JPS60119408A - Displacement measuring method - Google Patents

Displacement measuring method

Info

Publication number
JPS60119408A
JPS60119408A JP22738783A JP22738783A JPS60119408A JP S60119408 A JPS60119408 A JP S60119408A JP 22738783 A JP22738783 A JP 22738783A JP 22738783 A JP22738783 A JP 22738783A JP S60119408 A JPS60119408 A JP S60119408A
Authority
JP
Japan
Prior art keywords
signal
wave
phase
sin
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22738783A
Other languages
Japanese (ja)
Inventor
Sumio Kobayashi
純夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22738783A priority Critical patent/JPS60119408A/en
Publication of JPS60119408A publication Critical patent/JPS60119408A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To make a circuit concise by fetching transmitting and receiving waves at two positions in a propagation lapse from a microwave oscillator, phase-shifting one extracting signal by 90 deg., adding it to the other extracting signal, and detecting a phase difference to a low frequency signal. CONSTITUTION:The first and the second detectors 4, 7 detect a mixed wave of transmitting waves (es1, es2) from a microwave oscillator 2 and reflected waves (er1, er2) from an object to be measured A, and send it to the first band-pass filter 5 and the second band-pass filter 8 for extracting the respective fundamental waves. A signal E1 obtained from the first band-pass filter is sent to a 90 deg. phase shifter 6, and a signal E1' is applied to an adder 10. Also, a signal E2 obtained from the second band-pass filter 8 is also applied to the adder 10, and an added signal of both the signals is sent to a phase comparator 11. Subsequently, a phase difference is detected by comparing an oscillated wave from a low frequency oscillator 1 and the phase, and a detecting signal is outputted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被測定物にマイクロ波を投射し、その送信波と
、被測定物からの反射波表の位相差を利用して被測定物
の変位を測定する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention projects microwaves onto an object to be measured, and utilizes the phase difference between the transmitted wave and the reflected wave table from the object to be measured. Concerning a method of measuring the displacement of.

〔従来技術〕[Prior art]

被測定物の変位を測定する方法としてはマイクロ波を被
測定物へ向けて投射し、その反射波と送信波との位相差
を利用する方法が知られている。
A known method for measuring the displacement of an object to be measured is to project microwaves toward the object and utilize the phase difference between the reflected wave and the transmitted wave.

その方法には、Double 5ideband Wi
th CarrierPresen を方式+ Dou
ble 5ideband With 5uppres
sedCarrier方式、 Single 5ide
band Witl+ CarrierPresent
方式+ Single 5ideband With 
5uppressedCarrier方式等があり、こ
れらにはいずれも位相器が用いられている。
The method includes Double 5ideband Wi
th Carrier Presen method + Dou
ble 5ideband With 5upres
sedCarrier method, Single 5ide
band Witl+ Carrier Present
Method + Single 5ideband With
There are 5uppressed carrier systems, etc., and all of these systems use a phase shifter.

然るごとくマイクロ波帯の移相器はその回路が複雑であ
り、高価についていた。このためこのような測定方法に
より工業計測を行うにはその回路のコスト上、計測適用
範囲が限定されてしまい好ましくなかった。
As expected, phase shifters in the microwave band had complicated circuits and were expensive. For this reason, it is not preferable to perform industrial measurements using such a measurement method because the range of measurement application is limited due to the cost of the circuit.

〔目的〕〔the purpose〕

本発明は斯かる事情に鑑みてなされたものであり、その
目的とするところは低周波帯の移相器を用いることによ
り回路を簡潔にし、これに伴い取扱いを容易とし、また
信頼度を高め得る変位測定方法を提供するにある。
The present invention was made in view of the above circumstances, and its purpose is to simplify the circuit by using a phase shifter in a low frequency band, thereby making it easier to handle and increasing reliability. The purpose of the present invention is to provide a method for measuring displacement.

〔構成〕〔composition〕

本発明に係る変位測定方法は、被測定物へ向けてのマイ
クロ波の送信波と、それからの反射波との位相差を利用
して被測定物の変位を測定する方法において、低周波に
て周期的変調をかけたマイクロ波をアンテナ良導き、被
測定物へ投射し、また該アンテナにて反射波を受信し、
マイクロ波発振器からアンテナに至る迄の伝搬経路にお
ける所定距離離隔した2位置にて送、受信波を取出し、
各位置での送、受信波の混合波を検波し、各検波信号か
らその基本波又は特定の高調波を抽出し、一方の抽出信
号を90°移和して他方の抽出信号と加算し、この加算
によって得られた信号と前記変調のための低周波信号と
の位相差を検出し、この位相差に基づき被測定物の変位
をめることを特徴とする。
The displacement measuring method according to the present invention is a method of measuring the displacement of a measured object using a phase difference between a microwave transmitted toward the measured object and a reflected wave from the microwave. A periodically modulated microwave is guided by an antenna, projected onto the object to be measured, and the reflected wave is received by the antenna.
The transmitted and received waves are extracted at two positions separated by a predetermined distance on the propagation path from the microwave oscillator to the antenna,
Detect the mixed wave of the transmitted and received waves at each position, extract the fundamental wave or specific harmonic from each detected signal, shift one extracted signal by 90 degrees and add it to the other extracted signal, The present invention is characterized in that the phase difference between the signal obtained by this addition and the low frequency signal for modulation is detected, and the displacement of the object to be measured is determined based on this phase difference.

(実施例〕 以下本発明を図面に基づき具体的に説明する。(Example〕 The present invention will be specifically explained below based on the drawings.

図面は本発明の実施状態を示す模式図であり、図中1は
Mtlzオーダーの低周波発振器、2はマイクロ波発振
器を夫々示している。マイクロ波発振器2の送信波は低
周波発振器1からの発振波(Eosin(ωmt))に
より周波数変調されており、送信波eslは導波管3を
介して導波管3の先端に取付けられたアンテナ9へ送ら
れる。該アンテナ9ば被測定物へに向けられている。前
記導波管3の中途には距離pを隔ててバイブリソI・結
合器12L]22が設けられており、マイクロ波発振器
2寄りのハイブリッド結合器121には2乗特性の第1
検波器4の入力端子が、またアンテナ9寄りのハイブリ
ッド結合器122には同しく2乗特性の第2検波器7の
入力端子が夫々接続されている。
The drawing is a schematic diagram showing the implementation state of the present invention, and in the drawing, 1 indicates a low frequency oscillator of Mtlz order, and 2 indicates a microwave oscillator. The transmission wave of the microwave oscillator 2 is frequency modulated by the oscillation wave (Eosin (ωmt)) from the low frequency oscillator 1, and the transmission wave esl is attached to the tip of the waveguide 3 via the waveguide 3. It is sent to antenna 9. The antenna 9 is directed toward the object to be measured. A vibriso I/coupler 12L] 22 is provided in the middle of the waveguide 3 at a distance p, and a hybrid coupler 121 near the microwave oscillator 2 has a first waveform with a square characteristic.
The input terminal of the wave detector 4 is connected to the hybrid coupler 122 near the antenna 9, and the input terminal of the second wave detector 7, which also has square-law characteristics, is connected.

第1.第2検波器4.7夫々はマイクロ波発振器2から
の送信波(eslles2)及び被測定物Aからの反射
波(erller2)の混合波を検波し、検波信号eI
+”2を夫々の基本波を抽出する第1帯域フィルター5
.第2帯域フイルター8へ送る。第1帯域フイルター5
から得た信号E1は90’移相器6へ送られ、90°移
相器6にて移相された信号E1 ′は加算器10へ与え
られる。
1st. Each of the second detectors 4.7 detects a mixed wave of the transmitted wave (eslles2) from the microwave oscillator 2 and the reflected wave (erller2) from the object under test A, and outputs a detected signal eI.
A first band filter 5 that extracts the fundamental waves of +”2.
.. It is sent to the second band filter 8. First band filter 5
The signal E1 obtained from the above is sent to a 90' phase shifter 6, and the signal E1' phase-shifted by the 90° phase shifter 6 is given to an adder 10.

また加算器10へは第2帯域フイルター8から得た信号
E2も与えられ、加算器10は上記両信号を加算して加
算信号を位相比較器11へ送る。該位相比較器11には
前記低周波発振器lからの発振波が送られており、位相
比較器11は再入力信号の位相を比較して位相差を検出
し、検出信号を出力する。
Further, the signal E2 obtained from the second band filter 8 is also given to the adder 10, and the adder 10 adds the above two signals and sends the added signal to the phase comparator 11. The oscillation wave from the low frequency oscillator 1 is sent to the phase comparator 11, and the phase comparator 11 compares the phases of the re-input signals, detects a phase difference, and outputs a detection signal.

なお回路定数は第1.第2検波器4,7の感度に1゜k
2、第1.第2帯域フイルター6.8の出力レベル等に
基づいて下記f1.1式を満足するように調整されてい
る。
Note that the circuit constants are the first. 1°k for the sensitivity of the second detectors 4 and 7
2. 1st. Based on the output level of the second band filter 6.8, etc., it is adjusted to satisfy the following f1.1 formula.

k、・Es1 ・Er1−に2 ・Es2 ・Er2−
に−Es −Er −fil 但し、Es I+ Er + + Es 21 Er 
2:各信号es l 、er l 、es 2 。
k, ・Es1 ・Er1−2 ・Es2 ・Er2−
-Es -Er -fil However, Es I+ Er + + Es 21 Er
2: Each signal es l , er l , es 2 .

er2の振幅 に:第1.第2帯域フイルターの出力幅Es :第1.
第2帯域フィルター通過後の送信波成分の基本波又は高
調波の振 幅 Er :第1.第2帯域フィルター通過後の反射波成分
の基本波又は高調波の振 幅 また、離隔距離lについては、下記(2)弐又は(3)
式を満足するように定めである。
To the amplitude of er2: 1st. Output width Es of the second band filter: 1st.
Amplitude Er of the fundamental wave or harmonic of the transmitted wave component after passing through the second band filter: 1st. Regarding the amplitude of the fundamental wave or harmonic of the reflected wave component after passing through the second band filter, and the separation distance l, please refer to (2) 2 or (3) below.
It is determined that the formula is satisfied.

又は、 ・・・(3) 但し、λg二マイクロ波の導波管内波長次に本発明の測
定原理につき説明する。送信波はマイクロ波発振器2か
らのマイクロ波が低周波発振器1からの発振波により周
波数変調されたものであるので、その角周波数ωを式で
表せば下記(4)式にて示される。
Or...(3) However, λg is the wavelength within the waveguide of two microwaves.Next, the measurement principle of the present invention will be explained. Since the transmitted wave is the microwave from the microwave oscillator 2 frequency-modulated by the oscillation wave from the low-frequency oscillator 1, the angular frequency ω is expressed by the following equation (4).

ω−ωh +’A・Δω・sin (ωmt) ・・・
(4)但し、ω0 :中心周波数 Δω:周波数変化幅 このような送信波が第1検波器4へ入力される。
ω−ωh +'A・Δω・sin (ωmt) ・・・
(4) However, ω0: center frequency Δω: frequency change width Such a transmitted wave is input to the first detector 4.

このときの送信波es1は下記(5)式で表される。The transmitted wave es1 at this time is expressed by the following equation (5).

es I=Es 1・sin (ωt) ・(51e3
2については、第2検波器7が第1検波器4よりもアン
テナ9側に距離βだけ離隔されているので位相遅れが2
πi/λgであり、下記(6)式%式% 次に送信波が第1検波器4からアンテナ9までの間を往
復することによる位相遅れ分をα、またアンテナ9が送
信波を出力して被測定物Aからの反射波を捉える間の位
相遅れ分をφとすると、反射波er1ば下記(7)式で
表される。
es I=Es 1・sin (ωt) ・(51e3
2, since the second detector 7 is separated from the first detector 4 by a distance β on the antenna 9 side, the phase delay is 2.
πi/λg, and the following formula (6) % Formula % Next, α is the phase delay caused by the transmitted wave reciprocating between the first detector 4 and the antenna 9, and α is the phase delay caused by the antenna 9 outputting the transmitted wave. If the phase delay during which the reflected wave from the object A is captured is φ, the reflected wave er1 is expressed by the following equation (7).

er 1=Er 1・sin (ωを一φ−α) −(
7)6r2については、距離lを信号が往復する位相分
を、位相遅れαから引いた位相だけ遅れるのでef2は
下記(8)式にて示される。
er 1=Er 1・sin (ω is one φ−α) −(
7) Regarding 6r2, there is a delay by the phase obtained by subtracting the phase of the signal reciprocating over the distance l from the phase delay α, so ef2 is expressed by the following equation (8).

g g 検波器7は信号es2とer2とを夫々混合して入力し
ているので、2乗特性の第1.第2検波器4.7ば夫々
(91,+101式にて示される信号”l+ e2を出
力する。
g g Since the detector 7 inputs the mixed signals es2 and er2, the first . The second detectors 4 and 7 each output a signal "l+e2" shown by equations 91 and 101.

e1=に+ C’AEs + 2+V2Er 1”+E
s H・Er 1・cos (φ+CX)) ・19)
62 =に、2 C’AEs 2 2 →−’A Er
 22〕 g ・・・(10) このとき、離隔距離ρは前記(2)又は(3)式を満足
するように定められているので、(10)式右辺のとな
る。
e1=to+C'AEs+2+V2Er 1"+E
s H・Er 1・cos (φ+CX)) ・19)
62 =, 2 C'AEs 2 2 →-'A Er
22] g (10) At this time, since the separation distance ρ is determined to satisfy the above formula (2) or (3), the right side of formula (10) is obtained.

したがってf91.001式から理解される如く、第1
検波器4の出力信号e、及び第2検波器7の出力信号e
2ば90°の位相差を有することになる。
Therefore, as understood from the f91.001 formula, the first
Output signal e of the detector 4 and output signal e of the second detector 7
This results in a phase difference of 90 degrees.

いま、アンテナ9から被測定物Aまでの距離をXとする
と、位相遅れφは下記(11)式にて表され、 但し、C:マイクロ波伝搬速度 この(11)式に前記(4)式を代入するとφは下記(
12)式となる。
Now, if the distance from the antenna 9 to the object to be measured A is X, the phase delay φ is expressed by the following equation (11), where C: microwave propagation speed. By substituting , φ becomes the following (
12) Equation becomes.

・・・(12) そして(12)式において、 とすると、sin φ、 cos φは下記(13)式
、(14)式にて表される。
(12) Then, in equation (12), sin φ and cos φ are expressed by equations (13) and (14) below.

(以下余白) 0 即ち、 cos φ−cos (φ、+I)−sin (0mm
))−CO3φ0 °cos fD゛sin (0mm
)1−sin φo −5in (D−sin ((+
+11 t) 1=Jo (D) ・cos φo+2
・cos φ。
(Margin below) 0 That is, cos φ-cos (φ, +I)-sin (0mm
))-CO3φ0 °cos fD゛sin (0mm
)1-sin φo-5in (D-sin ((+
+11 t) 1=Jo (D) ・cos φo+2
・cos φ.

・sin ((2n+1) ωmtl ・・・(13)
但し、Jo (D)、Jzn (D)、J2n++ (
D)は第1種ヘソセル関数 sin φ −5in (φ ロ +r)−sin (
0mm))=sin φo−cos (D−sin (
0m1)1十CO3φo −5in (D−sin (
0mm)1−Ja (D> ・sin φ0 →2・s
jnφ。
・sin ((2n+1) ωmtl ... (13)
However, Jo (D), Jzn (D), J2n++ (
D) is the hesocell function of the first kind sin φ −5in (φ ro + r)−sin (
0mm))=sin φo-cos (D-sin (
0m1) 10 CO3φo -5in (D-sin (
0mm) 1-Ja (D> ・sin φ0 →2・s
jnφ.

・sin ((2n+1 ) 0mm) ・・・(14
)1 したがって、(13)、(14)武人々の合成波から、
例えばn=1のときの基本波成分が取り出されるように
フィルター5,8を設定しておく場合には、フィルター
5,8を経た信号E、、E2ばE+ = 2・k−Es
 −Er −J+ (D)・sin (φ(、+α) 
・sin (0m t) −(15)E2 =2・k−
Es −Er −J+ (D)・cos (φθ+α)
・sin (0m t)・・・(16)となる。Elの
信号は90°移相器6に送られて移相され、下記(17
)式で示される信号E、lとなる。
・sin ((2n+1) 0mm) ...(14
)1 Therefore, from (13) and (14) the composite wave of warriors,
For example, if filters 5 and 8 are set so that the fundamental wave component when n=1 is extracted, the signals E, , E2 and E+ = 2・k−Es after passing through filters 5 and 8
−Er −J+ (D)・sin (φ(,+α)
・sin (0m t) −(15)E2 =2・k−
Es −Er −J+ (D)・cos (φθ+α)
・sin (0m t)...(16). The signal of El is sent to the 90° phase shifter 6 and phase-shifted, as shown below (17
) The signals E and l are expressed by the following equations.

E+ ’−−2・k−Es −Er −Jl (1))
・sin (φ。 +α) ・sin (0mm ± 
−−)一−−2−1(・Es −Er ・Jl (D)
・sin (ψθ +α)・cos (0mm)el、
e2は同位相に調節される。
E+ '--2・k-Es -Er-Jl (1))
・sin (φ. +α) ・sin (0mm ±
--) 1--2-1(・Es −Er ・Jl (D)
・sin (ψθ +α)・cos (0mm)el,
e2 are adjusted to be in phase.

E+’の信号及び前記E2の信号は加算器1oへ送られ
、加算器10はこれら信号を加算し、下記(18)式に
て示される加算信号を位相比較器11へ送る。
The signal E+' and the signal E2 are sent to the adder 1o, which adds these signals and sends the added signal expressed by the following equation (18) to the phase comparator 11.

E+ ’ 十E2−2 ・k−Es −Er −J+ 
(D)1(sin (φ0 →−α)7cos(ω1t
)−cos (φ0 +α)・5in(0mm)1−−
2−に−Es −Er −J+ (D)・sin (φ
0 →−α−ωmt) −2・k−Es −Er −J+ (D)・sin (
ωmt−φ。−α) ・・・(18) 位相比較器11は上記(1日)式と低周波発振器1の出
力波、即ちE。sin (0m t>との位相を比較し
、比較して得られた位相差φa+αを出力する。
E+ ' 10E2-2 ・k-Es -Er -J+
(D) 1(sin (φ0 → −α)7cos(ω1t
)-cos (φ0 +α)・5in(0mm)1--
2- to −Es −Er −J+ (D)・sin (φ
0 → −α−ωmt) −2・k−Es −Er −J+ (D)・sin (
ωmt−φ. -α) ... (18) The phase comparator 11 uses the above equation (1st) and the output wave of the low frequency oscillator 1, that is, E. The phase is compared with sin (0m t>), and the phase difference φa+α obtained by the comparison is output.

測定位相φ。→−αには2π毎の任意性があるので、こ
れから距離Xを決定することはできないが、αは第1検
波器4〜アンテナ9間距離により一定であるので、位相
変化Δφ0より被測定物Aの変位ΔXを知ることができ
る。即ち変位ΔXは3 Z である。
Measurement phase φ. → Since -α has an arbitrariness every 2π, it is not possible to determine the distance The displacement ΔX of A can be known. That is, the displacement ΔX is 3 Z.

なお上記説明では基本波成分を用いて測定しているが、
本発明ばこれに限らず任意の高調波成分を用いてもよい
。またマイクロ波に正弦波を使用しているが、これに限
らず他の矩形波5三角波等を用いてもよく、矩形波、三
角波等を用いても同様の結果が得られることは勿論であ
る。
Note that in the above explanation, measurements are made using the fundamental wave component, but
The present invention is not limited to this, and any harmonic component may be used. Furthermore, although a sine wave is used for the microwave, it is not limited to this, and other rectangular waves, triangular waves, etc. may also be used, and it goes without saying that similar results can be obtained using rectangular waves, triangular waves, etc. .

次に実施例に基づき本発明の効果について説明する。マ
イクロ波発振器2にはバラクタ同調ガン発振器を、また
アンテナ9には1.5dBオブテイマムポーンを用い、
アンテナ9を0.5m程度離れた0、5m X 0.5
mの鋼板である被測定物Aに向け、中心周波数ωo/2
π: lO,525GHz 、中心波長λ:約28.5
mm、周波数変化幅Δω/ 2 π: IOMH2、出
力4 :約10mWのマイクロ波を送信して鋼板の変位測定を
行った。
Next, the effects of the present invention will be explained based on Examples. A varactor-tuned Gunn oscillator is used as the microwave oscillator 2, and a 1.5 dB obtemamp phon is used as the antenna 9.
0.5m x 0.5, about 0.5m away from antenna 9
The center frequency ωo/2 is aimed at the object A, which is a steel plate of
π: lO, 525 GHz, center wavelength λ: approximately 28.5
mm, frequency change width Δω/2π: IOMH2, output 4: A microwave of about 10 mW was transmitted to measure the displacement of the steel plate.

その結果、分解能として10μm、また最大変位14.
25 amに対する装置位相変化出力のリニアリティ上
0.1璽醜以下を得た。
As a result, the resolution was 10 μm, and the maximum displacement was 14.
The linearity of the device's phase change output for 25 am was less than 0.1 mm.

〔効果〕〔effect〕

以上詳述した如く本発明に係る変位測定方法は、低周波
にて変調したマイクロ波を用いるので移相器は低周波の
ものでよく、しかも移相角度が90’と固定しておけば
よいから回路構成が簡潔であり、また測定のための取扱
いが容易であり、更に信頼度が高く、また十分高精度な
測定が可能である。
As detailed above, since the displacement measurement method according to the present invention uses microwaves modulated at a low frequency, the phase shifter may be of a low frequency, and the phase shift angle may be fixed at 90'. Therefore, the circuit configuration is simple, the handling for measurement is easy, the reliability is high, and measurement with sufficiently high precision is possible.

そして本発明による場合は安価な測定装置を提供できる
等本発明は優れた効果を奏する。
In the case of the present invention, the present invention has excellent effects such as being able to provide an inexpensive measuring device.

【図面の簡単な説明】[Brief explanation of drawings]

図面ば本発明の実施状態を示す模式図である。 I・・・低周波発振器 2・・・マイクロ波発振器3・
・・導波管 4・・・第1検波器 5・・・第1帯域フ
イルター 6・・・90°移相器 7・・・第2検波器
8・・・第2帯域フイルター 10・・・加算器 11
・・・位相5 比較器 特 許 出願人 住友金属工業株式会社代理人 弁理士
 河 野 登 夫 6
FIG. 1 is a schematic diagram showing an implementation state of the present invention. I...Low frequency oscillator 2...Microwave oscillator 3.
...Waveguide 4...First wave detector 5...First band filter 6...90° phase shifter 7...Second wave detector 8...Second band filter 10... Adder 11
...Phase 5 Comparator patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono 6

Claims (1)

【特許請求の範囲】[Claims] 1、被測定物へ向げてのマイクロ波の送信波と、それか
らの反射波との位相差を利用して被測定物の変位を測定
する方法において、低周波にて周期的変調をかけたマイ
クロ波をアンテナ迄導き、被測定物へ投射し、また該ア
ンテナにて反射波を受信し、マイクロ波発振器からアン
テナに至る迄の伝搬経路における所定距離離隔した2位
置にて送、受4′@波を取出し、各位置での送、受信波
の混合波を検波し、各検波信号からその基本波又は特定
の高調波を抽出し、一方の抽出信号を90°移和して他
方の抽出信号と加算し、この加算によって得られた信号
と前記変調のための低周波信号との位相差を検出し、こ
の位相差に基づき被測定物の変位をめることを特徴とす
る変位測定方法。
1. In a method of measuring the displacement of a measured object using the phase difference between the microwave transmitted toward the measured object and the reflected wave, periodic modulation is applied at low frequency. The microwave is guided to the antenna, projected onto the object to be measured, and the reflected wave is received by the antenna, and transmitted and received at two positions separated by a predetermined distance on the propagation path from the microwave oscillator to the antenna. @ Extract the wave, detect the mixed wave of the transmitted and received waves at each position, extract the fundamental wave or specific harmonic from each detected signal, shift one extracted signal by 90 degrees and extract the other. A displacement measuring method characterized by adding signals, detecting a phase difference between the signal obtained by the addition and the low frequency signal for modulation, and determining the displacement of the object to be measured based on this phase difference. .
JP22738783A 1983-11-30 1983-11-30 Displacement measuring method Pending JPS60119408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22738783A JPS60119408A (en) 1983-11-30 1983-11-30 Displacement measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22738783A JPS60119408A (en) 1983-11-30 1983-11-30 Displacement measuring method

Publications (1)

Publication Number Publication Date
JPS60119408A true JPS60119408A (en) 1985-06-26

Family

ID=16860018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22738783A Pending JPS60119408A (en) 1983-11-30 1983-11-30 Displacement measuring method

Country Status (1)

Country Link
JP (1) JPS60119408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097872A (en) * 2005-10-05 2007-04-19 Fujihira Industry Co Ltd Freezing method of straw tube and its freezing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097872A (en) * 2005-10-05 2007-04-19 Fujihira Industry Co Ltd Freezing method of straw tube and its freezing device

Similar Documents

Publication Publication Date Title
TWI616669B (en) Quadrature self-injection-locked radar
JP2584506B2 (en) FM-CW Doppler radar navigation system
US6593874B2 (en) Radar for detecting the distance to a target
EP1096269A2 (en) Heterodyned double sideband diplex radar
JP5602395B2 (en) Short-range radar apparatus and ranging method
JP5117999B2 (en) Distance measuring device
US5825323A (en) Radar sensor
US11550030B2 (en) Frequency-offset self-injection-locked radar
JPS60119408A (en) Displacement measuring method
CN117031120A (en) Device and method for monitoring microwave frequency change and absolute frequency
Pylypenko et al. Рhase ambiguity resolution in relative displacement measurement by microwave interferome-try
US11520007B2 (en) Six-port self-injection-locked radar
JPS60119409A (en) Displacement measuring method
JP2001056371A (en) Radio-wave ranging system
JPH08166443A (en) Two frequency cw radar sensor
JP2762143B2 (en) Intermittent FM-CW radar device
Doronin et al. Displacement measurement using a two-probe implementation of microwave interferometry
RU2723437C1 (en) Method for detection and high-accuracy determination of parameters of sea ice fields and radar system for its implementation
US3126540A (en) Mixer
JP2004264067A (en) Pulse radar apparatus and its distance detection method
US4041488A (en) Doppler radar system
JP2004085396A (en) Microwave doppler sensor
US20230366980A1 (en) Radar device and in-vehicle device including radar device
JP2930740B2 (en) Servo slope type FM-CW radar
JP2018054330A (en) Inspection apparatus