JPS60120343A - Optical projecting device - Google Patents
Optical projecting deviceInfo
- Publication number
- JPS60120343A JPS60120343A JP58228226A JP22822683A JPS60120343A JP S60120343 A JPS60120343 A JP S60120343A JP 58228226 A JP58228226 A JP 58228226A JP 22822683 A JP22822683 A JP 22822683A JP S60120343 A JPS60120343 A JP S60120343A
- Authority
- JP
- Japan
- Prior art keywords
- magnification
- projection
- space
- lens
- reticle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Projection-Type Copiers In General (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野)
本発明は投影光学系の倍率精度を簡便に補正し得る投影
光学装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a projection optical device that can easily correct the magnification accuracy of a projection optical system.
(発明の背景)
縮小投影型露光装置(以下ステッパと呼ぶ)は近年類L
SIの生産現場に多く導入され、大きな成果をもたらし
ているが、その重要な性能の一つに重ね合せマツチング
精度があげられる。このマツチング精度に影響を与える
要素の中で重要なものに投影光学系の倍率誤差がある。(Background of the Invention) In recent years, reduction projection exposure devices (hereinafter referred to as steppers) have become
It has been introduced in many SI production sites and has brought great results, and one of its important features is overlay matching accuracy. Among the factors that affect this matching accuracy, an important one is the magnification error of the projection optical system.
超LSIに用いられるパターンの大きさは年々微細化の
傾向を強め、それに伴ってマツチング精度の向上に対す
るニーズも強くなってきている。従って投影倍率を所定
の値に保つ必要性はきわめて高くなってきている。現在
投影光学系の倍率は装置の設置時に調整することによ)
倍率誤差が一応無視できる程度になっている。しかしな
がら、超LSIの高密度化に十分対応するためには、装
置の稼動時におけるクリーンルーム内の僅かな気圧変動
等、環境条件が変化した時の倍率誤差をも補正する必要
がある。The size of patterns used in VLSIs is becoming increasingly smaller year by year, and the need for improved matching accuracy is also becoming stronger. Therefore, the need to maintain the projection magnification at a predetermined value has become extremely high. Currently, the magnification of the projection optical system is adjusted when installing the device)
The magnification error is at least negligible. However, in order to adequately cope with the increasing density of VLSIs, it is also necessary to correct magnification errors caused by changes in environmental conditions, such as slight pressure fluctuations in the clean room during operation of the device.
従来ステンパ以外の投影光学系では投影倍率を補正する
ために物体(レチクル)と投影レンズの間隔を機械的に
変化させたり、投影レンズ中のレンズエレメントを光軸
方向に動かしたりする方法がとられていた。しかしステ
ッパのように極めて高精度な倍率設定が必要な装置に上
記のように光学部材を光軸方向に変化させるという方法
を採用すると機械的な可動部の偏心(シフト、ティルト
)のため光軸を正しく保ったまま変位を与えることが難
しい。そのため物体を含めた光学系が共軸でなくなって
しまい、光軸に対して非対称な倍率分布が像面上に生じ
てしまう欠点が生ずる。又ウェハ上で0.05μm以下
の誤差しが発生しない様に精度良く倍率設定するために
は光学部材の変化量を偏心(シフト、ティルト)を含め
て数μmないし1μm以下に制御する必要がありこれら
の実現には多大の困難がともなう。Conventionally, in projection optical systems other than Temper, methods have been used to correct the projection magnification by mechanically changing the distance between the object (reticle) and the projection lens, or by moving the lens element in the projection lens in the optical axis direction. was. However, if the method of changing the optical member in the optical axis direction as described above is adopted for a device such as a stepper that requires extremely high-precision magnification setting, the optical axis It is difficult to apply displacement while maintaining the correct position. As a result, the optical system including the object is no longer coaxial, resulting in a disadvantage that a magnification distribution asymmetrical with respect to the optical axis occurs on the image plane. In addition, in order to accurately set the magnification so that an error of 0.05 μm or less does not occur on the wafer, it is necessary to control the amount of change in the optical member to within a few μm or 1 μm, including eccentricity (shift, tilt). Achieving these goals involves great difficulties.
(発明の目的)
本発明け、これらの欠点を除き、非対称な倍率分布を発
生することなく精度よく簡便に倍率を補正し得る投影光
学装置を提供することを目的とするO
(発明の概要)
本発明にあたって、投影対物レンズの投影倍率の変動要
因の一つが大気圧変動にあることを見い出し、鋭意検討
した結果圧力変動のみによっても投影倍率が無視し得な
い程度に変化する場合があることが判明した。そして、
本発明では、投影対物レンズ内のレンズ面間に形成され
る各空気間隔及び投影対物レンズと投影原板(レチクル
)との間の空間並びに投影対物レンズと感光物体(ウェ
ハ)との間の空間のうち、投影対物レンズ内の単−又は
複数の空気間隔によって生ずる倍率変動量が、全系によ
って生ずる倍率変動にほぼ等しくなる場合のあることを
見い出した。すなわち、全系の倍率変動がこのような単
−又は複数の空間のみによって生じているとみなすこと
ができる場合がある。従って、この単−又は複数の空間
のみを大気から遮断し密封すれば、全系の倍率変動を実
質的に補正することが可能である。(Objective of the Invention) An object of the present invention is to eliminate these drawbacks and provide a projection optical device that can accurately and easily correct magnification without generating an asymmetrical magnification distribution. (Summary of the Invention) In developing the present invention, we discovered that one of the factors that cause variations in the projection magnification of a projection objective lens is atmospheric pressure fluctuations, and as a result of intensive study, we found that pressure fluctuations alone can cause projection magnification to change to a degree that cannot be ignored. found. and,
In the present invention, each air space formed between the lens surfaces in the projection objective, the space between the projection objective and the projection original plate (reticle), and the space between the projection objective and the photosensitive object (wafer) It has been found that the amount of magnification variation caused by one or more air gaps within the projection objective may be approximately equal to the magnification variation caused by the entire system. That is, there are cases where it can be considered that the magnification change of the entire system is caused only by one or more such spaces. Therefore, by shielding and sealing only this one or more spaces from the atmosphere, it is possible to substantially correct the magnification fluctuation of the entire system.
詳述するならば、いま投影原板から感光物体面までの光
路中に形成される空気間隔、すなわち、(3)
投影対物レンズ内の各レンズ面の間に形成される全ての
空気間隔、及び投影対物レンズと投影原板との空間並び
に投影対物レンズと感光物体面との間の空間全てにおい
て圧力が大気圧と共に変動するとした場合、これら全系
で生ずる倍率変化量ΔTxは、全ての空気間隔における
倍率変化量の和として表わされ、
ΔTx−ΣΔxi
となる。To be more specific, the air space formed in the optical path from the projection original plate to the photosensitive object surface, that is, (3) all the air spaces formed between each lens surface in the projection objective lens, and the projection distance. If the pressure in all the spaces between the objective lens and the projection original plate and the space between the projection objective lens and the photosensitive object surface changes with the atmospheric pressure, the amount of change in magnification ΔTx that occurs in these entire systems is the magnification change in all air gaps. It is expressed as the sum of the amount of change, and becomes ΔTx - ΣΔxi.
そして、投影対物レンズ内に形成された単−又は複数の
空気間隔を大気圧から遮断し密封するとすれば、これら
密封された単−又は複数の空間の圧力が大気圧と共に変
化した場合にこれらの空間によって生ずる倍率変化量を
Δ8xとするとき、全系の倍率変化量ΔTxに対して、
ΔSXだけ変化を補正することができる。従って、
ΔTx−ΔS x = O・・・・・・(1)がほぼ成
り立つように、すなわち、投影対物レンズ内の単−又は
複数の空間を密封するに際して、(4)
その圧力が大気圧と共に変動した場合にこれらの空間に
よって生ずる倍率変動量ΔSXが、全系によって生ずる
倍率変動量ΔTXにほぼ等しくなるような単−又は複数
の空間を選定し、密封するととによって全系の倍率変動
を補正することができる。換言するならば
ΔTx物ΔSx ・・・・・・(2)
となるような投影対物レンズ内の単−又は複数の空気間
隔を密封すればよい。ここで密閉する空間が1ケ所であ
る場合には、
Δ8x=ΔXj
であり、複数の空間を密封する場合には、ΔSx=Σx
j
」
である。If one or more air spaces formed in the projection objective are sealed and sealed from atmospheric pressure, if the pressure in these sealed spaces or spaces changes with the atmospheric pressure, When the amount of change in magnification caused by space is Δ8x, with respect to the amount of change in magnification ΔTx of the entire system,
The change can be corrected by ΔSX. Therefore, ΔTx - ΔS The magnification fluctuation of the entire system is corrected by selecting one or more spaces such that the amount of magnification fluctuation ΔSX caused by these spaces is approximately equal to the amount of magnification fluctuation ΔTX caused by the entire system when the space fluctuates, and sealing the space. can do. In other words, it is sufficient to seal one or more air gaps in the projection objective such that ΔTx ΔSx (2). If there is only one space to be sealed, Δ8x=ΔXj, and if multiple spaces are sealed, ΔSx=Σx
j”.
尚、投影対物レンズ内で密封される空気間隔が複数であ
る場合は、互いに隣接する空気間隔を組合せる方が密閉
し易く構造も簡単になるが、(2)式をより良く満たす
ためには隣接しない空間を一体的に密閉することもでき
る。また、本発明では上述のように倍率変動の補正を中
心としたが、一般には圧力変化によって結像面の変動Δ
Zも生ずるため、倍率のみならず結像面の変動をも考慮
して密封する空間を選定することも可能である。尚、投
影対物レンズ内の密閉した空間以外の空間は大気と連通
させ、各空間内の圧力が大気圧変動と共に変化するよう
に構成すればよい。Note that when there are multiple air gaps to be sealed within the projection objective lens, it is easier to seal them and the structure is simpler by combining adjacent air gaps, but in order to better satisfy equation (2), It is also possible to integrally seal non-adjacent spaces. In addition, although the present invention focuses on correction of magnification fluctuations as described above, in general, changes in the imaging plane due to pressure changes Δ
Since Z also occurs, it is possible to select a space to be sealed taking into consideration not only the magnification but also the fluctuation of the imaging plane. Note that spaces other than the sealed space within the projection objective lens may be configured to communicate with the atmosphere so that the pressure within each space changes with atmospheric pressure fluctuations.
(実施例)
以下、本発明の実施例に基づいて本発明を説明する。第
1図はステッパーに用いられる投影対物レンズの一例を
示すレンズ配置図であり、この対物レンズによりレチク
ル(R)上の所定のパターンがウェハ(ト)上に縮小投
影される。図中にはウェハとレチクルとの軸上物点の共
役関係を表わす光線を示した。この対物レンズはレチク
ル(TL)側から順にLl + ”2 r・・・L工、
の合計14個のレンズからな9、各レンズの間隔及びレ
チクル(R)、ウェハ(5)との間に、レチクル側から
順にa、b。(Examples) Hereinafter, the present invention will be described based on Examples of the present invention. FIG. 1 is a lens arrangement diagram showing an example of a projection objective lens used in a stepper, and a predetermined pattern on a reticle (R) is reduced and projected onto a wafer (T) by this objective lens. In the figure, light rays representing the conjugate relationship between on-axis object points between the wafer and the reticle are shown. This objective lens is arranged in order from the reticle (TL) side: Ll + "2 r...L,
There are a total of 14 lenses 9, the distance between each lens, the reticle (R), and the wafer (5), in order from the reticle side, a and b.
C1・・・・・・、0の合計15個の空気間隔が形成さ
れている。この対物レンズの諸元を表1に示す。但し、
rは各レンズの曲率半径、D[各レンズの中心厚及び空
気間隔、Nld各レンズのi線(λ−365.0nm)
に対する屈折率を表わし、表中左端の数字はレチクル側
から順序を表わすものとする。また、Doはレチクル(
R)と最前レンズ面との間隔、D3□は最終レンズ面と
ウェハ(W)との間隔を表わす。A total of 15 air intervals, C1..., 0, are formed. Table 1 shows the specifications of this objective lens. however,
r is the radius of curvature of each lens, D [center thickness and air gap of each lens, Nld i-line of each lens (λ-365.0 nm)
The numbers at the left end of the table represent the order from the reticle side. Also, Do is the reticle (
D3□ represents the distance between the final lens surface and the wafer (W).
いま、この対物レンズにおいて、空気間隔a。Now, in this objective lens, the air distance is a.
b、・・・0の気圧をそれぞれ+137.5 mmHg
だけ変化させたとすると、各空気間隔の相対屈折率は1
、00005に変化し、この時の倍率変化、及び結像面
すなわちレチクルt)との共役面の変化は表2に示すよ
うになる。但し、倍率変化ΔXは、結像面上において気
圧変動がない時に光軸より5、66 mm離れた位置に
結像する像点が、各空気間隔の気圧変化後の移動量をμ
m単位で表わし、気圧変動が無い場合の結像面すなわち
所定のウェハ面上により大きく投影される場合(拡大)
を正符号として示した。また、結像面の変化ΔZは軸上
の結像点の変化として示し、対物レンズから遠ざか表1
表2
る場合を正符号として示した。両者の値は共にμm単位
である。b,...0 atmospheric pressure +137.5 mmHg respectively
, the relative refractive index of each air gap is 1
. However, the magnification change ΔX is the amount by which an image point formed at a position 5 to 66 mm away from the optical axis when there is no change in air pressure on the imaging plane moves after changes in air pressure in each air interval.
Expressed in units of m, when there is no atmospheric pressure fluctuation, the image plane is projected larger onto a predetermined wafer surface (enlargement)
is shown as a positive sign. Further, the change ΔZ in the imaging plane is shown as a change in the axial imaging point, and the case where it moves away from the objective lens is shown as a positive sign. Both values are in μm.
上記表2に示された倍率変化量ΔXについて各空間の値
をグラフに示したのが第2図である。第2図のグラフの
縦軸は倍率変化量ΔX1横軸は圧力変化量ΔPであり、
図中の各直線に示した記号は各空間に対応する。また全
系における倍率変化量ΔTxを太い実線にて示した。FIG. 2 is a graph showing the values of each space for the amount of change in magnification ΔX shown in Table 2 above. The vertical axis of the graph in Figure 2 is the magnification change ΔX, the horizontal axis is the pressure change ΔP,
The symbols shown on each straight line in the figure correspond to each space. Further, the amount of change in magnification ΔTx in the entire system is shown by a thick solid line.
上記の表2及び第2図のグラフから、全系による倍率変
動量S = 1.004に対して、第3空間C単独によ
って生ずる倍率変動量が最も近い値であることが判る。From the above Table 2 and the graph of FIG. 2, it can be seen that the magnification fluctuation amount caused by the third space C alone is the closest value to the magnification fluctuation amount S = 1.004 due to the entire system.
従って、この第3空間Cのみを密封することによって全
系の倍率変動をほぼ補正することができる。すなわち第
3空間Cによる倍率変動量1.164はこの空間を大気
から遮断し密封することにより零とできるから全系によ
る倍率変動との差のみが実質的な倍率変動量となる。従
ってこの場合、実質的な倍率変動量は−016であり1
6%に減少することが明らかである。この補正後におけ
る全系の倍率変化ΔTx’の様子を第2図中点線で示し
た。Therefore, by sealing only this third space C, it is possible to substantially correct the magnification fluctuation of the entire system. In other words, the amount of magnification variation of 1.164 due to the third space C can be reduced to zero by shielding this space from the atmosphere and sealing it, so that only the difference from the magnification variation due to the entire system becomes the actual amount of magnification variation. Therefore, in this case, the actual amount of magnification change is -016, which is 1
It is clear that this decreases to 6%. The magnification change ΔTx' of the entire system after this correction is shown by the dotted line in FIG.
さて、1つの空間のみではなく、複数の空間を組合せて
大気から遮断するよう密閉することによっても大気圧変
動による倍率変化を補正することが可能である。例えば
、上記の対物レンズにおいて、第7空間gから第12空
間tまでの連続する6つのレンズ間隔を大気から遮断し
一体的に密閉するならば、これら6つの空間で生ずる倍
率変動の和0935が零とできるので、全系で生ずる倍
率変動1.004との差0.069のみの小さい値の変
動に補正することができる。すなわち、全系における倍
率変動は6.9%にまで補正されることになる。また、
これら6つの空間に加えて第13空間mをも大気から遮
断し密閉する構成とすれば、全系における倍率変動量は
−0,067となシよシ良好に補正することが可能とな
る。さらに、第14空間nをも大気から遮断して密閉し
合計8つの密閉空間を形成することとすれば、これら8
つの空間による倍率変動の補正量は1.063となり、
全系の倍率変動量を−0059までに小さく補正するこ
とが可能である。Now, it is possible to correct magnification changes due to atmospheric pressure fluctuations not only by one space but also by sealing a combination of a plurality of spaces to block them from the atmosphere. For example, in the above objective lens, if six consecutive lens intervals from the 7th space g to the 12th space t are sealed from the atmosphere and are integrally sealed, the sum of the magnification fluctuations occurring in these six spaces is 0935. Since it can be made zero, it is possible to correct the variation to a small value of only 0.069, which is the difference from the magnification variation of 1.004 that occurs in the entire system. That is, the magnification variation in the entire system is corrected to 6.9%. Also,
If the 13th space m is also sealed off from the atmosphere in addition to these six spaces, the magnification variation amount in the entire system can be corrected well to -0,067. Furthermore, if the 14th space n is also sealed and sealed from the atmosphere to form a total of 8 sealed spaces, these 8
The correction amount for magnification variation due to two spaces is 1.063,
It is possible to correct the magnification variation amount of the entire system to be as small as -0059.
上記実施例のうち、第3空間Cのみを大気から遮断し密
閉する構成が最も簡単であるが、この第3空間Cを密閉
することによって、結像面の全系による変動がより太き
くなる。これに対し、第7空間gから第14空間nまで
の連続する8個の空間を密閉する場合には、全系の結像
面変動はこれら8個の空間による結像面変動の合計量3
91だけ同時に補正されるため、いくぶん有利となる。Of the above embodiments, the configuration in which only the third space C is sealed off from the atmosphere and sealed is the simplest, but by sealing this third space C, the fluctuations due to the entire system of the image forming plane become larger. . On the other hand, when eight consecutive spaces from the 7th space g to the 14th space n are sealed, the image forming surface fluctuation of the entire system is the total amount of image forming surface fluctuation due to these eight spaces 3
91 are corrected at the same time, which is somewhat advantageous.
以上のごとく本発明によれば、露光装置において交換可
能に取付けられる投影原板(レチクル)や、露光及びア
ライメントごとに頻繁に移動する感光物体(ウェハ)に
ついては何ら関与することなく投影対物レンズにおいて
のみ倍率補正がなされるため極めて簡単な構成となる。As described above, according to the present invention, the projection original plate (reticle), which is replaceably mounted in the exposure apparatus, and the photosensitive object (wafer), which is frequently moved during each exposure and alignment, are not involved in any way, but only in the projection objective lens. Since magnification correction is performed, the configuration is extremely simple.
また補正のた′めに何ら機械的な動きを必要とせず、い
わば静的補正であるため、偏心を生ずる恐れが無く、結
像性能を非対称に劣化させることもない。Further, since no mechanical movement is required for the correction, and it is a so-called static correction, there is no possibility of eccentricity occurring, and there is no asymmetrical deterioration of the imaging performance.
第1図は本発明による実施例に用いた投影対物レンズの
レンズ構成図、第2図は各し/ズ間隔における圧力変化
に対する倍率変動の様子を表わすグラフである。
出願人 日本光学工業株式会社
代理人 渡 辺 隆 男FIG. 1 is a lens configuration diagram of a projection objective lens used in an embodiment according to the present invention, and FIG. 2 is a graph showing changes in magnification with respect to pressure changes at each zoom interval. Applicant: Nippon Kogaku Kogyo Co., Ltd. Agent: Takashi Watanabe
Claims (1)
めの対物レンズを有する投影光学装置において、該投影
対物レンズ内の各レンズ面の間に形成される空気間隔、
及び該投影対物レンズと前記投影原板との間の空間並び
に該投影対物レンズと前記感光物体との間の空間の各圧
力が全て大気圧と共に変動する場合に生ずる倍率変動に
ほぼ等しい倍率変動を生ずる該投影対物レンズ内の単−
又は複数のレンズ間隔を大気から遮断し密封すると共に
、その余の空間を大気と連通し、大気圧に応じて圧力変
動し得る構成としたことを特徴とする投影光学装置In a projection optical device having an objective lens for projecting and exposing a pattern on a projection original plate onto a photosensitive object surface, an air interval formed between each lens surface in the projection objective lens;
and the pressure in the space between the projection objective and the projection original, and in the space between the projection objective and the photosensitive object, producing a magnification variation approximately equal to the magnification variation that would occur if the pressures in the space between the projection objective and the projection original plate all varied with atmospheric pressure. A single lens in the projection objective
Alternatively, a projection optical device characterized in that a plurality of lens spaces are sealed and sealed from the atmosphere, and the remaining space is communicated with the atmosphere so that the pressure can fluctuate according to atmospheric pressure.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58228226A JPS60120343A (en) | 1983-12-02 | 1983-12-02 | Optical projecting device |
DE19843443856 DE3443856A1 (en) | 1983-12-02 | 1984-11-30 | OPTICAL PROJECTION DEVICE |
US07/291,324 US4883345A (en) | 1983-12-02 | 1988-12-28 | Projection optical apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58228226A JPS60120343A (en) | 1983-12-02 | 1983-12-02 | Optical projecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60120343A true JPS60120343A (en) | 1985-06-27 |
Family
ID=16873144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58228226A Pending JPS60120343A (en) | 1983-12-02 | 1983-12-02 | Optical projecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60120343A (en) |
-
1983
- 1983-12-02 JP JP58228226A patent/JPS60120343A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0851304B1 (en) | Projection exposure apparatus and device manufacturing method | |
KR100380267B1 (en) | Exposure device | |
US20090097106A1 (en) | Reflective-Type Projection Optical System and Exposure Apparatus Equipped with the Reflective-Type Projection Optical System | |
US6867922B1 (en) | Projection optical system and projection exposure apparatus using the same | |
EP0803755A2 (en) | Projection optical system and exposure apparatus with the same | |
JPH0817719A (en) | Projection aligner | |
TWI424287B (en) | Projection optical system, exposure apparatus, exposure method, method of manufacturing display, photomask, and manufacturing method of photomask | |
US20060056038A1 (en) | Aberration correcting optical system | |
JP3359123B2 (en) | Aberration correction optical system | |
US7283206B2 (en) | Projection optical system, exposure apparatus, and device manufacturing method | |
JP2006267383A (en) | Projection optical system, exposure device and exposure method | |
US4906080A (en) | Optical arrangement for projection exposure | |
JPH059934B2 (en) | ||
US3709579A (en) | Optical system for focusing spaced object planes in a common image plane | |
US6459534B1 (en) | Projection optical system and projection exposure apparatus with the same, and device manufacturing method | |
JP2006196559A (en) | Method of manufacturing aligner and micro device | |
US6621555B1 (en) | Projection optical system and projection exposure apparatus with the same, and device manufacturing method | |
JP2897345B2 (en) | Projection exposure equipment | |
US4474461A (en) | Copying apparatus having a magnification changing function | |
JPS60120343A (en) | Optical projecting device | |
JP2005172988A (en) | Projection optical system and exposure device equipped with the projection optical system | |
JPH05152184A (en) | Inspection method for projection optics and mask substrate for inspection | |
JP4644935B2 (en) | Projection optical system and exposure apparatus provided with the projection optical system | |
JP2007287885A (en) | Illuminating optical apparatus, aligner, and method of manufacturing device | |
JPH0570124B2 (en) |