JPS60119459A - Method for measuring concentration of adenosine 5'-diphosphate and enzyme activity of enzyme forming adenosine 5'-diphosphate - Google Patents

Method for measuring concentration of adenosine 5'-diphosphate and enzyme activity of enzyme forming adenosine 5'-diphosphate

Info

Publication number
JPS60119459A
JPS60119459A JP58226590A JP22659083A JPS60119459A JP S60119459 A JPS60119459 A JP S60119459A JP 58226590 A JP58226590 A JP 58226590A JP 22659083 A JP22659083 A JP 22659083A JP S60119459 A JPS60119459 A JP S60119459A
Authority
JP
Japan
Prior art keywords
enzyme
electrode
adp
immobilized
diphosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58226590A
Other languages
Japanese (ja)
Other versions
JPH0690177B2 (en
Inventor
Fumio Mizutani
水谷 文雄
Keishiro Tsuda
津田 圭四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58226590A priority Critical patent/JPH0690177B2/en
Publication of JPS60119459A publication Critical patent/JPS60119459A/en
Publication of JPH0690177B2 publication Critical patent/JPH0690177B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To measure the concn. of adenosine 5'-diphosphate (ADP) and the enzyme activity of enzyme forming ADP by using an enzyme electrode having two kinds of immobilized enzyme; immobilized pyruvate oxidase and immobilized pyruvate kinase. CONSTITUTION:An immobilized pyruvate oxidase film 2 and an immobilized pyruvate kinase film 3 are fixed on the surface of an oxygen electrode or hydrogen peroxide electrode 1 to constitute an enzyme electrode. A prescribed amt. of sample is added from a supply pipe 9 to a buffer soln. 3 in the case of measuring the concn. of ADP in the sample. ADP and phosphenol pyruvic acid are diffused in the film 3 to form a pyruvic acid. The pyruvic acid is diffused and oxidized in the film 2 and in this stage said acid consumes oxygen and generates hydrogen peroxide. The hydrogen peroxide is detected by the change in the current of the electrode 1. The intended enzyme substrate is added preliminarily to the buffer soln. and the similar measurement is performed in the case of measuring the enzyme activity of the enzyme forming the ADP in the sample.

Description

【発明の詳細な説明】 本発明は、アデノシン5′−二リン酸(以下ADPと略
記することがある)濃度およびADPを生成物とする酵
素の酵素活性を、迅速かつ容易に測定する新規な方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel method for quickly and easily measuring the concentration of adenosine 5'-diphosphate (hereinafter sometimes abbreviated as ADP) and the enzyme activity of an enzyme whose product is ADP. It is about the method.

近年、生化学、臨床医学の進歩に伴い、生体中の物質濃
度や酵素活性を迅速、簡便、かつ正確に測定することが
要求されている。
In recent years, with advances in biochemistry and clinical medicine, there has been a demand for rapid, simple, and accurate measurement of substance concentrations and enzyme activities in living organisms.

ADPは、高エネルギーリン酸化合物として、代謝系の
中で重要な位置を占める物質である。また、ADPを生
成する酵素としては、例えば6−ホスホフルクトキナー
ゼ(EC2,7,Lll)、ヘキソキナーゼ(EC2,
7,,1,1)、クレアチンキナーゼ(EC2,7,3
,,2)など代謝系の中で重要な酵素が挙げられる。特
に、血清中におけるタレアチンキナーゼ活性の測定は、
代謝系疾患の診断の指標となることから、臨床医学上で
も重要である。
ADP is a substance that occupies an important position in the metabolic system as a high-energy phosphoric acid compound. In addition, examples of enzymes that generate ADP include 6-phosphofructokinase (EC2, 7, Lll), hexokinase (EC2,
7,,1,1), creatine kinase (EC2,7,3
,,2) are important enzymes in the metabolic system. In particular, measurement of taleatin kinase activity in serum
It is also important in clinical medicine because it serves as an indicator for the diagnosis of metabolic diseases.

このように、ADP濃度およびADPを生成物とする酵
素の酵素活性の測定方法の開発は、生化学および臨床医
学の分野において強い要求があるものといえる。
Thus, there is a strong need in the fields of biochemistry and clinical medicine to develop methods for measuring ADP concentration and enzyme activity of enzymes that use ADP as a product.

従来、ADP濃度およびADPを生成物とする酵素の酵
素活性の測定方法としては、ピルベートキナーゼとラク
テートデヒドロゲナーゼ(ECI。
Conventionally, methods for measuring ADP concentration and enzymatic activity of enzymes that use ADP as a product include pyruvate kinase and lactate dehydrogenase (ECI).

1.1.27)との組合せ、若しくは、ミオキナーゼ(
EC2゜7.4.3)、ホスホグリセレートキナーゼ(
EC2,7,2゜3)およびグリセロアルデヒドホスフ
ェートデヒドロゲナーゼ(EC1,2,1,1,2)の
組合せを利用した分光学的方法が提案され、実用に供さ
れてきた。しかしながら、このような方法では、酵素が
使い捨てされてくり返し使用ができないこと、煩雑な操
作を必要とするなどの欠点があった。
1.1.27) or myokinase (
EC2°7.4.3), phosphoglycerate kinase (
A spectroscopic method using a combination of EC2,7,2°3) and glyceraldehyde phosphate dehydrogenase (EC1,2,1,1,2) has been proposed and put into practical use. However, this method has drawbacks such as the enzyme being disposable and cannot be used repeatedly and requiring complicated operations.

本発明者らは、従来のADP濃度およびADPを生成物
とする酵素の酵素活性の測定方法の欠点を改良し、迅速
、簡便、正確、かつくり返し使用の出来る方法を開発す
べく種々検討を重ねた結果、固定化ピルベートオキシダ
ーゼおよび固定化ピルベートキナーゼの二種類の固定化
酵素と、酵素電極若しくは過酸化水素電極とを組合せた
酵素電極を用いるとき、極めて好都合に目的を果たせる
ことを見出し本発明を成すに至った。
The present inventors have conducted various studies in order to improve the shortcomings of conventional methods for measuring ADP concentration and enzyme activity of enzymes that use ADP as a product, and to develop a method that is quick, simple, accurate, and can be used repeatedly. As a result, we discovered that the purpose can be achieved very conveniently when using an enzyme electrode that combines two types of immobilized enzymes, immobilized pyruvate oxidase and immobilized pyruvate kinase, and an enzyme electrode or a hydrogen peroxide electrode. He came up with an invention.

すなわち、本発明は、試料中に含まれるADP濃度およ
びADPを生成物として与える酵素の酵素活性を測定す
る方法において、固定化ピルベートオキシダーゼおよび
固定化ピルベートキナーゼの二種類の固定化酵素と酵素
電極若しくは過酸化水素電極とを組合せた酵素電極を用
いて、試料添加後の上記酵素電極における電流変化を測
定することにより、濃度および酵素活性をめることを特
徴とするADP濃度およびADPを生成物とする酵素の
酵素活性測定方法を提供するものである。
That is, the present invention provides a method for measuring the ADP concentration contained in a sample and the enzymatic activity of an enzyme that provides ADP as a product, in which two types of immobilized enzymes, immobilized pyruvate oxidase and immobilized pyruvate kinase, and the enzyme ADP concentration and ADP generation characterized by measuring the concentration and enzyme activity by measuring the current change in the enzyme electrode after adding a sample using an enzyme electrode combined with an electrode or a hydrogen peroxide electrode. The present invention provides a method for measuring enzyme activity of a target enzyme.

本発明の方法において用いられるピルベートオキシダー
ゼはペディオコッカス種(Pediococcus s
p、)由来のものなどが使用でき、例えば東洋醸造■よ
り入手できる。ピルベートキナーゼは、ウサギあるいは
イヌの筋肉由来のものなどが使用でき、例えばシグマ社
、ベーリンガー・マンハイム社などより入手できる。固
定化酵素としては、これらの酵素を別個に、あるいは混
合して固定化してなるものを用いることができ、その固
定化方法としては、通常酵素の固定化に採用されている
担体結合法、あるいは包括法のいずれを採用してもよい
The pyruvate oxidase used in the method of the present invention is derived from Pediococcus spp.
Those derived from P. p.) can be used, and are available from Toyo Jozo ■, for example. Pyruvate kinase derived from rabbit or dog muscle can be used, and is available from Sigma, Boehringer Mannheim, etc., for example. As the immobilized enzyme, those made by immobilizing these enzymes separately or in a mixture can be used, and the immobilization method is the carrier binding method that is usually used for enzyme immobilization, or Either comprehensive method may be adopted.

固定化酵素の形状、配置としては、通常の酵素電極にお
いて利用されるものでよい。例えば膜状の固定化酵素を
酸素電極若しくは過酸化水素電極表面への密着固定化、
カラム状の固定化酵素を酸素電極若しくは過酸化水素電
極表面近傍への配置などが考えられる。また、固定化ピ
ルベートオキシダーゼを膜状として酸素電極若しくは過
酸化水素電極上に密着固定化し、固定化ピルベートキナ
ーゼをカラム状として近傍に配置するなどの方法でも良
い。本発明の方法において用いられる上記酸素電極とし
ては、多孔性ポリマー隔膜の酸素透過性を利用したクラ
ーク形のポーラログラフ式若しくは電池式の一般に用い
られるものが使用できる。
The shape and arrangement of the immobilized enzyme may be those used in ordinary enzyme electrodes. For example, tightly immobilizing a membrane-like immobilized enzyme on the surface of an oxygen electrode or hydrogen peroxide electrode,
Possible options include placing a column-shaped immobilized enzyme near the surface of an oxygen electrode or a hydrogen peroxide electrode. Alternatively, a method may be used in which the immobilized pyruvate oxidase is tightly immobilized in the form of a membrane on an oxygen electrode or a hydrogen peroxide electrode, and the immobilized pyruvate kinase is arranged in the form of a column nearby. As the oxygen electrode used in the method of the present invention, a commonly used one such as a Clark type polarographic type or a battery type which utilizes the oxygen permeability of a porous polymer membrane can be used.

また、上記過酸化水素電極としては、白金電極、あるい
は銀電極、若しくはこれらの電極表面上に多孔性ポリマ
ー膜を被覆した一般に用いられるポーラログラフ式のも
のが使用できる。
Further, as the hydrogen peroxide electrode, a platinum electrode, a silver electrode, or a commonly used polarographic type electrode in which a porous polymer film is coated on the surface of these electrodes can be used.

本発明のADP濃度の測定方法においては、上記のよう
にして作製された酵素電極は、緩衝溶液中に挿入される
。緩衝溶液としては、そのpHが5〜10の範囲であれ
ば、特にその濃度、種類に制限はないが、少な(ともピ
ルベートキナーゼの基質の1つであるホスホエノールピ
ルビン酸ヲ含ムことが必要である。ホスホエノールピル
ビン酸濃度には特に制限はないが、0.1〜lQmmo
l/lの範囲の濃度であることが好ましい。また、ピル
ベートオキシダーゼの活性を高めるためには、少なくと
も1mmol/l程度のリン酸イオン、Q、 l m 
mol /73程度のコカルボキシラーゼを含有してい
ることが好ましく、ピルベートキナーゼの活性を高める
ためには、少なくとも1mmol/l程度のマグネシウ
ムイオンを含有し、かつ、ナトリウムイオン濃度が1m
mol/l程度以下であることが好ましい。従って、例
えばl mmol/lのホスホエノールピルビン酸、l
Qmmol/lのリン酸−カリウム、l mmol /
lのコカルボキシラーゼ、および5 mmol /Jの
塩化マグネシウムを含有する0、2〜l、Qmol/l
のグリシンと水酸化カリウムとから成る緩衝溶液が好都
合に使用できる。さらに、本発明のADPを生成物とし
て与える酵素の酵素活性の測定方法においては、目的酵
素の酵素反応を開始させるために上記緩衝溶液中に、適
当濃度の上記酵素の基質を添加することが必要である。
In the method for measuring ADP concentration of the present invention, the enzyme electrode prepared as described above is inserted into a buffer solution. There are no particular restrictions on the concentration or type of the buffer solution as long as its pH is in the range of 5 to 10, but it may contain a small amount of phosphoenolpyruvate, which is one of the substrates of pyruvate kinase. There is no particular limit to the concentration of phosphoenolpyruvate, but it is 0.1 to 1Qmmol.
Preferably, the concentration is in the range 1/1. In addition, in order to increase the activity of pyruvate oxidase, at least about 1 mmol/l of phosphate ions, Q, l m
It is preferable to contain cocarboxylase in an amount of about mol/73, and in order to increase the activity of pyruvate kinase, it should contain at least about 1 mmol/l of magnesium ions and a sodium ion concentration of 1 molar.
It is preferable that it is about mol/l or less. Thus, for example l mmol/l phosphoenolpyruvate, l
Qmmol/l potassium phosphate, l mmol/l
l of cocarboxylase and 5 mmol/J of magnesium chloride.
A buffer solution consisting of glycine and potassium hydroxide can be conveniently used. Furthermore, in the method of measuring the enzymatic activity of an enzyme that produces ADP as a product of the present invention, it is necessary to add an appropriate concentration of the substrate of the enzyme to the buffer solution in order to initiate the enzymatic reaction of the target enzyme. It is.

本発明のA、DP濃度の測定方法の原理は次のとおりで
ある。すなわち、ADPはピルベートキナーゼの触i 
作用によりホスホエノールピルビン酸と反応してアデノ
シン5′−3リンm (以下ATPと略記することがあ
る)とピルビン酸とを生じる。
The principle of the method for measuring A and DP concentrations of the present invention is as follows. That is, ADP acts as a catalytic agent of pyruvate kinase.
As a result of its action, it reacts with phosphoenolpyruvate to produce adenosine 5'-3 phosphate (hereinafter sometimes abbreviated as ATP) and pyruvic acid.

生成したピルビン酸は、ピルベートオキシダーゼの触媒
作用により酸化されるが、この過程において緩衝溶液中
の溶存酸素が消費され、過酸化水素が生成する。酸素の
消費若しくは過酸化水素の生成は、ただちに、それぞれ
酸素電極における電流の減少若しくは過酸化水素電極に
おける電流の増加として検知される。
The generated pyruvate is oxidized by the catalytic action of pyruvate oxidase, but in this process dissolved oxygen in the buffer solution is consumed and hydrogen peroxide is generated. Consumption of oxygen or production of hydrogen peroxide is immediately detected as a decrease in current at the oxygen electrode or an increase in current at the hydrogen peroxide electrode, respectively.

このようにして、酵素電極における電流の変化の程度か
ら、試料中のADP濃度を測定することができる。また
、本発明のADPを生成物として与える酵素の酵素活性
方法の原理は次の通りである。目的酵素の基質存在下で
は、この酵素はその酵素活性に比例した速度でADPを
生成する。このADPの生成速度若しくは酵素反応開始
から一定時間後のADP濃度は、上記ADP濃度の測定
方法の原理と同様の原理で、酵素電極における電流の変
化として検知される。このようにして酵素電極における
電流の変化の程度から試料中の目的酵素の酵素活性を測
定することができる。
In this way, the ADP concentration in the sample can be measured from the degree of change in the current at the enzyme electrode. Furthermore, the principle of the method for enzymatic activity of an enzyme that produces ADP as a product according to the present invention is as follows. In the presence of the target enzyme's substrate, the enzyme produces ADP at a rate proportional to its enzymatic activity. The ADP production rate or the ADP concentration after a certain period of time from the start of the enzyme reaction is detected as a change in the current at the enzyme electrode using the same principle as the method for measuring ADP concentration described above. In this way, the enzyme activity of the target enzyme in the sample can be measured from the degree of change in the current at the enzyme electrode.

次に添加図面により、本発明の方法をさらに具体的に説
明する。
Next, the method of the present invention will be explained in more detail with reference to additional drawings.

第1図は、本発明の方法に用いられる装置の一例を示す
概略断面図で、酵素電極または過酸化水素電極1の表面
に、ピルベートオキシダーゼ固定化膜2およびピルベー
トキナーゼ固定化膜3がOリングなどを用いて固定され
、酵素電極が形成される。ホスホエノールピルビン酸を
含む緩衝溶液4が容器10に注入され、この溶液中に酵
素電極は挿入される。また溶液中の溶存酸素量を上げ、
かつ一定に保つための空気あるいは酸素量き込み管5が
設けられ、さらにマグネットスターラ−6などを用いて
溶液をかき混ぜることが好ましい。酵素電極の出力電流
は電流計または抵抗7を介して電圧に変換され、記録計
8に記録される。電極1が電池式のものでない場合には
、外部電源11を用いて電極1に適当な電圧を印加する
。試料添加前の電極1における電流値は電極1として酸
素電極を用いた場合には、緩衝溶液3中の溶存酸素量に
比例した一定値を示し、過酸化水素電極を用いた場合に
は、緩衝溶液3中に過酸化水素が全く存在しないから零
である。
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus used in the method of the present invention, in which a pyruvate oxidase-immobilized membrane 2 and a pyruvate kinase-immobilized membrane 3 are formed on the surface of an enzyme electrode or a hydrogen peroxide electrode 1. It is fixed using an O-ring or the like to form an enzyme electrode. A buffer solution 4 containing phosphoenolpyruvate is poured into the container 10, and the enzyme electrode is inserted into this solution. It also increases the amount of dissolved oxygen in the solution,
It is also preferable that an air or oxygen inlet tube 5 is provided to maintain a constant amount of air or oxygen, and that the solution is further stirred using a magnetic stirrer 6 or the like. The output current of the enzyme electrode is converted to voltage via an ammeter or resistor 7 and recorded on a recorder 8. If the electrode 1 is not battery-powered, an appropriate voltage is applied to the electrode 1 using an external power source 11. The current value at electrode 1 before sample addition shows a constant value proportional to the amount of dissolved oxygen in buffer solution 3 when an oxygen electrode is used as electrode 1, and a constant value proportional to the amount of dissolved oxygen in buffer solution 3 when a hydrogen peroxide electrode is used. It is zero because there is no hydrogen peroxide in solution 3.

試料中のADP濃度を測定する場合には、緩衝溶液3に
ADPを含む試料の所定量を、例えば供給管9などを用
いて添加すると、ADPとホスホエノールピルビン酸と
は、ピルベートキナーゼ固定化膜3中に拡散し、ピルビ
ン酸が生成される。
When measuring the ADP concentration in a sample, when a predetermined amount of a sample containing ADP is added to the buffer solution 3 using, for example, the supply tube 9, ADP and phosphoenolpyruvate are immobilized with pyruvate kinase. It diffuses into the membrane 3 and pyruvic acid is produced.

生成したピルビン酸は、さらにピルベートオキシダーゼ
固定化膜2中に拡散し酸化され、この際、酸素を消費し
、過酸化水素を発生する。これに伴い、電極1の電流は
、電極1として酸素電極を用いた場合には減少し、過酸
化水素電極を用いた場合には増加する。しかもこの電流
の減少若しくは増加の程度はADP濃度に比例するから
、電流の減少若しくは増加の程度をめれば、試料中のA
DP濃度を測定することができる。
The generated pyruvate further diffuses into the pyruvate oxidase-immobilized membrane 2 and is oxidized, consuming oxygen and generating hydrogen peroxide. Accordingly, the current of the electrode 1 decreases when an oxygen electrode is used as the electrode 1, and increases when a hydrogen peroxide electrode is used as the electrode 1. Moreover, the degree of decrease or increase in this current is proportional to the ADP concentration, so if we consider the degree of decrease or increase in current, we can determine the amount of ADP in the sample.
DP concentration can be measured.

試料中のADPを生成する酵素の酵素活性を測定する場
合には、目的酵素の基質をあらかじめ緩衝溶液3に加え
ておき、目的酵素を含む試料の所定量を例えば供給管9
などを用いて添加するか、若しくは、緩衝溶液3に目的
酵素を含む試料の所定量を例えば供給管9などを用いて
添加した後、さらに目的酵素の基質を加えるかのいずれ
かの手順により、目的酵素の酵素反応を開始させる。す
ると、ADP濃度は、目的酵素の活性jこ比例して時間
と共に直線的に増加する。この変化は、ピルベートキナ
ーゼ固定化膜3およびピルベートオキシダーゼ固定化膜
2における反応を介してただちに電極1における電流の
直線的な変化、すなわち、電極1として酸素電極を用い
た場合には、電流の直線的な減少、過酸化水素電極を用
いた場合には、電流の直線的な増加を引起す。しかも、
この直線部の電流変化の時間に対する割合は1的酵素の
酵素活性に比例するから、上記割合をめれば試料中の目
的酵素の酵素活性を測定−することができる。
When measuring the enzymatic activity of an enzyme that generates ADP in a sample, a substrate for the target enzyme is added to the buffer solution 3 in advance, and a predetermined amount of the sample containing the target enzyme is passed through the supply tube 9, for example.
or by adding a predetermined amount of a sample containing the target enzyme to the buffer solution 3 using, for example, the supply tube 9, and then further adding the substrate of the target enzyme. Initiate the enzyme reaction of the target enzyme. Then, the ADP concentration increases linearly with time in proportion to the activity of the target enzyme. This change is caused by a reaction in the pyruvate kinase-immobilized membrane 3 and the pyruvate oxidase-immobilized membrane 2, resulting in an immediate linear change in the current at the electrode 1, that is, when an oxygen electrode is used as the electrode 1, the current A linear decrease in current causes a linear increase in current when using a hydrogen peroxide electrode. Moreover,
Since the ratio of current change in this linear portion to time is proportional to the enzyme activity of the enzyme, the enzyme activity of the target enzyme in the sample can be measured by subtracting the ratio.

次に実施例により本発明をさらに具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例I ADP濃度の測定 ピルベートオキシダーゼ(東洋醸造、13■U/rn9
)10■をp)16.7のリン酸緩衝溶液(0,1mO
1/l ) に溶解し、感光性ポリビニルアルコール1
0%溶i 1 mlと混合し、これを約10cnfの面
積に展開した後風乾し、さらに光照射して水に不溶のピ
ルベートオキシダーゼ固定化膜を得た。ピルベートキナ
ーゼ(シグマ、400 IU/■)5■をpr−r 6
ゴのリン酸緩衝溶液(Q、 l mol /l )に溶
解し、上記の感光性ポリビニルアルコール10%溶液1
 mlと混合し、上記と同様の操作により約]OcJの
面積のピルベートキナーゼ固定化膜を得た。いずれの固
定化膜も、直径Icmに切り抜き、面積的0.1 cf
の白金電極を作用極とし、多孔性ポリテトラフルオロエ
チレン膜を隔膜とする電池式酸素電極の隔膜」−に、ピ
ルベートオキシダーゼ固定化膜、ピルベートキナーゼ固
定化膜の順で載せ、OIJソング全体を締めつけた。こ
のようにして作製した酵素電極を、1.mmol/1の
ホスホエノールピルビン酸、]Qmmol/lのリン酸
−カリウム、1 mmol/lのコカルボキシラーゼ、
および5mmol/eの塩化マグネシウムを含む0.4
mol / lグリシン−水酸化カリウム緩衝溶液(p
H9,0)13ml中に挿入した。溶液表面からは毎分
約200+q/!の空気を吹きつけ、マグネットスター
ラーを用いて溶液をかくはんした。溶液の温度は、30
°Cに保ヮた。
Example I Measurement of ADP concentration Pyruvate oxidase (Toyo Jozo Co., Ltd., 13 U/rn9
) 10 ■ p) 16.7 phosphate buffer solution (0.1 mO
1/l) of photosensitive polyvinyl alcohol 1
It was mixed with 1 ml of 0% solution i, spread on an area of about 10 cnf, air-dried, and further irradiated with light to obtain a water-insoluble pyruvate oxidase-immobilized membrane. Pyruvate kinase (Sigma, 400 IU/■) 5■ pr-r 6
The above photosensitive polyvinyl alcohol 10% solution 1 was dissolved in a phosphate buffered solution (Q, l mol/l) of
A pyruvate kinase-immobilized membrane having an area of approximately ]OcJ was obtained by the same operation as above. Both immobilized membranes were cut out to a diameter of Icm, and the area was 0.1 cf.
The pyruvate oxidase-immobilized membrane and the pyruvate kinase-immobilized membrane were placed in this order on the diaphragm of a battery-operated oxygen electrode with a platinum electrode as the working electrode and a porous polytetrafluoroethylene membrane as the diaphragm, and the entire OIJ song tightened. The enzyme electrode prepared in this way was prepared by: 1. mmol/1 phosphoenolpyruvate, ]Q mmol/l potassium phosphate, 1 mmol/l cocarboxylase,
and 0.4 containing 5 mmol/e magnesium chloride.
mol/l glycine-potassium hydroxide buffer solution (p
H9,0) was inserted into 13 ml. Approximately 200+q/min from the solution surface! The solution was stirred using a magnetic stirrer. The temperature of the solution is 30
It was kept at °C.

第・2図は、上記溶液に濃度0. l mmol /1
1のADPを添加した時の酵素電極における電流の時間
変化を示すグラフであって、ADP添加後、約30秒後
には電流は定常値になった。第3図はADP含有試料添
加後の定常状態での電流の減少値とADP濃度との関係
を示したグラフである。ADP濃度0.5mmol/l
以下では完全に比例関係が成立しているから、第3図に
示したグラフを用いて、この濃度以下の試料中の未知A
DP濃度を電流の減少値からめることができる。
Figure 2 shows that the above solution has a concentration of 0. l mmol /1
1 is a graph showing the time change in current at the enzyme electrode when ADP 1 was added, and the current reached a steady value about 30 seconds after the addition of ADP. FIG. 3 is a graph showing the relationship between the decrease in current in a steady state after addition of an ADP-containing sample and the ADP concentration. ADP concentration 0.5 mmol/l
Since a completely proportional relationship holds true below, using the graph shown in Figure 3, we can calculate the unknown A in the sample below this concentration.
The DP concentration can be calculated from the current reduction value.

実施例2 クレアチンキナーゼ活性の測定実施例1に用
いた酵素電極をl mmol/lのホスホエノールピル
ビン酸、lQmmol/lのリン酸−カリウム、1mm
ol/lのコカルボキシラーゼおよび5mmol/lの
塩化マグネシウム、さらに標記酵素の基質として5mm
o1/71のATP、および33mmol/1のクレア
チンを含むQ、 4 mol /Δグリシンー水酸化カ
リウム緩衝溶液(pEJ 9.0 ) 10m1中に挿
入した。
Example 2 Measurement of creatine kinase activity The enzyme electrode used in Example 1 was heated with l mmol/l phosphoenolpyruvate, lQmmol/l potassium phosphate, 1 mm
ol/l cocarboxylase and 5 mmol/l magnesium chloride, plus 5 mmol/l as substrate for the title enzyme.
It was inserted into 10 ml of Q, 4 mol/Δglycine-potassium hydroxide buffer solution (pEJ 9.0) containing o1/71 ATP and 33 mmol/1 creatine.

溶液表面からは毎分約200 mlの空気を吹きつけ、
マグネットスターラーを用いて溶液をかくはんした。溶
液の温度は、30°Cに保った。
Air is blown at a rate of approximately 200 ml per minute from the surface of the solution.
The solution was stirred using a magnetic stirrer. The temperature of the solution was kept at 30°C.

この溶液にタレアチンキナーゼを添加すると、次の反応
に従ってADP濃度は、時間と共に直線的に増加する。
When talleatin kinase is added to this solution, the ADP concentration increases linearly with time according to the following reaction.

+ADP 第4図は、緩衝溶液中に100TJ/l の活性のタレ
アチンキナーゼを添加した時の酵素電極における電流の
時間変化を示すグラフであって、タレアチンキナーゼ添
加後、約30秒後から電流は時間の経過と共に直線的に
減少している。第5図は、クレアチン含有試料添加後の
直線部分における電流減少の時間的割合と、クレアチン
キナーゼ活性との関係を示したグラフである。クレアチ
ンキナーゼ活性200 U#以下では完全に比例関係が
成立しているから、第5図に示したグラフを用いて、こ
の活性以下の試料中の未知クレアチンキナーゼ活性を電
流減少の時間的割合からめることができる。
+ADP Figure 4 is a graph showing the time change of the current at the enzyme electrode when taleatine kinase with an activity of 100 TJ/l is added to the buffer solution. decreases linearly over time. FIG. 5 is a graph showing the relationship between the time rate of current decrease in the linear portion after addition of a creatine-containing sample and creatine kinase activity. Since a completely proportional relationship holds true when the creatine kinase activity is below 200 U#, we can use the graph shown in Figure 5 to determine the unknown creatine kinase activity in the sample with this activity or below from the time rate of current decrease. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のA D P igL度およびAT)
Pを生成物とする酵素の酵素活性測定装置の一例を示す
概略断面図、第2図は、本発明の方法により、ADP含
有試料を添加した場合の電流と試料添加後の時間との関
係を示すグラフ、第3図は、本発明のADP濃度の測定
方法による電流の減少値とADP濃度との関係を示すグ
ラフ、第4図は、本発明の方法により、クレアチシキナ
ーゼ含有試料を添加した場合の電流と試料添加後の時間
との関係を示すグラフ、第5図は、本発明のADPを生
成物とする酵素の酵素活性測定方法による電流減少の時
間的割合とクレアチンギナーゼ活性との関係を示すグラ
フである。 第1図中の符号1は酵素電極または過酸化水素電極、2
は固定化ピルベートオキシダーゼ膜、3は固定化ピルベ
ートキナーゼ膜、4は緩衝溶液、5は空気吹き込み管、
6はマグネットスターラー、7は電流計または抵抗、8
は記録計、9は試料供給管、10は容器、11は外部電
源である。 15− 第 1 図 第 2 図 試料添加後の時間(分) 第 3 図 AD141度(m mol/7 ) 第 4 図 試料添加後の時間(分) 第 5 図 タレアチンキナーゼ活性 (u71)
FIG. 1 shows the ADP igL degree and AT) of the present invention.
FIG. 2 is a schematic cross-sectional view showing an example of an enzyme activity measuring device for an enzyme that uses P as a product, and shows the relationship between the current when an ADP-containing sample is added and the time after sample addition using the method of the present invention. 3 is a graph showing the relationship between the current reduction value and ADP concentration according to the method of measuring ADP concentration of the present invention, and FIG. FIG. 5 is a graph showing the relationship between the current and the time after sample addition in this case, and shows the relationship between the time rate of current decrease and creatine ginase activity according to the method of measuring enzyme activity of an enzyme whose product is ADP according to the present invention. It is a graph showing a relationship. The code 1 in Figure 1 is an enzyme electrode or a hydrogen peroxide electrode, and 2
is an immobilized pyruvate oxidase membrane, 3 is an immobilized pyruvate kinase membrane, 4 is a buffer solution, 5 is an air blowing tube,
6 is a magnetic stirrer, 7 is an ammeter or resistor, 8
9 is a recorder, 9 is a sample supply tube, 10 is a container, and 11 is an external power source. 15- Figure 1 Figure 2 Time after sample addition (minutes) Figure 3 AD141 degrees (mmol/7) Figure 4 Time after sample addition (minutes) Figure 5 Taleatin kinase activity (u71)

Claims (2)

【特許請求の範囲】[Claims] (1)試料中に含まれるアデノシン5′−二リン酸濃度
およびアデノシン5′−二リン酸を生成物として与える
酵素の酵素活性を測定する方法において、固定化ピルベ
ートオキシダーゼ(ECI。
(1) In a method for measuring the concentration of adenosine 5'-diphosphate contained in a sample and the enzymatic activity of an enzyme that produces adenosine 5'-diphosphate as a product, immobilized pyruvate oxidase (ECI) is used.
2.3.3)および固定化ピルベートキナーゼ(EC2
,7,1,40)の二種類の固定化酵素と酸素電極若し
くは過酸化水素電極とを組合せた酵素電極を用いて、試
料添加後の上記酵素電極における電流変化を測定するこ
とにより、濃度および酵素活性をめることを特徴とする
アデノシン5′−二リン酸濃度およびアデノシン5′−
二リン酸を生成物とする酵素の酵素活性測定方法。
2.3.3) and immobilized pyruvate kinase (EC2
, 7, 1, 40) using an enzyme electrode that combines two types of immobilized enzymes and an oxygen electrode or a hydrogen peroxide electrode, and by measuring the current change at the enzyme electrode after sample addition, the concentration and Adenosine 5'-diphosphate concentration and adenosine 5'-diphosphate characterized by increasing enzyme activity
A method for measuring enzyme activity of an enzyme that uses diphosphate as a product.
JP58226590A 1983-11-29 1983-11-29 Method for measuring adenosine 5'-diphosphate concentration or enzyme activity using enzyme electrode Expired - Lifetime JPH0690177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58226590A JPH0690177B2 (en) 1983-11-29 1983-11-29 Method for measuring adenosine 5'-diphosphate concentration or enzyme activity using enzyme electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58226590A JPH0690177B2 (en) 1983-11-29 1983-11-29 Method for measuring adenosine 5'-diphosphate concentration or enzyme activity using enzyme electrode

Publications (2)

Publication Number Publication Date
JPS60119459A true JPS60119459A (en) 1985-06-26
JPH0690177B2 JPH0690177B2 (en) 1994-11-14

Family

ID=16847558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58226590A Expired - Lifetime JPH0690177B2 (en) 1983-11-29 1983-11-29 Method for measuring adenosine 5'-diphosphate concentration or enzyme activity using enzyme electrode

Country Status (1)

Country Link
JP (1) JPH0690177B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055331A1 (en) * 2005-11-14 2007-05-18 Matsushita Electric Industrial Co., Ltd. Method of measuring adenine nucleotide
JP2007155713A (en) * 2005-11-14 2007-06-21 Matsushita Electric Ind Co Ltd Method of measuring adenine nucleotide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786752A (en) * 1980-11-19 1982-05-29 Omron Tateisi Electronics Co Measuring method for enzyme activity by electrode method
JPS58193452A (en) * 1982-02-08 1983-11-11 チルドレンズ・ホスピタル・メデイカル・センタ− Method of measuring lactic acid or its derivative

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786752A (en) * 1980-11-19 1982-05-29 Omron Tateisi Electronics Co Measuring method for enzyme activity by electrode method
JPS58193452A (en) * 1982-02-08 1983-11-11 チルドレンズ・ホスピタル・メデイカル・センタ− Method of measuring lactic acid or its derivative

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055331A1 (en) * 2005-11-14 2007-05-18 Matsushita Electric Industrial Co., Ltd. Method of measuring adenine nucleotide
JP2007155713A (en) * 2005-11-14 2007-06-21 Matsushita Electric Ind Co Ltd Method of measuring adenine nucleotide

Also Published As

Publication number Publication date
JPH0690177B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US4340448A (en) Potentiometric detection of hydrogen peroxide and apparatus therefor
Nanjo et al. Enzyme electrode sensing oxygen for uric acid in serum and urine
Vadgama Enzyme electrodes as practical biosensors
Gough et al. Enzyme Electrodes: Electrodes containing immobilized enzymes could be used to monitor specific metabolites.
JPS5823079B2 (en) Analytical methods and means for determining the amount of hydrogen peroxide in an aqueous medium and the amount of organic substrates that generate hydrogen peroxide by enzymatic oxidation
Watanabe et al. Determination of phosphate ions with an enzyme sensor system
Mizutani et al. Determination of glutamate pyruvate transaminase and pyruvate with an amperometric pyruvate oxidase sensor
Guilbault [41] Enzyme electrodes and solid surface fluorescence methods
JPH0630628B2 (en) Method for measuring the number of viable cells and vitality
CA1085279A (en) Measurement of alcohol levels in body fluids
Tomisek et al. Fluorometry of Citrate in Serum, with Use of Citrate (pro-3 S)-Lyase
Kihara et al. Determination of glutamate-pyruvate transaminase activity in blood serum with a pyruvate oxidase/poly (vinyl chloride) membrane sensor
Winartasaputra et al. Amperometric enzymic determination of triglycerides in serum
US4006061A (en) Lactate dehydrogenase determination method
US4042462A (en) Creatine phosphokinase determination method
JPS60119459A (en) Method for measuring concentration of adenosine 5'-diphosphate and enzyme activity of enzyme forming adenosine 5'-diphosphate
US4059490A (en) Measurement of alkaline phosphatase levels in body fluids
Ngo et al. Amperometric determination of picomolar levels of flavin adenine dinucleotide by cyclic oxidation-reduction in apo-glucose oxidase system
JP2595141B2 (en) Phosphate ion concentration measurement device
Guilbault Enzymatic glucose electrodes
JP3468312B2 (en) Method for detecting alkaline phosphatase
CN116606837B (en) Complex enzyme liquid for electrochemical detection of triglyceride, detection test paper and sensor
JPS62156553A (en) Concentration measuring instrument
JPS59143600A (en) Method for measuring activity of acidic and alkaline phosphatase
Nikolelis Kinetic determination of l-alanine and l-alanine dehydrogenase with an ammonia gas-sensing electrode