JPS60120330A - Optical modulating element - Google Patents

Optical modulating element

Info

Publication number
JPS60120330A
JPS60120330A JP58228388A JP22838883A JPS60120330A JP S60120330 A JPS60120330 A JP S60120330A JP 58228388 A JP58228388 A JP 58228388A JP 22838883 A JP22838883 A JP 22838883A JP S60120330 A JPS60120330 A JP S60120330A
Authority
JP
Japan
Prior art keywords
light
medium
heating
light beam
physical change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58228388A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsuoka
和彦 松岡
Kazuo Minoura
一雄 箕浦
Masayuki Usui
臼井 正幸
Atsushi Someya
染谷 厚
Takeshi Baba
健 馬場
Yukio Nishimura
征生 西村
Yuko Mochizuki
望月 祐子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58228388A priority Critical patent/JPS60120330A/en
Publication of JPS60120330A publication Critical patent/JPS60120330A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/16Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 series; tandem

Abstract

PURPOSE:To perform modulation with good S/N by providing a medium which causes a physical change by contacting closely one of reflecting films of two reflecting surfaces arranged at some angle and a medium which causes a physical change at least one place on the other surface. CONSTITUTION:Insulating layers 21a and 21b provided with heating resistors 22a and 22b, metallic reflecting films 23a and 23b, heat-effect media 24a and 24b, and transparent protection films 25a and 25b are laminated to constitute optical modulation parts 30a and 30b which are controllable independently of each other. The modulation parts 30a and 30b are supported on a support base 20 at an angle theta. Incident light 32 shown by an arrow is reflected twice by the surfaces 23b and 23a when not modulated to obtain projection light 33, and the angle phi between the light 32 and light 33 is 2theta. When at least one of the heating bodies 22a and 22b is heated, the heat-effect media vary in refractive index corresponding to the heating part and the projection light 33 changes the direction. Consequently, unmodulated light and modulated light are separated easily to improve the S/N. The physical change is made by utilizing electric field application, the generation of air bubbles, etc., in addition to the heating.

Description

【発明の詳細な説明】 変調素子に関する。[Detailed description of the invention] Related to modulation elements.

従来より、記録或いは表示を光束を用いて行う1一 ことは広く行われている。レーザービームプリンターの
如きは、この代表例であり、機械的な聞向器で光束を偏
向させると共に、光束に変調を与え、感光ドラム上に情
報を記録している。これに対して近年、局所的に物理変
化を発生させ、この物理変化により光束を変調すること
が提案されている。
2. Description of the Related Art Conventionally, recording or displaying using a luminous flux has been widely practiced. A typical example of this is a laser beam printer, which uses a mechanical deflector to deflect a beam of light, modulates the beam, and records information on a photosensitive drum. On the other hand, in recent years, it has been proposed to locally generate a physical change and modulate the luminous flux by this physical change.

例えば、特開昭56−5523号公報では、電気光学材
料から成る結晶に局所的に電界をかけ、この電界のかか
った部分の屈折率を変化させて光変調を行うことが示さ
れている。又、本件出願人に係る特願昭57−1285
66号には液体内の局所に蒸気泡を発生することにより
、この蒸気泡により光束を変調させる方法、同じく特願
昭57−1、 7 9 2 6 5号には、液体の局所
へ熱により屈折率分布を発生させることにより光束を変
調する方法が示されている。
For example, Japanese Patent Laid-Open No. 56-5523 discloses that an electric field is locally applied to a crystal made of an electro-optic material, and the refractive index of the portion to which the electric field is applied is changed to perform optical modulation. In addition, the patent application filed by the applicant in 1985-1285
No. 66 describes a method of modulating the luminous flux by locally generating vapor bubbles in a liquid, and Japanese Patent Application No. 1, 1982, 792-65 describes a method of modulating a luminous flux by locally generating vapor bubbles in a liquid. A method of modulating the light flux by generating a refractive index profile is shown.

上記変調方法は、いずれも印加する変調信号パルスによ
って、成る時間内で入射光束の変調が可能な光変調素子
を使用している。この光変調素子の内、特願昭5 7 
− ]、 7 9 2 6 5号に示すものを第1図、
第2図に示す。第1図において、1は透明保護板、2は
熱によりその屈折率分布が変化する熱効果媒体層で液体
又は固体の薄層、3は熱伝導性のある絶縁層、4は5a
16b、5c、5a・・・・・・で示される発熱抵抗体
が配列される発熱抵抗体層、5は絶縁層3及び発熱抵抗
体6a16h、6c16d・・・・・・の支持体である
。そして発熱抵抗体が発熱すると、この熱は前記絶縁層
3を伝わり熱効果媒体薄層2に伝わり、該薄層内に温度
分布を生せしめて、屈折率分布を形成する。例えば、第
1図に示す様に、発熱抵抗体6bが選択されて発熱する
と、この熱は抵抗体6bに隣接する絶縁層3を介して熱
効果媒体薄層2に伝達され、抵抗体6bに対向する熱効
果媒体薄層2の領域の液体を加熱させて、この領域に屈
折率分布7を形成する。この屈折率分布7は所定の時間
が経過すると、この領域が冷却するに伴って、消滅する
。この屈折率分布形成から消滅までの1サイクルは非常
に短かい時間でありKHzのオーダーで行うことが可能
である。上記発熱抵抗体は、1.Cの製造技術により支
持体5上に形成されるものであり、隣接する発熱抵抗体
の間隔をμmオーダーで形成している。
The above modulation methods all use a light modulation element that can modulate the incident light flux within a certain period of time by applying a modulation signal pulse. Of this light modulation element, patent application 1977
- ], Figure 1 shows what is shown in No. 79265.
Shown in Figure 2. In FIG. 1, 1 is a transparent protective plate, 2 is a thermal effect medium layer whose refractive index distribution changes with heat, and is a liquid or solid thin layer, 3 is a thermally conductive insulating layer, and 4 is 5a.
A heating resistor layer 16b, 5c, 5a, . . . in which heating resistors are arranged, 5 is a support for the insulating layer 3 and the heating resistors 6a16h, 6c16d, . When the heating resistor generates heat, this heat is transmitted through the insulating layer 3 to the thin thermal effect medium layer 2, creating a temperature distribution within the thin layer and forming a refractive index distribution. For example, as shown in FIG. 1, when the heat-generating resistor 6b is selected and generates heat, this heat is transmitted to the thin heat effect medium layer 2 via the insulating layer 3 adjacent to the resistor 6b, and the heat is transferred to the resistor 6b. The liquid in the opposing region of the thin thermal effect medium layer 2 is heated to form a refractive index distribution 7 in this region. This refractive index distribution 7 disappears after a predetermined period of time as this region cools. One cycle from the formation of the refractive index distribution to its extinction is a very short time and can be performed on the order of KHz. The heating resistor has the following characteristics: 1. It is formed on the support body 5 by the manufacturing technique of C, and the interval between adjacent heating resistors is formed on the order of μm.

この光変調素子に用いられる熱効果媒体としては、液体
は、水、アルコール、液晶、その他側を使用しても艮い
。この液体の屈折率温度依存性立T は、水では−1,、OX I F’、エチルアルコール
では−4,OX 10”−’である。 液晶に見られる
ように、熱変化による液晶相と液体相聞での相変化時の
屈折率変化を利用しても艮い。但し、この場合には液晶
の配向方向並びに入射光の偏光方向に配慮を必要とする
。又、固体としては、アクリル、ポリカーボネートなど
のプラスチック材、あるいは接着材として使用されるエ
ポキシ樹脂などの高分子材料を使用することが可能であ
る。これ等、媒体のn 屈折率温度依存性1fは、アクリルの場合、約−1,0
X10−−ポリカーボネートの場合約−13×lOであ
る。
As the thermal effect medium used in this light modulation element, liquids such as water, alcohol, liquid crystal, and others may be used. The refractive index temperature dependence T of this liquid is -1, OX IF' for water, and -4, OX 10''-' for ethyl alcohol. It is also possible to use the refractive index change during phase change in the liquid phase.However, in this case, consideration must be given to the alignment direction of the liquid crystal and the polarization direction of the incident light.Also, as a solid, acrylic, It is possible to use plastic materials such as polycarbonate, or polymeric materials such as epoxy resins used as adhesives.The n refractive index temperature dependence 1f of these media is approximately -1 in the case of acrylic. ,0
X10--approximately -13 x lO for polycarbonate.

第2図は第1図に示す光変調素子の構成を示す斜視概略
図であり、付番1〜6は第1図に示したものと同じであ
る。8は導電線であり、発熱抵抗3一 体(6a16b・・・・・・・・)を各々独立に駆動で
きる様個々の駆動電圧に接続され、一方今熱抵抗体の他
端の設置あるいは共通の電圧に設定されている。
FIG. 2 is a schematic perspective view showing the configuration of the light modulation element shown in FIG. 1, and numbered 1 to 6 are the same as shown in FIG. 1. Reference numeral 8 denotes a conductive wire, which is connected to each drive voltage so that each of the three heating resistors (6a16b...) can be driven independently, while the other end of the heating resistor is installed or connected to a common voltage is set.

導電線8より、発熱抵抗体6a、6b、・・・・・・・
・・に各各型圧信号が印加されると、各発熱抵抗体の近
傍の熱効果媒体薄層内に屈折率分布が発生する。この屈
折率分布は電圧信号を零にすると冷却され再び元の屈折
率分布のない状態に戻る。
From the conductive wire 8, the heating resistors 6a, 6b, etc.
When each mold pressure signal is applied to . When the voltage signal is reduced to zero, this refractive index distribution is cooled down and returns to its original state without refractive index distribution.

第3図(A)は前記屈折率分布による光変調素子り、M
を使用した光変調装置の一実施例を示す図で、屈折率分
布の波面が変形される光束を情報光として使用する場合
の例である。前記光変調素子り、Mに光束10を入射し
、発熱抵抗体(6a、6b1・・・・・・)のうち任意
の発熱抵抗体6Cが電圧Viによって駆動されたとき、
屈折率分布7が発生し、発熱抵抗体6Cに入射した光束
は波面が変形された光束12となって射出する。発熱抵
抗体の表面で正反射して、屈折率分布7によって波面が
変形されない光束11は、レンズ13aによって結像さ
れ、その結像位置に配した遮光フィルター15aによっ
て遮光される。
FIG. 3(A) shows the light modulation element based on the refractive index distribution, M
FIG. 2 is a diagram showing an example of a light modulation device using a light modulator, in which a light beam whose wavefront of refractive index distribution is modified is used as information light. When the light beam 10 is incident on the light modulation element M, and any heating resistor 6C among the heating resistors (6a, 6b1, . . .) is driven by the voltage Vi,
A refractive index distribution 7 is generated, and the light beam incident on the heating resistor 6C becomes a light beam 12 with a deformed wavefront and exits. A light beam 11 that is specularly reflected on the surface of the heating resistor and whose wavefront is not modified by the refractive index distribution 7 is imaged by a lens 13a, and is blocked by a light-blocking filter 15a disposed at the imaging position.

4− 前記波面が変形された光束12はその遮光フィルター 
158によって一部分遮光されるが、遮光フィルター1
5aの大きさを前記波面が変形されない光束11の結像
スポットを遮光する最小限の大きさにすることによって
、大部分の波面変換光束12′を受光媒体14上に照射
する。
4- The light beam 12 whose wavefront has been deformed passes through its light-blocking filter.
Although the light is partially blocked by the light blocking filter 158,
Most of the wavefront-converted light beam 12' is irradiated onto the light-receiving medium 14 by setting the size of the light beam 5a to the minimum size that blocks the imaging spot of the light beam 11 whose wavefront is not deformed.

第3図(B)は前記屈折率分布による光変調素子り、M
を使用した光変調装置の更なる実施例を示す図である。
FIG. 3(B) shows the light modulation element based on the refractive index distribution, M
It is a figure which shows the further Example of the optical modulation device using this.

第3図(B)に於いては、屈折率分布により波面の変形
を受けた光束は、一部開口の設けられた遮光フィルター
15bにより遮光され、波面が変形されない光束11を
受光媒体14上に照射して情報光として利用する例が示
されている。
In FIG. 3(B), the light beam whose wavefront has been deformed due to the refractive index distribution is blocked by the light-shielding filter 15b having a partially aperture, and the light beam 11 whose wavefront is not deformed is directed onto the light-receiving medium 14. An example is shown in which the light is irradiated and used as information light.

ところで第3図(A)、(B)に示す光変調装置におい
ては、変調光束と非変調光束かほぼ同一方向に進行する
為、受光媒体上での信号光量S/Nを低下させると云う
欠点を有する。
However, in the optical modulation devices shown in FIGS. 3(A) and 3(B), since the modulated light beam and the non-modulated light beam travel in almost the same direction, there is a drawback that the signal light amount S/N on the light receiving medium is reduced. has.

本発明の目的は、光変調素子の構造の工夫により上述し
たS/Nの低下を防ぎ高品位な画像を形成する事が可能
な光変調素子を提供することにある。
An object of the present invention is to provide a light modulation element that can prevent the above-mentioned S/N reduction and form a high-quality image by devising the structure of the light modulation element.

本発明の更に他の目的は画像等の情報を構成する最小の
セグメントに対応して光変調が可能な光変調方法におい
て、前記各セグメントに到達する光量を制術することに
より、中間調画像を形成する事が可能な光変調素子を提
供することにある。
Still another object of the present invention is to provide a light modulation method capable of modulating light corresponding to the smallest segment constituting information such as an image, by controlling the amount of light reaching each segment. An object of the present invention is to provide a light modulation element that can be formed.

本発明の特徴は、光変調素子内に複数の反射面を構成し
て、媒体への入射光束は非変調時には上記複数の反射面
を反射した後、反射面が設定される角度により定まる方
向へ出射させ、一方媒体に物理変化を生じだ際の変調時
においては、上記非変調光束の出射する方向と異なる方
向に出射する光成分を変調光束として用いる事により、
S/Nを向上させる点にある。
A feature of the present invention is that a plurality of reflective surfaces are configured in the light modulation element, and when the light beam is not modulated, the light beam incident on the medium is reflected from the plurality of reflective surfaces and then directed in a direction determined by the angle at which the reflective surface is set. On the other hand, during modulation when a physical change occurs in the medium, by using a light component emitted in a direction different from the direction in which the non-modulated light flux is emitted as a modulated light flux,
The purpose is to improve S/N.

ここで云う物理変化としては、一般に熱による屈折率変
化があるが、その他媒体が液体の場合には加熱による媒
体中の気泡形成、媒体に電界を与えることによる屈折率
変化等が考えられる。
The physical change referred to here generally includes a change in refractive index due to heat, but if the medium is a liquid, other possibilities include the formation of bubbles in the medium due to heating, and a change in refractive index due to applying an electric field to the medium.

後述の実施例においては、加熱による屈折率変化を例と
して説明する。
In the examples described later, a change in refractive index due to heating will be explained as an example.

更なる特徴としては、媒体に物理変化を生じせしめる手
段は独立的に制御可能な複数の手段で構成して、該複数
の手段を選択的に作動させることにより、該媒体中に生
じろパ吻叩変化量を制御可能とする事により、変調光束
の光量を可変とする点にある。
As a further feature, the means for causing a physical change in the medium includes a plurality of independently controllable means, and selectively operating the plurality of means causes a physical change to occur in the medium. The point is that the amount of light of the modulated light beam can be made variable by making it possible to control the amount of variation in striking.

以下本発明を詳述する際に、光変調素子として上述した
熱(二より屈折率分布を生じて光変調するタイプのもの
を例示して示すが、本発明は言うまでもなく斯様なタイ
プのものに限られず、上述した特開昭56−5523号
で示されるタイプ、特願昭57−128566号に示さ
れるタイプ、その他種々のタイプの光変調素子に適用可
能である。
Hereinafter, when describing the present invention in detail, the above-mentioned type of light modulation element that generates a refractive index distribution and modulates light will be shown as an example, but it goes without saying that the present invention is not limited to such a type However, the present invention is not limited to the above-mentioned type shown in Japanese Patent Application Laid-Open No. 56-5523, the type shown in Japanese Patent Application No. 57-128566, and can be applied to various other types of light modulation elements.

次に、本発明を実施例に基づき、図面を参照して説明す
る。
Next, the present invention will be explained based on examples and with reference to the drawings.

第4図(A)、(B)、(C)は本発明の異った3種の
実施例を断面図で模式的に示す。第4図(A)の実施例
においては、発熱抵抗体22a 、22b設けた絶縁物
質で構成される層21a、21b1金属反射膜或いは誘
電体多層膜からなる反射膜23a 、 23b熱効果媒
体24a、24h、 ’It明保護層25a、25b 
がそ−7〜 れぞれ層状に重ね合わされ、それぞれ独立に制御可能な
2個の光変調部30a、30bを構成する。2個の光変
調部30aと30bとは互に角度θを成して支持基盤2
0に支持される。この2個の光変調部30a、30bが
一体となって1つの光変調素子として機能する。
FIGS. 4(A), 4(B), and 4(C) schematically show three different embodiments of the present invention in cross-sectional views. In the embodiment of FIG. 4(A), heating resistors 22a and 22b are provided, layers 21a and 21b made of an insulating material, reflective films 23a and 23b made of a metal reflective film or a dielectric multilayer film, and a thermal effect medium 24a, 24h, 'It bright protective layer 25a, 25b
The light modulating parts 30a and 30b are stacked on top of each other in a layered manner to form two independently controllable light modulating parts 30a and 30b. The two light modulators 30a and 30b form an angle θ with each other and are attached to the support base 2.
Supported by 0. These two light modulation sections 30a and 30b function together as one light modulation element.

紙面内にある入射光束32は、変調作用を受けない時は
、2枚の反射面23b、 23aで順次反射され、出射
光束33と成る。 入射光束32と出射光束33の成す
角度ψは、2板の反射面23aと23bの成す角度をθ
とする時 ψ=2θ (例えばθが90°であればψは180°(
平行)となる。) で−意に定まる。
When the incident light beam 32 in the plane of the paper is not subjected to a modulation effect, it is sequentially reflected by the two reflective surfaces 23b and 23a, and becomes an output light beam 33. The angle ψ formed by the incident light beam 32 and the output light beam 33 is the angle formed by the reflective surfaces 23a and 23b of the two plates.
When ψ=2θ (For example, if θ is 90°, ψ is 180° (
parallel). ) to decide at will.

一方、発熱抵抗体22a122bの少なく共一方が変調
信号により発熱する場合には、対応する熱効果媒体24
.a 、24.b内に屈折率分布が生じその結果変調光
束は、非変調光束33の出射する方向とは異なる方向に
も拡がりを持ち、従って図示しない投影光学系等を介し
て変調光束と非変調光束の分離8− が可能となる。更に、複数の発熱抵抗体22a 、22
bを選択的に加熱する事により、変調光束の光量を可変
とする事ができる。
On the other hand, if less than one of the heating resistors 22a and 122b generates heat due to the modulation signal, the corresponding thermal effect medium 24
.. a, 24. A refractive index distribution occurs within b, and as a result, the modulated light flux has a spread in a direction different from the direction in which the non-modulated light flux 33 is emitted. Therefore, the modulated light flux and the non-modulated light flux are separated through a projection optical system (not shown), etc. 8- becomes possible. Furthermore, a plurality of heating resistors 22a, 22
By selectively heating b, the amount of modulated light flux can be made variable.

第4図(B)の実施例においては、発熱抵抗体22a1
22bを設けた絶縁物質の層21a、21b、反射膜2
3a 、23bがそれぞれ層状に重ね合わされた2個の
光変調部30a’ 、30b’が支持基板20に角度を
なしで支持され、熱効果媒体24は光変調部30a′、
30b′および上部に配置された透明保護板の間に充填
される。従って熱効果媒体24、透明保護層25を各光
変調部30a’ 、30b’が共有する点に特徴があり
、第4図(A)に示す実施例に比べて、より簡単な構成
である。
In the embodiment of FIG. 4(B), the heating resistor 22a1
Insulating material layers 21a and 21b provided with 22b, reflective film 2
Two light modulating parts 30a' and 30b', each of which has layers 3a and 23b stacked on top of each other, are supported at no angle on the support substrate 20, and the thermal effect medium 24 is formed by the light modulating parts 30a' and 30b'.
30b' and the transparent protection plate disposed above. Therefore, a feature is that each light modulating section 30a', 30b' shares the thermal effect medium 24 and the transparent protective layer 25, and the structure is simpler than that of the embodiment shown in FIG. 4(A).

第4図(C)に示す実施例は、一層簡略な構成の素子で
あり、ここでは、反射膜23a 、23bが角度を成し
て支持基盤20に支持され、上部に発熱体22を設けた
層21と透明保護層25を重ねて配置し、反射膜23a
 、23bと層21との間に熱効果媒体24を充填した
ものである。
The embodiment shown in FIG. 4(C) is an element with a simpler configuration, in which the reflective films 23a and 23b are supported at an angle on a support base 20, and a heating element 22 is provided on the upper part. Layer 21 and transparent protective layer 25 are arranged one on top of the other, and reflective film 23a is formed.
, 23b and the layer 21 are filled with a thermal effect medium 24.

これら第4図(B)および第4(C)のものも第4図(
A)のものと略同様に機能する。
These figures 4(B) and 4(C) are also shown in figure 4(B) and 4(C).
It functions almost the same as A).

第5図は本発明のさらに他の実施例を示す模式図で、こ
の図において、光変調部3oa、30b。
FIG. 5 is a schematic diagram showing still another embodiment of the present invention. In this figure, the optical modulators 3oa and 30b.

30cはそれらが互に直交する配置で光変調素子31を
構成している。入射光束32が光変調素子31に入射す
る時、各光変調部30a、30b、300にそれぞれ含
まれる発熱抵抗体(図示せず)に信号電圧を加えなけれ
ば、各光変調部においてはそれぞれの熱効果媒体中(図
示せず)に屈折率分布を生じない為、入射光束32は各
光変調部30a 、30b 130cのそれぞれの金属
反射層(図示せず)によって正反射される。従って、各
光変調部30a、30b。
30c constitutes a light modulation element 31 in which they are arranged orthogonally to each other. When the incident light flux 32 enters the light modulation element 31, unless a signal voltage is applied to the heating resistor (not shown) included in each light modulation section 30a, 30b, 300, each light modulation section Since no refractive index distribution occurs in the thermal effect medium (not shown), the incident light beam 32 is specularly reflected by the metal reflective layer (not shown) of each light modulating section 30a, 30b, 130c. Therefore, each light modulation section 30a, 30b.

30Cが互に直交するように配置されると云う本実施例
の特徴的構成の結果入射光束32は各光変調部での正反
射を繰り返した後、信号の乗らない非変調光束33とし
てコーナーキューブの原理に従かい入射してきた方向へ
逆向きに進む。一方、3個の光変調部30a、30b、
30c の内少なく共1個の光変調部に於いて図示しな
い発熱抵抗体に信号電圧が印加される場合には、発熱抵
抗体の発生する熱により、上記発熱抵抗体近傍の熱効果
媒体中に屈折率の分布を生じる。従って入射光束32は
上記熱効果による屈折率分布中を通過する際に局所的に
はさまざまに異なる屈折作用゛を受け、その結果として
信号の乗った変調光束34として信号の乗らない非変調
光束33とは異なる方向へ進む成分を生じる。上述した
ように発熱抵抗体に信号電圧がオン/オフされた時の光
変調素子からの変調光束、非変調光束(出射光束)34
.33の進む方向の差異を利用して光変調を行なう事が
本発明の原理であり。
As a result of the characteristic configuration of this embodiment in which the light beams 30C are arranged so as to be orthogonal to each other, the incident light beam 32 repeatedly undergoes regular reflection at each light modulation section, and then forms a corner cube as an unmodulated light beam 33 on which no signal is carried. According to the principle of , it moves in the opposite direction to the direction of incidence. On the other hand, three light modulation units 30a, 30b,
30c, when a signal voltage is applied to a heating resistor (not shown) in at least one of the light modulating parts, the heat generated by the heating resistor causes a heat effect medium in the vicinity of the heating resistor to be heated. Produces a refractive index distribution. Therefore, when the incident light beam 32 passes through the refractive index distribution due to the thermal effect, it is locally subjected to various refraction effects, and as a result, the modulated light beam 34 carries a signal and the unmodulated light beam 33 carries no signal. produces a component that goes in a different direction than the As described above, when the signal voltage is turned on/off to the heating resistor, the modulated light flux and unmodulated light flux (output light flux) from the light modulation element 34
.. The principle of the present invention is to perform optical modulation by utilizing the difference in the direction in which the light beams move.

従って変調光束の方向を非変調光束の方向と大きく異な
らせる事が可能となりその結果、信号光のS/Nが格段
に改善できる。
Therefore, it is possible to make the direction of the modulated light beam significantly different from the direction of the non-modulated light beam, and as a result, the S/N of the signal light can be significantly improved.

更に第5図において互に直交して配置された光変調部3
0a、30b、30c を駆動回路35により独立に制
御可能な構成とする。この結果、変調信号に応じて1駆
動する光変調部30a130b、30Cを選択して信号
電圧を加える事により、(同時に2個以上の光変調部に
信号電圧を加える事も含む)入射光束32に与える光変
調作用の程度を可変とする事が可能となり、ひいては信
号の乗った変調光束34の光量を可変とする事が可能と
なって中間調画像を得る事ができる。
Furthermore, in FIG.
0a, 30b, and 30c can be independently controlled by a drive circuit 35. As a result, by selecting the light modulators 30a, 130b, 30C to be driven 1 in accordance with the modulation signal and applying a signal voltage to the incident light beam 32 (including applying a signal voltage to two or more light modulators simultaneously). It becomes possible to vary the degree of light modulation effect provided, and in turn, it becomes possible to vary the amount of light of the modulated light beam 34 carrying the signal, thereby making it possible to obtain a halftone image.

この光変調部30a、30b、300の作動を独立的に
制御する手段は当業者であれば容易に成せるので、ここ
では説明を省く。
A person skilled in the art can easily control the operation of the light modulation units 30a, 30b, and 300 independently, so a description thereof will be omitted here.

上述した光変調素子は、1次元アレイ状に或いは2次元
マ) IJクス状に複数個配設して使用する事が可能で
ある。
The above-mentioned light modulation elements can be used by arranging a plurality of them in a one-dimensional array or in a two-dimensional matrix.

第6図(二は、本発明に係る光変調素子を応用した光変
調装置の一実施例を示す。
FIG. 6 (2) shows an embodiment of a light modulation device to which the light modulation element according to the present invention is applied.

本発明に係る光変調素子プレイ50に入射する光束41
は、シート状の平行光束であっても構わない。
Luminous flux 41 incident on the light modulation element play 50 according to the present invention
may be a sheet-like parallel light beam.

或いは、図示されないシリンドリカルレンズにより、光
変調素子アレイ50近傍で素子プレイの並び方向に長さ
を有するように線状結像する光束があってもよい。51
a151b1・・・、51e 、52a 、52b 。
Alternatively, a cylindrical lens (not shown) may form a light beam that forms a linear image near the light modulation element array 50 so as to have a length in the direction in which the element plays are arranged. 51
a151b1..., 51e, 52a, 52b.

・・・、52eは本発明に係る光変調部であり、この光
変調部の(5]、a 、52a )、(stb 、52
b ) 、−1(51e 、52e)は対としてそれぞ
れ1つの光変調素子を構成する。入射光束41は、変調
信号が印加されない時は、光変調素子アレイの端面5]
、52側にそれぞれ設けられた図示されない反射面によ
って正反射された後、非変調光束42として射出する。
..., 52e is a light modulation section according to the present invention, and (5], a, 52a), (stb, 52) of this light modulation section
b) and -1 (51e, 52e) constitute one optical modulation element as a pair. When no modulation signal is applied, the incident light beam 41 is transmitted to the end surface 5 of the optical modulation element array]
, 52 side, and is specularly reflected by a reflecting surface (not shown) provided on each side, and then exits as a non-modulated light beam 42.

入射光束41と非変調光束(射出光束)42の成す角度
は、光変調素子アレイの端面5]、52の成す角度によ
り一意に定まる。一方たとえば(51c。
The angle formed by the incident light beam 41 and the unmodulated light beam (outgoing light beam) 42 is uniquely determined by the angle formed by the end surfaces 5 and 52 of the light modulation element array. On the other hand, for example (51c.

52C)で示される光変調素子に変調信号が与えられた
場合には、入射光束41は上述してきだ素子の変調原理
に基づき変調作用を受け、非変調光束42の出射方向と
は相異なる方向に進向する光束成分である変調光束43
を有する。従って光学系44により変調光束43を受光
面45上へ結像する事が可能である。
When a modulation signal is applied to the light modulation element shown in 52C), the incident light beam 41 is modulated based on the above-mentioned modulation principle of the light modulation element, and is emitted in a direction different from the output direction of the unmodulated light beam 42. Modulated light flux 43 which is a traveling light flux component
has. Therefore, it is possible to image the modulated light beam 43 onto the light receiving surface 45 by the optical system 44.

以上説明したように、本発明の光変調素子は複数の反射
面を有することにより、非変調光束と変調光束とを相異
なる方向に射出でき、従ってS/Hの良好な変調光束を
射出でき且つ変調光束の光量を可変ならしめる特性を有
する。
As explained above, by having a plurality of reflective surfaces, the light modulation element of the present invention can emit a non-modulated light beam and a modulated light beam in different directions, and therefore can emit a modulated light beam with good S/H. It has the characteristic of making the amount of modulated light beam variable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ熱による屈折率変化を利
用した光変調素子の部分断面図および斜視図、第3図(
A)、(B)、従来の光変調素子を用いた光変調装置の
断面図、第4図(A)、(B)、(C)はそれぞれ本発
明の3種の実施例の断面図、第5図は本発明のその他の
実施例の斜視図、第6図は本発明を用いた光変調装置の
一実施例の斜視図である。 21.21a、21b・・・・・・・・・絶縁物質の層
22.22a 、 22b・・・・・・・・・発熱抵抗
体23.23a 、 23b・・・・・・・・・金属反
射膜24.24a 、24b・・・・・・・・・熱効果
媒体25.25a 、25b・・・・・・・・・透明保
護層30a 、 30b・・・・・・・・・・・・・・
・・・・光変調部特許出願人 キャノン株式会社 15−
Figures 1 and 2 are a partial cross-sectional view and a perspective view, respectively, of an optical modulation element that utilizes changes in refractive index due to heat, and Figure 3 (
A), (B) are cross-sectional views of a light modulation device using a conventional light modulation element, and FIGS. 4 (A), (B), and (C) are cross-sectional views of three embodiments of the present invention, respectively. FIG. 5 is a perspective view of another embodiment of the present invention, and FIG. 6 is a perspective view of an embodiment of a light modulation device using the present invention. 21.21a, 21b... Layers of insulating material 22.22a, 22b... Heat generating resistors 23.23a, 23b... Metal Reflective films 24.24a, 24b...Thermal effect media 25.25a, 25b...Transparent protective layers 30a, 30b... ...
...Light modulation section patent applicant Canon Co., Ltd. 15-

Claims (2)

【特許請求の範囲】[Claims] (1)互に角度を形成して配置された反射面を有する複
数の反射膜と、該各複数の反射膜の一方の面に密接した
物理変化を生じる媒体と、該複数の反射膜の他方の面の
少なくとも1ケ所に装着された該媒体に物理変化を生せ
しめる手段とを有することを特徴とする光変調素子。
(1) A plurality of reflective films having reflective surfaces arranged at angles to each other, a medium that causes a physical change in close proximity to one surface of each of the plurality of reflective films, and the other of the plurality of reflective films. 1. A light modulation element, comprising means for causing a physical change in the medium attached to at least one location on the surface of the medium.
(2)前記物理変化を生せしめる手段は独立的に制御可
能な複数の手段からなり、該複数の手段を選択的に作動
させることにより前記媒体に生じる物理変化量を制御可
能にならしめることを特徴とする特許請求の範囲第1項
記載の光変調素子。
(2) The means for causing the physical change is comprised of a plurality of independently controllable means, and the amount of physical change occurring in the medium can be controlled by selectively operating the plurality of means. A light modulation element according to claim 1, characterized in that:
JP58228388A 1983-12-05 1983-12-05 Optical modulating element Pending JPS60120330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58228388A JPS60120330A (en) 1983-12-05 1983-12-05 Optical modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58228388A JPS60120330A (en) 1983-12-05 1983-12-05 Optical modulating element

Publications (1)

Publication Number Publication Date
JPS60120330A true JPS60120330A (en) 1985-06-27

Family

ID=16875682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58228388A Pending JPS60120330A (en) 1983-12-05 1983-12-05 Optical modulating element

Country Status (1)

Country Link
JP (1) JPS60120330A (en)

Similar Documents

Publication Publication Date Title
JP3893421B2 (en) Light modulation element, light modulation element array, and exposure apparatus using the same
US3262122A (en) Thermoplastic memory
US20080239421A1 (en) Hologram recorder
WO2006098455A1 (en) Method and device for recording/reproducing hologram
JPH06235878A (en) Printing device having subminiature mechaical light modulator and optical interlace output
JP2006098986A (en) Reflection type optical modulation array element and image forming apparatus
US5031978A (en) Recording optical system
JPS60120330A (en) Optical modulating element
GB2132374A (en) A two-dimensional acousto-optic deflection arrangement
US6181665B1 (en) Volume holographic data storage system
JP2002049002A (en) Laser beam machine
US6507355B2 (en) Image recording apparatus
JP4076815B2 (en) Hologram recording system, hologram reproducing system, hologram recording apparatus, hologram reproducing apparatus, method thereof, hologram recording / reproducing system, hologram recording / reproducing apparatus
US4828366A (en) Laser-addressable liquid crystal cell having mark positioning layer
JP4094372B2 (en) Hologram recording / reproducing method and apparatus
JP3552756B2 (en) Multi-beam optical head
JPH0522886B2 (en)
JP3270075B2 (en) Light modulation element
JPS6014221A (en) Optical modulating method and optical modulating element
JPS59201024A (en) Method and device for optical modulation
JPS59214019A (en) Method and device for optical modulation
JPS6050518A (en) Optical modulating device
JPS6031115A (en) Optical modulating device
JPS59228634A (en) Optical element
JPS6084528A (en) Linear lighting optical system