JPS60120204A - Thickness measuring method - Google Patents

Thickness measuring method

Info

Publication number
JPS60120204A
JPS60120204A JP22821883A JP22821883A JPS60120204A JP S60120204 A JPS60120204 A JP S60120204A JP 22821883 A JP22821883 A JP 22821883A JP 22821883 A JP22821883 A JP 22821883A JP S60120204 A JPS60120204 A JP S60120204A
Authority
JP
Japan
Prior art keywords
sample
thickness
wave
signal
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22821883A
Other languages
Japanese (ja)
Inventor
Ikuo Ozaki
郁夫 尾崎
Yasuhiro Tani
泰弘 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP22821883A priority Critical patent/JPS60120204A/en
Publication of JPS60120204A publication Critical patent/JPS60120204A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Abstract

PURPOSE:To measure the thickness in a sample in submicrons, by measuring the degree of attenuation in reflected wave, which is leaked and yielded from an elastic surface wave, which is propagated on the surface of the sample. CONSTITUTION:The ultrasonic wave generated by a piezoelectric transducer 2 is converged and projected on a sample 5 through a liquid coupler 4, which is filled between an acoustic lens 3 and the sample 5. The reflected wave from the sample 5 is returned to the piezoelectric transducer 2 and converted into an electric signal proportional to the amplitude of the reflected wave. The signal is sent to a receiver 8 through a circulator 1. The signal, which is sent to the receiver 8, is imparted to a gate circuit 9, where only the desired leaked elastic surface wave is extracted and sent to a computer 13 through a peak detector 10, an A/D converter 11, and an interface 12. The thickness of the sample 5 is computer by the computer 13.

Description

【発明の詳細な説明】 臨界角近傍で入射し、そのエネルギーによって試料表面
な伝播する弾性表面波から漏洩し生じる反射波を圧電ト
ランスデューサにて電気信号に変換し、該電気信号が試
料の厚みと関係があることを利用した集束超音波を用い
た厚み測定方法に関するものである。
Detailed Description of the Invention: A piezoelectric transducer converts reflected waves that are incident near a critical angle and leak from the surface acoustic wave propagating on the sample surface due to its energy into electrical signals, and the electrical signals are used to determine the thickness of the sample. This invention relates to a thickness measurement method using focused ultrasound that takes advantage of this relationship.

圧電トランスデユーサから発生した超音波を音響レンズ
により試料に集束照射すると、超音波の入射角がレーリ
ーの臨界角(θC)近傍の時に、入射波のエネルギーに
よって試料の表面に弾性表面波が励起される。励起され
た弾性表面波は、漏洩し、カブラ−(媒質)中に二次放
射された反射波を生じ、再びレーリーの臨界角で音響レ
ンズにより屈折して圧電トランスデユーサに戻り反射電
気信号とし曽出力される。
When ultrasonic waves generated from a piezoelectric transducer are focused and irradiated onto a sample using an acoustic lens, the energy of the incident waves excites surface acoustic waves on the surface of the sample when the incident angle of the ultrasonic waves is near Rayleigh's critical angle (θC). be done. The excited surface acoustic waves leak, generate reflected waves that are secondary radiated into the coupler (medium), are refracted by the acoustic lens at Rayleigh's critical angle, and return to the piezoelectric transducer as reflected electrical signals. Zeng is output.

すなわち、この漏洩弾性表面波の反射波は、圧電トラン
スデー−サで反射板の振幅に比例した電気信号に変換さ
れる。この電気信号が信号処理系に送られ、信号処理に
おいては、漏洩弾性表面波のみの反射信号を得るために
その部分のみにゲート回路を設ける。得られる弾性表面
波の信号のピーク値をホールドして出力電圧として出力
する。
That is, the reflected wave of this leaky surface acoustic wave is converted by the piezoelectric transducer into an electric signal proportional to the amplitude of the reflector. This electric signal is sent to a signal processing system, and in the signal processing, a gate circuit is provided only in that part in order to obtain a reflected signal of only the leaky surface acoustic waves. The peak value of the obtained surface acoustic wave signal is held and output as an output voltage.

その出力電圧なA−D変換器でデイジタル化し、中継器
であるパラレルインターフェースを介在さセ”(コ/ビ
ーータ内に入力する。
The output voltage is digitized by an A-D converter and input into a co/beater via a parallel interface, which is a repeater.

従来の超音波を用いた厚み測定方法には、超音波を試料
に照射し、試料に共振を生じさせて、それを検知し、試
料の厚みを測定する共振法や超音波を試料に照射し、試
料表面からの反射波の反射信号と試料を乗せている基体
表面からの反射波の反射信号との時間差を利用して試料
の厚みを測定するパルス反射法等があった。しかし、い
ずれの測定方法も試料の厚さが太きいものしか用いるこ
とができない欠点があった。また、試料の厚さが数ミク
ロン程度の薄い金属のメッキの膜厚を測定する方法には
、螢光X線を用いた膜厚測定の方法があるが、しかし、
この方法は、測定する時にX線が人体に悪影響を及ぼす
危険性があり、また測定の際、試料部を密閉しなければ
ならないので、実用的な面から難点があった。本発明は
、上記のような背景を考慮し、試料の厚さがサブミクロ
ン単位から測定する事が可能な測定方法である。
Conventional thickness measurement methods using ultrasonic waves include the resonance method, in which ultrasonic waves are irradiated onto the sample to cause resonance in the sample, and this is detected, and the thickness of the sample is measured. There was a pulse reflection method that measures the thickness of a sample using the time difference between the signal of the reflected wave from the surface of the sample and the signal of the reflected wave from the surface of the substrate on which the sample is placed. However, both measurement methods have the disadvantage that they can only be used with thick samples. In addition, there is a method for measuring the film thickness of thin metal plating with a sample thickness of several microns, which uses fluorescent X-rays.
This method is difficult from a practical point of view because there is a risk that the X-rays may have an adverse effect on the human body during measurement, and the sample part must be sealed during measurement. The present invention takes the above-mentioned background into consideration and is a measuring method that allows the thickness of a sample to be measured in submicron units.

本発明の測定原理を図を用いて詳細に説明する。The measurement principle of the present invention will be explained in detail using figures.

高周波パルス発生器(7)によって作られた例えば周波
数10〜500メガヘルツ程度の電気パルス信号は、サ
ーキュレータfi+を介し、音響レンズ(3)上部の圧
電トランスジューサ(2)に印加される。圧電トランス
デユーサ(2)は、例えばポリフッ化ビニリデン(PV
F2) を用いた高分子の圧電素子の振動子である。こ
の振動子は、縦波が発生し易く、また、横波が発生しに
くいため、音響レンズでの多重反射が生じにくく、目的
の漏洩弾性表面波を得やすい。この振動子によって高周
波の電気パルス匁 信号は、超音量に変換される。圧電トランスジーサ(2
)で発生した超音波は、サファイア(A1203)等か
らなる音響レンズ(3)内では、平面波であるが、音響
レンズ(3)の球面凹部(3a)において超音波が球面
波に変換される。超音波は、音響レンズ(3)と試料(
5)の間に充填された液体カプラー(媒質例えば水)(
4)を媒介として試料(5)に集束照射される。なお、
図中(6)は、試料(5)を積層している基板である。
An electric pulse signal with a frequency of about 10 to 500 MHz, for example, generated by the high-frequency pulse generator (7) is applied to the piezoelectric transducer (2) above the acoustic lens (3) via the circulator fi+. The piezoelectric transducer (2) is made of polyvinylidene fluoride (PV), for example.
This is a polymer piezoelectric element vibrator using F2). Since this vibrator easily generates longitudinal waves and hardly generates transverse waves, multiple reflections at the acoustic lens are less likely to occur, making it easier to obtain the desired leaky surface acoustic waves. This vibrator converts the high-frequency electric pulse momme signal into a super loud sound. Piezoelectric transducer (2
) is a plane wave within the acoustic lens (3) made of sapphire (A1203) or the like, but the ultrasonic wave is converted into a spherical wave in the spherical recess (3a) of the acoustic lens (3). Ultrasonic waves are transmitted between the acoustic lens (3) and the sample (
5) a liquid coupler (medium e.g. water) filled between
4), the sample (5) is focused and irradiated. In addition,
In the figure, (6) is a substrate on which the sample (5) is laminated.

この試料+51からの反射波は、同じ径路を逆に通って
圧電トランスデユーサ(2)に戻り00反射波の振幅に
比例した電気信号に変換されて、サーキュレータ(11
を経て高周波の帯域を有するレシーバ(8)に送られる
。レシーバ(8)に送られた信号は、ゲート回路(9)
によって目的の漏洩弾性表面波だけを取り出し、ピーク
ディテクタ任αより、その信号は、ピークホールドされ
て、ピーク値の信号が出力される。ピークディテクタ0
0)によって出力された、漏洩弾性表面波のピーク値の
信号は、A/D変換変換器α上ってアナログ信号をディ
ジタル信号に変換され、ここで中継器であるインターフ
ェースQ2) ヲ介し、コンピュータα3)に送られる
The reflected wave from the sample +51 passes through the same path in the opposite direction and returns to the piezoelectric transducer (2), where it is converted into an electrical signal proportional to the amplitude of the 00 reflected wave, and is converted into an electrical signal proportional to the amplitude of the 00 reflected wave.
The signal is then sent to a receiver (8) having a high frequency band. The signal sent to the receiver (8) is sent to the gate circuit (9)
Only the target leaky surface acoustic wave is extracted, and the peak value of the signal is held by the peak detector α, and a signal with a peak value is output. peak detector 0
The signal of the peak value of the leaky surface acoustic wave outputted by Q0) goes up the A/D converter α, where the analog signal is converted into a digital signal, and the signal is then transferred to the computer via the interface Q2), which is a repeater. α3).

測定状態を示す第2図に従ってさらに反射波について説
明すれば、入射した集束超音波の焦点が試料(5)の下
方に位置する時、反射波は、試料(5)面に対して垂直
に入射した超音波の直接反射波(81と入射エネルギに
よって励起される、漏洩弾性表面波(ト)から生じる反
射波の二種が生じる。番傘シ考薮泰4i円この二種の反
射波の反射信号が出力電圧として得られ広帯域を有した
レシーバ(8)に送られる。レシーバ(8)を通って来
た反射信号の中、ゲート回路(91のフィルタ作用によ
って漏洩弾性表面波だけを取り出し、ピークディテクタ
aO)によってピークホールドする。ピークホールドさ
れた反射信号は、ん勺変換器aυによってアナログ信号
をディジタル信号に変換し、インターフェース(12+
を媒介としてコンピータα3に送られ処理される。
To further explain the reflected waves according to Figure 2 showing the measurement state, when the focal point of the incident focused ultrasonic wave is located below the sample (5), the reflected waves are incident perpendicularly to the surface of the sample (5). Two types of reflected waves are generated: a direct reflected wave of the ultrasonic wave (81) and a reflected wave generated from a leaky surface acoustic wave (g) excited by the incident energy.Reflected signals of these two types of reflected waves is obtained as an output voltage and sent to a receiver (8) having a wide band.Among the reflected signals that have passed through the receiver (8), only leaked surface acoustic waves are extracted by the filtering action of a gate circuit (91), and a peak detector The peak-held reflected signal is converted from an analog signal to a digital signal by a converter aυ, and then sent to an interface (12+
is sent to the computer α3 via the medium and processed.

入射エネルギによって励起された漏洩弾性表面波(L)
は、試料を積属している基板(6)を伝播して試料(5
)に二次放射されて、液体カプラ(4)を通って音響レ
ンズ(3)平面波になり、圧電トランスデユーサ(2)
によって電気信号に変換される。この漏洩弾性表面波(
ト)は、試料(5)及び試料を積層している基板(6)
を伝播する時に減衰して行く。 −漏洩弾性表面波山)
は、試料(5)が厚くなると、伝播距離が長くなり、エ
ネルギが減少して、減衰が大きくなる。従って漏洩弾性
表面波(L+の反射信号の強度は、試料(5)の厚さの
変化に伴って変化する。
Leaky surface acoustic wave (L) excited by incident energy
The sample (5) is propagated through the substrate (6) on which the sample is loaded.
), it passes through the liquid coupler (4), becomes a plane wave through the acoustic lens (3), and is transmitted to the piezoelectric transducer (2).
is converted into an electrical signal by This leaky surface acoustic wave (
g) is the sample (5) and the substrate (6) on which the sample is laminated.
Attenuates as it propagates. −Leaky elastic surface wave peak)
As the sample (5) becomes thicker, the propagation distance becomes longer, the energy decreases, and the attenuation increases. Therefore, the intensity of the reflected signal of the leaky surface acoustic wave (L+) changes as the thickness of the sample (5) changes.

すなわち、漏洩弾性表面波山)の反射信号は、試料(5
)の厚さと相関関係が生まれる。
In other words, the reflected signal of the leaky elastic surface wave peak) is
) is correlated with the thickness of the

次に実際の厚さ測定について説明する。厚みが既知の基
準試料片を作製して、その基準試料片を上述した方法に
従って測定する。その漏洩弾性表面波の出力電圧のピー
ク値を基準試料片の厚み毎に測定して、コンピュータに
入力して、データ処理して較正値として記憶しておく。
Next, actual thickness measurement will be explained. A reference sample piece with a known thickness is prepared, and the reference sample piece is measured according to the method described above. The peak value of the output voltage of the leaky surface acoustic wave is measured for each thickness of the reference sample piece, input into the computer, data processed, and stored as a calibration value.

すでに明察の如く、厚みが未知の試料に対しても同様に
測定し較正値に従って試料の厚みを測定することができ
る。
As already clear, a sample of unknown thickness can be similarly measured and the thickness of the sample can be determined according to the calibrated value.

本発明の超音波を利用した厚み測定方法は以上のような
ものであり、本発明によれば、X線と違って超音波は、
人体に悪影響を与えないので、実用的である。そして測
定の際、試料部を密閉しなくても良いので、集束超音波
を用いた厚み測定は、測定の自動化オンライン化が可能
であり、操作性の面からも能率的であり、簡便な測定方
法である。
The thickness measuring method using ultrasound according to the present invention is as described above, and according to the present invention, unlike X-rays, ultrasound
It is practical because it does not have any adverse effects on the human body. Furthermore, since there is no need to seal the sample part during measurement, thickness measurement using focused ultrasound allows automated online measurement, is efficient in terms of operability, and is easy to measure. It's a method.

また、スキャンコンバータを利用して試料表面を走査し
、そのデータをGP−IB インターフェースを介して
、コンピータに送り、データ処理すれば、広範囲に厚み
を測定する事ができる。このように集束超音波を用いた
厚み測定方法は、従来の測定方法ではできない測定を可
能にし、しかも安全な測定方法であり、操作性も良(、
工業的に有意義な方法である。
Furthermore, by scanning the sample surface using a scan converter and sending the data to a computer via the GP-IB interface for data processing, thickness can be measured over a wide range. In this way, the thickness measurement method using focused ultrasound enables measurements that cannot be made with conventional measurement methods, is a safe measurement method, and has good operability (
This is an industrially significant method.

以下に本発明の厚み測定方法の具体例を述べる。A specific example of the thickness measuring method of the present invention will be described below.

〔具体例〕〔Concrete example〕

パルス発生器にて発生させた周波数50メガヘルツの電
気信号を、サーキュレータ−を介して、振動子がポリフ
ッ化ビニIJデンで両側に金箔電極を設けてなる圧電ト
ランジューサーにより、周波数50メガヘルツの超音波
振動に変換した。この超音波をサファイア製の音響レン
ズにて媒質(水)中へ焦点距離約5語の集束超音波を放
射した。基板が42合金にソケル42%、残部鉄)の上
に試料として金めつき層を形成したものを音響レンズの
下端から4餌の位置に置いた。
An electric signal with a frequency of 50 MHz generated by a pulse generator is transmitted through a circulator to an ultrasonic wave with a frequency of 50 MHz by a piezoelectric transducer whose vibrator is made of polyfluorinated vinyl IJ and has gold foil electrodes on both sides. converted into vibration. A focused ultrasonic wave with a focal length of about 5 words was emitted into the medium (water) using an acoustic lens made of sapphire. A sample on which a gold-plated layer was formed on a substrate (42% alloy, 42% Sokel, balance iron) was placed at a position 4 points from the lower end of the acoustic lens.

このような測定条件にて第2図に示すレシーバ−、ゲー
ト回路、ピークディテクタを具備する超音波解析器によ
って弾性表面波の反射信号のみを取り出し、12ビツト
のんΦ変換器によってデジタル信号とし、GP−IB型
インターフェースを介してコンピー−ターに入力した。
Under these measurement conditions, only the reflected signal of the surface acoustic wave is extracted by an ultrasonic analyzer equipped with a receiver, a gate circuit, and a peak detector shown in Fig. 2, and converted into a digital signal by a 12-bit non-Φ converter. The information was input to a computer via a GP-IB type interface.

あらかじめ、ボンピユークーに記憶させていた較正値と
比較することにより試料の金めつき層の厚みを測定した
The thickness of the gold-plated layer of the sample was measured by comparing it with a calibration value stored in the Bonpieux beforehand.

測定は、この具体例では0.6〜lOミクロンの範囲で
充分可能であった。
Measurements were well within the range of 0.6 to 10 microns in this example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の集束超音波を用いた厚み測定方法に
用いる装置を示す概略図、第2図は、測定状態を示す概
略説明図である。 (11・・・サーキュレータ (21・・・圧電トラン
スデユーサ(3)・・・音響レンズ (4)・・・カプ
ラ(5)・・・試料 (6)・・・基板 (7)・・・パルス発生器+81・・・レシーバ(9)
・・・ゲート回路 00]・・・ピークディテクタQl
)・・・A/Di換器 (12+・・インターフェース
03)・・・コンピュータ 特許出願人 凸版印刷株式会社 第1図
FIG. 1 is a schematic diagram showing an apparatus used in the thickness measuring method using focused ultrasound according to the present invention, and FIG. 2 is a schematic explanatory diagram showing a measurement state. (11...Circulator (21...Piezoelectric transducer (3)...Acoustic lens (4)...Coupler (5)...Sample (6)...Substrate (7)... Pulse generator +81...Receiver (9)
...Gate circuit 00] ...Peak detector Ql
)...A/Di converter (12+...Interface 03)...Computer patent applicant Toppan Printing Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] +I+圧電トランスジューサから発生した超音波弾性波
を音響レンズにより試料に集束照射し、臨界角で試料に
入射して入射エネルギーにより試料表面を伝播する弾性
表面波から漏洩して生じる反射波の減衰の程度が試料の
厚みと相関関係を有することから試料の厚みをめること
を特徴とする厚み測定方法。
+I+ Ultrasonic elastic waves generated from a piezoelectric transducer are focused and irradiated onto a sample using an acoustic lens, and are incident on the sample at a critical angle. The degree of attenuation of reflected waves that leak from the surface acoustic waves that propagate on the sample surface due to the incident energy. A thickness measuring method characterized in that the thickness of the sample is determined based on the fact that the thickness of the sample has a correlation with the thickness of the sample.
JP22821883A 1983-12-02 1983-12-02 Thickness measuring method Pending JPS60120204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22821883A JPS60120204A (en) 1983-12-02 1983-12-02 Thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22821883A JPS60120204A (en) 1983-12-02 1983-12-02 Thickness measuring method

Publications (1)

Publication Number Publication Date
JPS60120204A true JPS60120204A (en) 1985-06-27

Family

ID=16873026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22821883A Pending JPS60120204A (en) 1983-12-02 1983-12-02 Thickness measuring method

Country Status (1)

Country Link
JP (1) JPS60120204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592477A1 (en) * 1985-12-26 1987-07-03 France Etat Method and apparatus for non-destructive measurement of the thickness of thin films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592477A1 (en) * 1985-12-26 1987-07-03 France Etat Method and apparatus for non-destructive measurement of the thickness of thin films

Similar Documents

Publication Publication Date Title
US5886250A (en) Pitch-catch only ultrasonic fluid densitometer
JPH0758210B2 (en) Method and apparatus for measuring fluid flow using a surface generated volumetric search signal
JPH02216452A (en) Ultrasonic density measuring method and system
US5641906A (en) Apparatus and method for automated non-destructive inspection of integrated circuit packages
US4995260A (en) Nondestructive material characterization
JPH06217395A (en) Monochromatic ultrasonic wave converter
JPS60120204A (en) Thickness measuring method
JP2796179B2 (en) Bone ultrasonic diagnostic equipment
JPS59192907A (en) Measuring method of thickness
US3541848A (en) Acoustical imaging system
Franco et al. Acoustic transmission with mode conversion phenomenon
JPS634142B2 (en)
JP3493941B2 (en) Ultrasonic probe
JPS637846Y2 (en)
SU991165A1 (en) Ultrasonic method of measuring coating thickness
JP3450930B2 (en) Method and apparatus for evaluating the degree of damage of metal samples due to creep
SU533249A1 (en) Device for measuring intensity of charged particle bunches
Fay et al. Reciprocity calibration of ultrasonic contact transducers
JPH01187447A (en) Two-split type vertical probe
Titov et al. The velocity and attenuation of outgoing surface acoustic waves measured using an ultrasonic microscope with two focusing transducers
CN114371225A (en) Ultrasonic oblique probe
Toda et al. An interdigital transducer for ultrasonic nondestructive testing
SU1265597A2 (en) Method for visualization of acoustic fields in solid-state acoustic lines
Liu et al. Nonlinear effects of the finite amplitude ultrasound wave in biological tissues
JPH0519809Y2 (en)