JPS60119107A - Bias power supply circuit - Google Patents

Bias power supply circuit

Info

Publication number
JPS60119107A
JPS60119107A JP58228041A JP22804183A JPS60119107A JP S60119107 A JPS60119107 A JP S60119107A JP 58228041 A JP58228041 A JP 58228041A JP 22804183 A JP22804183 A JP 22804183A JP S60119107 A JPS60119107 A JP S60119107A
Authority
JP
Japan
Prior art keywords
voltage
power supply
circuit
bias
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58228041A
Other languages
Japanese (ja)
Inventor
Hironobu Hatakeyama
畠山 博伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58228041A priority Critical patent/JPS60119107A/en
Publication of JPS60119107A publication Critical patent/JPS60119107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To supply always constant bias to an FET even if the FET is displaced, once bias adjustment is executed by using so-called imaginal short of an operational amplifier to control the gate voltage of the FET automatically. CONSTITUTION:The output voltage of an output terminal 9 of the operational amplifier 7 is changed until the voltage difference between the input terminals of the operational amplifier 7 becomes ''0''. The output voltage is used as the gate voltage of the FET1. Once the output voltage V1 of a DC power supply 4 and the resistance value R1 of a current adjusting resistor 10 are set up, the gate voltage is automatically adjusted even if the FET1 is displaced by another element, so that always constant drain current ID and voltage between the drain and source can be supplied to the FET1. If a switch 13 is turned on, respective relay coils of relay circuits 11, 12 are excited and the contacts of the respective relay circuits are closed. Consequently, the bias can be supplied to the FET1. When the switch 13 is closed, the respective relay coils of the relays 11, 12 are decayed, so that the contacts of the respective relay circuits are opened and the bias supply is interrupted.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、バイアス電源回路に関し、特にたとえば電
界効果トランジスタ(以下FETと称す)を駆動させる
ためのバイアスを発生するバイアス電源回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a bias power supply circuit, and particularly to a bias power supply circuit that generates a bias for driving, for example, a field effect transistor (hereinafter referred to as FET).

[従来技術] 第1図はFETへバイアスを供給するための従来のバイ
アス電源回路を示す回路図である。図において、FET
1のドレイン電極とソース電極との間には、直流N源3
が接続される。また、FET1のゲート電極とソース電
極との間には直流電源2が接続される。このような回路
において、FET1のドレイン−ソース間に規定の電圧
Vosを印加し、規定のドレイン電流1oを供給するた
めには、まず直流Ii源3の出力電圧をVosに調整す
る。次に、直流電源2の出力電圧すなわちFET1のグ
ーl−電圧■[ilを調整し、FETIのドレインに規
定のトレイン電流Toが流れるようにする。
[Prior Art] FIG. 1 is a circuit diagram showing a conventional bias power supply circuit for supplying bias to an FET. In the figure, FET
A DC N source 3 is connected between the drain electrode and the source electrode of 1.
is connected. Further, a DC power supply 2 is connected between the gate electrode and the source electrode of the FET 1. In such a circuit, in order to apply a specified voltage Vos between the drain and source of the FET 1 and supply a specified drain current 1o, the output voltage of the DC Ii source 3 is first adjusted to Vos. Next, the output voltage of the DC power supply 2, that is, the negative voltage (I) of the FET 1 is adjusted so that a specified train current To flows through the drain of the FETI.

ところで、上述のような回路において、FET1を別の
FETと交換した場合、FETのDC特性のばらつきに
より、上記グー1〜電圧VGsでは同じ規定のドレイン
電流が得られない。そのため、再度ゲート電圧を調整し
なければならない。このように、従来のバイアス電源回
路では、F E ’Tを交換する度にゲート電圧を調整
しなければならず、非常に面倒であった。
By the way, in the circuit as described above, when FET1 is replaced with another FET, the same specified drain current cannot be obtained at the voltage VGs from G1 to VGs due to variations in the DC characteristics of the FET. Therefore, the gate voltage must be adjusted again. As described above, in the conventional bias power supply circuit, the gate voltage must be adjusted every time the F E 'T is replaced, which is extremely troublesome.

[発明の概要] この発明は、かかる欠点を改善する目的でなされたもの
で、演算増幅器を用いて、FETのゲート電圧を自動的
に調整し一定のドレイン電流、ドレイン電圧を供給でき
るバイアス電源回路を提供することを目的としている。
[Summary of the Invention] The present invention was made with the aim of improving the above drawbacks, and provides a bias power supply circuit that can automatically adjust the gate voltage of an FET and supply a constant drain current and drain voltage using an operational amplifier. is intended to provide.

[発明の実施例] 以下、図面に示す実施例とともにこの発明をより具体的
に説明する。
[Embodiments of the Invention] The present invention will be described in more detail below with reference to embodiments shown in the drawings.

第2図はこの発明の一実施例を示す回路図である。図に
おいて、直流!+114の両端には、抵抗5および6の
直列接続からなる分圧回路が接続される。この分圧回路
の出力点すなわち抵抗5と抵抗6との接続点は、演算増
幅器(以下オペアンプと称す)7の一方入力端子8aに
接続される。このオペアンプ7の他方入力端子8bは、
抵抗10を介して直流電源4の正側に接続される。オペ
アンプ7の出力端子9は、リレー回路11に含まれる接
点を介してFET1のゲート電極に接続される。
FIG. 2 is a circuit diagram showing an embodiment of the present invention. In the diagram, direct current! A voltage dividing circuit consisting of resistors 5 and 6 connected in series is connected to both ends of +114. The output point of this voltage dividing circuit, that is, the connection point between the resistors 5 and 6 is connected to one input terminal 8a of an operational amplifier (hereinafter referred to as an operational amplifier) 7. The other input terminal 8b of this operational amplifier 7 is
It is connected to the positive side of the DC power supply 4 via a resistor 10. Output terminal 9 of operational amplifier 7 is connected to the gate electrode of FET 1 via a contact included in relay circuit 11 .

また、直流電源4の正側は、上記抵抗10およびリレー
回路12に含まれる接点を介してFETIのドレイン電
極に接続される。このFET1のソース電極は、直流電
[4の負側に接続される。上記リレー回路11および1
2は、それぞれのコイルを付勢する電源として1つの直
流電源14を共用している。そして、この直流電源14
と各リレー回路のコイルとの間には、スイッチ13が介
挿される。このスイッチ13は、各リレー回路のコイル
を同時に付勢または消勢するためのスイッチである。
Further, the positive side of the DC power supply 4 is connected to the drain electrode of the FETI via the resistor 10 and contacts included in the relay circuit 12. The source electrode of this FET1 is connected to the negative side of the DC current [4. The above relay circuits 11 and 1
2 share one DC power source 14 as a power source for energizing each coil. And this DC power supply 14
A switch 13 is inserted between the coil of each relay circuit and the coil of each relay circuit. This switch 13 is a switch for simultaneously energizing or deenergizing the coils of each relay circuit.

次に、第2図に示す実施例の動作を説明する。Next, the operation of the embodiment shown in FIG. 2 will be explained.

まず、図示のように、抵抗5と抵抗6の各抵抗値はR2
と等しく選ばれている。したがって、オペアンプ7の一
方入力端子8aには、Vl /2 [Vlの電圧が印加
される。ただし、■、は直流電源4の出力電圧である。
First, as shown in the figure, the resistance values of resistor 5 and resistor 6 are R2
are chosen equally. Therefore, a voltage of Vl /2 [Vl is applied to one input terminal 8a of the operational amplifier 7. However, ■ is the output voltage of the DC power supply 4.

一方、オペアンプ7の他方入力端子8bには、V、−1
o ・R+LV1の電圧が印加される。ただし、R+は
抵抗10の抵抗値であり、IoはFETIのドレイン電
圧に供給されるドレイン電流である。
On the other hand, the other input terminal 8b of the operational amplifier 7 has V, -1
o A voltage of R+LV1 is applied. However, R+ is the resistance value of the resistor 10, and Io is the drain current supplied to the drain voltage of the FETI.

ここで、オペアンプlの入力端子8aと8bとの間には
、 (vl−10・R+ ) ”=” Io R+ 2 の電圧差が現われる。しかしながら、オペアンプ7の入
力端子間は、イマジナル・ショートの状態となるので、
結局入力端子間の電圧差はOとなる。
Here, a voltage difference of (vl-10.R+)"="IoR+2 appears between the input terminals 8a and 8b of the operational amplifier l. However, since there is an imaginary short between the input terminals of the operational amplifier 7,
Eventually, the voltage difference between the input terminals becomes O.

したがって、オペアンプ7の入力端子間の電圧差を表わ
した上記式は、次式く1)に示すごとくとなる。
Therefore, the above equation expressing the voltage difference between the input terminals of the operational amplifier 7 is as shown in the following equation (1).

呈−1o’R+=O・・・(1) つまり、オペアンプ7の入力端子間の電圧差がOになる
まで、オペアンプ7の出力端子9の出力電圧が変化する
。この出力電圧は、FET1のゲート電圧となり、上記
(1)式が満足するようなドレイン電流が流れるまで、
電圧が変化していく。
Presentation-1o'R+=O (1) In other words, the output voltage at the output terminal 9 of the operational amplifier 7 changes until the voltage difference between the input terminals of the operational amplifier 7 becomes O. This output voltage becomes the gate voltage of FET1, and until a drain current that satisfies the above equation (1) flows,
The voltage changes.

今、直流電源4の出力電圧V、とドレイン電流調整用の
抵抗10の抵抗値R7を調整して、FET1のドレイン
−ソース間電圧およびドレイン電流■。@規定の値に調
整し、その後FET1を別のFETに交換した場合を想
定する。この場合、前述のように従来の回路では、その
都度ごとにゲート電圧の調整が必要であったが、この第
2図の実施例では、出力電圧V、および抵抗値R4は前
の設定状態で固定したままでよい。なぜならば、出力電
圧V、および抵抗(lIR4を前の設定状態で固定して
おくと、前述の式(1)により、この式を満足するよう
なドレイン電流1oが流れるまでオペアンプ7の出力端
子9の出力電圧が変化し、それがFETIのゲート電圧
となってゲート電圧が自動的に調整されるからである。
Now, adjust the output voltage V of the DC power supply 4 and the resistance value R7 of the drain current adjustment resistor 10 to obtain the drain-source voltage and drain current of the FET 1. @Assume that the FET1 is adjusted to the specified value and then FET1 is replaced with another FET. In this case, as mentioned above, in the conventional circuit, it was necessary to adjust the gate voltage each time, but in the embodiment shown in Fig. 2, the output voltage V and the resistance value R4 remain in the previous setting state. It can remain fixed. This is because if the output voltage V and the resistance (lIR4) are fixed in the previous setting state, the output terminal 9 of the operational amplifier 7 will be This is because the output voltage of the FETI changes, which becomes the gate voltage of the FETI, and the gate voltage is automatically adjusted.

このように、一旦直流電源4の出力電圧V+とドレイン
電流調整用の抵抗10の抵抗値R4を設定すれば、FE
T1を別の素子と交換しても、ゲート電圧が自動的に調
整されるため、常に一定のトレイン電流I。およびドレ
イン−ソース間電圧がFETIへ供給できる。
In this way, once the output voltage V+ of the DC power supply 4 and the resistance value R4 of the drain current adjustment resistor 10 are set, the FE
Even if T1 is replaced with another element, the gate voltage is automatically adjusted, so the train current I is always constant. and drain-source voltage can be supplied to the FETI.

さらに、上jホの回路では、スイッチ13をオンすれば
、リレー回路11および12の各リレーコイルが付勢さ
れて各リレー回路の接点が閉成される。したがって、F
ET1ヘバイアスが供給できる。また、スイッチ13を
オフすれば、リレー回路11および12の各リレーコイ
ルが消勢されるため、各リレー回路の接点が開成され、
バイアスの供給が遮断される。このように、第2図の実
施例では、FET1へのバイアスの供給および遮断が1
のつスイッチ13の操作で行なえる。
Furthermore, in the circuit shown in j-e above, when switch 13 is turned on, each relay coil of relay circuits 11 and 12 is energized, and the contacts of each relay circuit are closed. Therefore, F
Bias can be supplied to ET1. Furthermore, when the switch 13 is turned off, each relay coil of the relay circuits 11 and 12 is deenergized, so the contacts of each relay circuit are opened.
Bias supply is cut off. In this way, in the embodiment of FIG. 2, the supply and cutoff of bias to FET1 is 1
This can be done by operating the switch 13.

[発明の効果] 以上説明したようにこの発明によれば、オペアンプのい
わゆるイマジナル・ショートを利用してFETのゲート
電圧を自動的に制御するようにしているので、一旦バイ
アスの調整を行なえば、その後FETを交換しても、常
に一定のバイアスをFETに供給することができる。
[Effects of the Invention] As explained above, according to the present invention, the gate voltage of the FET is automatically controlled using the so-called imaginary short circuit of the operational amplifier, so once the bias is adjusted, Even if the FET is replaced thereafter, a constant bias can always be supplied to the FET.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFETヘバイアスを供給する従来のバイアス′
iIi源回路を示す回路図である。第2図はこの発明の
一実施例を示す回路図である。 図において、1はFET、4および14は直流電源、5
および6は分圧用の抵抗、7はオペアンプ、10はドレ
イン電流調整用の抵抗、11および12はリレー回路、
13はスイッチを示す。 代理人 大 岩 増 雄
Figure 1 shows the conventional bias ' supplying bias to the FET.
FIG. 3 is a circuit diagram showing an iIi source circuit. FIG. 2 is a circuit diagram showing an embodiment of the present invention. In the figure, 1 is an FET, 4 and 14 are DC power supplies, and 5
and 6 is a voltage dividing resistor, 7 is an operational amplifier, 10 is a drain current adjustment resistor, 11 and 12 are relay circuits,
13 indicates a switch. Agent Masuo Oiwa

Claims (1)

【特許請求の範囲】 (1) 電界効果トランジスタにバイアスを供給するた
めのバイアス電源回路であって、前記電界効果トランジ
スタのドレイン−ソース間に電流を供給するだめの直流
電源、 前記直流電源と前記電界効果トランジスタのドレイン電
極との間に介挿される抵抗、 所定の値の電圧を発生するための電圧発生回路、および その一方入力端に前記電圧発生回路の出力を受け、その
他方入力端に前記ドレイン電極が接続され、かつその出
力が前記電界効果トランジスタのペース電極に与えられ
る演韓増幅器を備える、バイアス電源回路。 <2) ’WJ記電圧電圧発生回路前記直流電源を分圧
する抵抗分圧回路を含む、特許請求の範囲第1項記載の
バイアス電源回路。 (3) さらに、前記直流電源と前記電界効果トランジ
スタとの間の電流供給経路に介挿される第1のリレー回
路、 前記演算増幅器の出力端子と前記電界効果トランジスタ
のベース電極との間に介挿される第2のリレー回路、お
よび 前記第1のリレー回路と前記第2のリレー回路の開閉状
態を同期的に切換えるための1つのスイッチを備える、
特許請求の範囲第1項または第2項に記載のバイアス電
源回路。
[Scope of Claims] (1) A bias power supply circuit for supplying bias to a field effect transistor, comprising: a DC power supply for supplying current between the drain and source of the field effect transistor; the DC power supply and the a resistor inserted between the drain electrode of the field effect transistor, a voltage generating circuit for generating a voltage of a predetermined value, one input terminal of which receives the output of the voltage generating circuit, and the other input terminal of which receives the output of the voltage generating circuit; A bias power supply circuit comprising an amplifier whose drain electrode is connected and whose output is provided to the pace electrode of the field effect transistor. <2) 'WJ Voltage Generation Circuit' The bias power supply circuit according to claim 1, which includes a resistive voltage divider circuit that divides the voltage of the DC power supply. (3) Furthermore, a first relay circuit inserted in a current supply path between the DC power supply and the field effect transistor, and a first relay circuit inserted between the output terminal of the operational amplifier and the base electrode of the field effect transistor. a second relay circuit, and one switch for synchronously switching the open/close states of the first relay circuit and the second relay circuit,
A bias power supply circuit according to claim 1 or 2.
JP58228041A 1983-11-30 1983-11-30 Bias power supply circuit Pending JPS60119107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58228041A JPS60119107A (en) 1983-11-30 1983-11-30 Bias power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58228041A JPS60119107A (en) 1983-11-30 1983-11-30 Bias power supply circuit

Publications (1)

Publication Number Publication Date
JPS60119107A true JPS60119107A (en) 1985-06-26

Family

ID=16870270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58228041A Pending JPS60119107A (en) 1983-11-30 1983-11-30 Bias power supply circuit

Country Status (1)

Country Link
JP (1) JPS60119107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104933A1 (en) * 2010-02-25 2011-09-01 シャープ株式会社 Bias circuit, lna, lnb, receiver for communication, transmitter for communication, and sensor system
JP2011176760A (en) * 2010-02-25 2011-09-08 Sharp Corp Bias circuit, lna, lnb, receiver for communication, transmitter for communication, and sensor system
JP4800433B1 (en) * 2010-08-27 2011-10-26 シャープ株式会社 Bias circuit, LNA, and LNB

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104933A1 (en) * 2010-02-25 2011-09-01 シャープ株式会社 Bias circuit, lna, lnb, receiver for communication, transmitter for communication, and sensor system
JP2011176760A (en) * 2010-02-25 2011-09-08 Sharp Corp Bias circuit, lna, lnb, receiver for communication, transmitter for communication, and sensor system
TWI449326B (en) * 2010-02-25 2014-08-11 Sharp Kk Bias circuit, LNA, LNB, communication receiver, communication transmitter and sensing system
JP4800433B1 (en) * 2010-08-27 2011-10-26 シャープ株式会社 Bias circuit, LNA, and LNB

Similar Documents

Publication Publication Date Title
US5422780A (en) Solenoid drive circuit
JPH03105262A (en) Current detecting circuit
US4004158A (en) Keyed comparator
JPH11176945A (en) Fusing device
EP0511856A1 (en) Reference generator
JPS60119107A (en) Bias power supply circuit
JP4017850B2 (en) Power circuit
JPH0917180A (en) Substrate voltage adjusting device of semiconductor element
TW234794B (en)
JPH1188159A (en) Charge pump circuit
JP2676612B2 (en) Current mirror circuit device
US6798633B1 (en) Circuit arrangement for operation of a relay
JP2000194429A (en) Method and circuit for preventing oscillation of battery charger
EP1079293A1 (en) Current reference circuit
JP2607304B2 (en) Semiconductor integrated circuit device
KR900019348A (en) Electronic circuit
CN111984055B (en) Integrated circuit and reference voltage generating circuit thereof
JPH05235662A (en) Constant current generation circuit
KR20130032526A (en) Power amplifier
JP2727332B2 (en) Semiconductor bias circuit
KR970029748A (en) Reference voltage generation circuit of semiconductor device
KR100273211B1 (en) Reference voltage generator
JPS60213265A (en) Control circuit for switching regulator
JPH05259880A (en) Input output buffer circuit
JPS5829628Y2 (en) filter control circuit