bの側面からはこの部分が
爪先端上方でlb、6点より少し下側に位置し、斜線に
示される範囲に力は集まり、この焦点は中心点になる。
At the same time, in the center of the claw width, the reaction force from the front and the pressing force of the anchor claw are in balance, and a consolidated part is formed around the butt position of the arrow, and from the side of B, this part is said to be The force is concentrated in the diagonally shaded area located above the tip and slightly below the 6th point, and this focal point becomes the center point.

この時、錨爪先端2から錨幹先端6に至る点線4の内側
に圧縮部分が存在し、焦点から延長される指向線5は、
錨幹先端を介し力の方向線を示している 錨はこの土質層内で、錨爪と錨幹の間に力の集中による
圧縮さ7tだ部分を形成するにより、爪の浮上りを押え
、矢印aは錨が水平に引張力を受ける方向を示し、この
時、爪先端から後端にかけ爪面に垂直方向に圧縮を受け
る土質と、この力が及ばない部分との間に9点線に添い
剪断力が生じ錨爪を矢印すの方向に持−]ユるが、これ
は更に強く作用し爪が下向に進入する矢印Cの力に吸収
され。
At this time, there is a compressed part inside the dotted line 4 from the anchor claw tip 2 to the anchor trunk tip 6, and the directional line 5 extending from the focal point is
The anchor, which shows the direction of force through the tip of the anchor trunk, forms a compressed 7t portion between the anchor claw and the anchor trunk due to concentration of force within this soil layer, thereby suppressing the floating of the claw, Arrow a indicates the direction in which the anchor receives horizontal tensile force, and at this time, a 9-dot line is drawn between the soil that is compressed in a direction perpendicular to the claw surface from the tip of the claw to the rear end, and the part where this force does not apply. A shearing force is generated and the anchor claw is held in the direction of the arrow A, but this is absorbed by the force of the arrow C which acts even more strongly and causes the claw to move downward.

これを差引く力がaとの合成力dとして、矢印に示す指
向線の方向となり、錨は土質の圧縮中心に曳行力を作用
させ、これと錨幹先端を貴く最も効果的な力が直線とし
て働くと推定されている。
The force subtracted from this is the resultant force d with a, which is in the direction of the directional line shown by the arrow. It is estimated that it works as

従い、ツメ上の論拠から綿体の大きさと、これを支える
錨幹の長さの比率は重要で1重心点6から水平に延長さ
れる錨幹先端と、この指向線の交点までのA−A間の距
離は、該当綿体に適切な錨幹長とされ、錨の把駐力に影
響する指向線の海床−ヒからの仰角に密接に係るものと
なる。
Therefore, from the argument above, the ratio between the size of the cotton body and the length of the anchor trunk that supports it is important. The distance between A and A is determined to be an appropriate anchor length for the relevant corpuscle, and is closely related to the elevation angle from the seabed of the directional line that affects the holding power of the anchor.

錨挙動上から直線を常に保ち、圧力中心となる焦点から
錨!ネを介して働く指向線は、錯体に傾きが生じた場合
、錨幹先端はこのtM、hから外れる。
Anchor behavior Always keep a straight line from above and anchor from the focal point, which is the center of pressure! If the complex is tilted, the tip of the anchor stem will deviate from this tM, h.

曳行力は船と運動焦点間に働き、該先端を介し力を伝え
、錨幹に挺作用を生じ躯体を正しく保つ。
The towing force acts between the ship and the focal point of motion, transmitting the force through the tip and creating a pinning action on the anchor trunk to keep the hull in place.

第10図は、土質中で錯体に傾が生じた時、これを水平
に復元する作用力を述べ1図Aでは左ill 8面は水
平(I?:近ずくほど、垂面に加えられる矢印方向の力
は大となり、b面は逆に垂直からの作用する力は小とな
る。結果として8面は押戻され、錯体は常に水平を保つ
運動となる。図13 ij断面図。
Figure 10 shows the acting force that restores the complex to horizontal when it is tilted in the soil. The force in the direction becomes large, and on the b-plane, on the contrary, the force acting from the perpendicular direction becomes small.As a result, the 8 planes are pushed back, and the complex always moves horizontally.Figure 13 ij cross-sectional view.

、本文に述べる船舶に備えられる錨の大きさと。, and the size of the anchor provided on the ship mentioned in the text.

水深比に対する効果的な錨鎖の長さによる。この重さえ
の配慮が、船体に加わる過大な負担を除き傾ける爪面の
効果により安定性と把駐力の向上。
Depends on the effective anchor chain length to water depth ratio. This consideration of the weight eliminates excessive stress on the hull and improves stability and holding power through the effect of the tilting claw surface.

更に錨の能動性を土庄と鍋受圧面の比率均衡にて自在と
し、従来からの錨掌動性えの疑を解決し。
Furthermore, the activeness of the anchor can be adjusted freely by balancing the ratio of the tosho and the pressure-receiving surface of the pot, which solves the conventional doubts about the anchor's active property.

本来の機能をもって荒天錨泊に際し、効果ある繋留力を
得られ、余分な錨鎖を繰出し、この切断とか絡みによる
事故を防ぎ、錨鎖の重量効果にのみ期待せず、材質的強
度が重視されるなら、今日の港湾の限定されだ繋泊水面
に於ける船舶錨泊の安全は格段に向上し、狭隘な港を有
効ならしめる。
If you can obtain effective mooring force when anchoring in rough weather with the original function, let out excess anchor chain and prevent accidents due to breakage or entanglement, and do not rely only on the weight effect of the anchor chain, but emphasize the material strength, The safety of anchoring ships in the limited mooring waters of today's ports has been greatly improved, making narrow ports more effective.

海床で錨が回転せず、土質に常に爪が掻ていれば徒に風
や?+fI流で船体が移動することなく、推定し示唆す
る指向線の存在と、この論理下に錨と錨鎖の効果的な錨
泊技術をもって、走錨や船体の撮れ廻りに対応出来る。
If the anchor does not rotate on the seabed and its claws are constantly scratching the soil, is it a waste of wind? Without the ship moving in the +fI style, with the existence of a pointing line that can be estimated and suggested, and based on this logic, with effective anchoring techniques using the anchor and anchor chain, it is possible to deal with anchor dragging and the ship's turning.

本発明は、これらをもって錨に対し旧来の概念を脱却し
9機能体として提起し、錨と海底土質との係りで持つ諸
要素を述べ、錨程を使用せず自己機能による水平安定性
とこの復元、各能方向ヒを実現し、冒頭に紹介した二個
の無稈錨により提唱されるに由来する。長い歴史ある変
革の中でα成し、経験と実績に裏付された。実用的な高
把駐力安定アンカーの最も基本的なものとして、ここに
船舶用無稈錨となる。錨qlrt成体の開発技術を提示
し説明を加えた。
The present invention breaks away from the traditional concept of anchors and proposes them as nine functional bodies, describes various elements related to the relationship between anchors and seabed soil, and achieves horizontal stability by self-functioning without using anchor height. The restoration is based on the two culvertless anchors introduced at the beginning, which realize each direction. It has grown through a long history of change and is backed by experience and results. The most basic of practical stable anchors with high holding power is the sterless anchor for ships. We presented and explained the development technology for adult anchor qlrt.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び」・2図は1本文に引用する無稈錨の斜視図
。第6図は1本発明になる錨構成体の斜視説明図。第4
図は土質圧力σ)変化率を示すl!は説明図、Bはこの
グラフ。第5図は、モデル錨による土庄深度と錨との係
りを説明し、第6図は、土層での模型のよる土庄比と錨
の関係を示す。 オフ図は、土質層中での/、、¥の挙動と、この均衡作
用を説明する。第8図は、船舶と錨鎖及び錨。 これに係る指向線の関係を述べ、第9図は、更にこの錯
体と錨幹の関係を説明する。第10図は、錨爪の斜面効
果によるA及び13図は、この復元と水平安定を特徴す
る 特許出願人 中 伺 宗 次 部 第4図 A B 第5図 第 6 図 第7図 ← 1
Figures 1 and 2 are perspective views of the sterless anchor cited in the main text. FIG. 6 is a perspective explanatory view of an anchor structure according to the present invention. Fourth
The figure shows the soil pressure σ) rate of change! is an explanatory diagram, and B is this graph. Fig. 5 explains the relationship between the anchor and the depth of the model anchor, and Fig. 6 shows the relationship between the anchor and the depth of the model in the soil layer. The off-diagram explains the behavior of /, , ¥ in the soil layer and its balancing effect. Figure 8 shows a ship, anchor chain, and anchor. The relationship between the directional lines related to this will be described, and FIG. 9 will further explain the relationship between this complex and the anchor trunk. Figure 10 shows A due to the slope effect of the anchor claw, and Figure 13 shows this restoration and horizontal stability. Figure 4 A B Figure 5 Figure 6 Figure 7 ← 1

Claims (1)

【特許請求の範囲】 錯体の重心点に、錨幹を反転自在に軸架し、この軸心を
基点として錨箱と、二分された錨爪を設け、錯簡から垂
直に軸心で両断される錨爪側と。 錨箱側両受圧面に於ける面積比率と、正姿勢にて進入す
るに従い1両面に加えられる土庄比が次オに釣合い、あ
る深さで均衡し躯体に作用する土庄抗力をもって、錨が
自から最も効果ある深度をめ、常に安定した力と姿勢を
保ち、底質に挙動する制御機能を特徴とする錨構成体。
[Scope of Claims] An anchor trunk is pivotably mounted at the center of gravity of the complex, and an anchor box and an anchor claw bisected are provided with the center of gravity of the complex as a base point, and the anchor trunk is bisected perpendicularly from the complex at the center of the axis. with the anchor claw side. The area ratio of both pressure-receiving surfaces on the anchor box side and the dosing ratio applied to one side as the anchor approaches in a normal attitude are balanced as follows, and the anchor is balanced at a certain depth and the anchor moves automatically with the dosing force acting on the main body. An anchor structure that is characterized by a control function that aims at the most effective depth from the bottom, always maintains stable force and posture, and behaves on the bottom sediment.
JP22876583A 1983-12-03 1983-12-03 Anchor structural body Pending JPS60121183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22876583A JPS60121183A (en) 1983-12-03 1983-12-03 Anchor structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22876583A JPS60121183A (en) 1983-12-03 1983-12-03 Anchor structural body

Publications (1)

Publication Number Publication Date
JPS60121183A true JPS60121183A (en) 1985-06-28

Family

ID=16881481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22876583A Pending JPS60121183A (en) 1983-12-03 1983-12-03 Anchor structural body

Country Status (1)

Country Link
JP (1) JPS60121183A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704982A (en) * 1985-05-03 1987-11-10 Agge Sahlberg Anchor arranged for lowering along an inclined plane
CN110304201A (en) * 2019-06-19 2019-10-08 中国一冶集团有限公司 A kind of ship anchor of the adjustable size for stone dumper positioning waterborne

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704982A (en) * 1985-05-03 1987-11-10 Agge Sahlberg Anchor arranged for lowering along an inclined plane
CN110304201A (en) * 2019-06-19 2019-10-08 中国一冶集团有限公司 A kind of ship anchor of the adjustable size for stone dumper positioning waterborne
CN110304201B (en) * 2019-06-19 2021-01-19 中国一冶集团有限公司 Size-adjustable ship anchor for underwater positioning of stone throwing ship

Similar Documents

Publication Publication Date Title
EP0049544B1 (en) Anchor
US3789789A (en) Hydrofoil sailing craft
EP1182126A1 (en) Boat hull
GB1590085A (en) Anchoring apparatus
JPS60121183A (en) Anchor structural body
US2561539A (en) Submersible marine stabilizer for boats
FR2545779A1 (en) FIXTURE STABILIZED HYDROFOIL SYSTEM
JP2598397B2 (en) anchor
US9233738B2 (en) Offshore marine anchor
US2738750A (en) Anchor
US3766877A (en) Mooring anchor
US2674969A (en) Mooring anchor
US3382835A (en) Marine anchor
US4704982A (en) Anchor arranged for lowering along an inclined plane
EP0196801A2 (en) Drag embedment anchors
JP2007522032A (en) Transonic hull and transonic hydrofield (III)
JPH06507585A (en) Improved ship anchor
US3470841A (en) Anchor
US2869503A (en) Folding anchor
JPH01127482A (en) Boat anchor
JP2948191B1 (en) Danforth anchor
US4048946A (en) Anchor with independent pairs of flukes
US2681631A (en) Anchor
US6012409A (en) Anchoring of objects
JP2003104281A (en) Single claw anchor for boat