JPS60119103A - Transmitting antenna device - Google Patents

Transmitting antenna device

Info

Publication number
JPS60119103A
JPS60119103A JP22802083A JP22802083A JPS60119103A JP S60119103 A JPS60119103 A JP S60119103A JP 22802083 A JP22802083 A JP 22802083A JP 22802083 A JP22802083 A JP 22802083A JP S60119103 A JPS60119103 A JP S60119103A
Authority
JP
Japan
Prior art keywords
output
antenna
amplifiers
patramatrix
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22802083A
Other languages
Japanese (ja)
Inventor
Masato Inoue
正人 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22802083A priority Critical patent/JPS60119103A/en
Publication of JPS60119103A publication Critical patent/JPS60119103A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix

Abstract

PURPOSE:To obtain a transmitting antenna device having a high power composing efficiency from the view point of the inside of a circuit and space by amplifying electric power distributed by a patramatrix through element amplifiers, composing the amplified output in the patramatrix again and then supplying the composed electric power to an antenna arranged in a prescribed direction. CONSTITUTION:When input terminals J1a-J4a of an input side patramatrix 5a are selected, signals amplified by the amplifiers 2a-2d are composed and inputted to input terminal J1b-J4b of an output side patramatrix 5b. Consequently, the composed output of the amplifiers 2a-2d is radiated from any one of antennas 1a-1d corresponding to the selected input terminals J1a-J4a. Therefore, the efficiency of electric power composition is not reduced even at frequency other than a center frequency f0. Since the antennas 1a-1d are arranged so as to be mechanically turned at angles theta1-theta4, a gain reducing phenomenon due to scanning does not appear and the interval between the elements is not limited, so that the size and shapes of the elements and the antenna can be optionally selected.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、例えば空中線切換方式、マルチビーム方式
等に代茂されるマイクロ波送信空中線装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a microwave transmitting antenna device that is used, for example, as an antenna switching method or a multi-beam method.

〔従来技術〕[Prior art]

従来この神の装置の例として、第1図、第2図。 Figures 1 and 2 are examples of conventional divine devices.

第3図にボすものがあった。第1図は個別空中線方式(
方式1 )、第2図1−m空中線切換方式(方式2)、
第3図はマルチビーム空中線方式の一独、/< トラア
レー仝中線方式(方式3)である。
There was something missing in Figure 3. Figure 1 shows the individual antenna system (
Method 1), Figure 2 1-m antenna switching method (method 2),
Figure 3 shows the multi-beam antenna system (method 3).

図において、(la)〜(M)はそハぞね空間的に17
1゜02、θ3.θ4の方向を指向する工うに設置さ7
′また空中線、+21 、 (2a)〜(2i)は増幅
器、+31は増幅器(2)で増幅された信号を谷空中1
蝋(]a)〜(]、d) i7こ切替出方するためのス
イッチ、(4a)〜(44)は線状に配列さねた索子空
中線、jは配列の素子開隔、)51はパトラマトリクス
、(Jl)〜(J4)及び(J5)〜(J8)は−tt
lそれ該パトラマトリクス(61の人カ端子、出カ端子
である。
In the figure, (la) to (M) are spatially 17
1°02, θ3. Installed in a workpiece pointing in the direction of θ4 7
' Also, the antenna, +21, (2a) to (2i) are amplifiers, +31 is the amplifier (2), and the signal amplified is sent to the valley air 1.
Wax (]a) to (], d) i7 Switch for switching output, (4a) to (44) are cord antennas arranged in a linear manner, j is the element spacing of the arrangement, )51 is Patora matrix, (Jl) to (J4) and (J5) to (J8) are -tt
l That is the Patora matrix (61 human input terminals and output terminals).

次に動作について説「ガする。−第1図の個別空中線方
式(方式1)においては谷々の空中線(]、a)〜(l
d)はそハぞれ増幅器(2a)〜(2d)と直接接続さ
れており、(θl)〜(θ4)のうちの所期の方向に空
中線ビーム全指向させる場合には増幅器(2a)〜(2
d)のうち、ただ1個の出方のみが有効利用されること
になる。第2図の空中線切換方式(方式21こおいては
、増+lf8器(2)の出刃はスイッチ(3)を切替え
ることVCLす((/x)〜(04)のうちの所期の方
向に指向きれる。第3図のパトラアレー空中線方式(方
式3)においては、入力端子(Jl)〜(、T4) ”
k選択することによって出力端子(J5)〜(JB) 
K現われる出力の相対位相φl〜φ4は、その設置1中
心周波数fOにおいては茂1に示す値となる。
Next, the operation is explained as follows: - In the individual antenna method (method 1) shown in Fig.
d) are directly connected to amplifiers (2a) to (2d), respectively, and when the antenna beam is to be omnidirectionally directed in the desired direction among (θl) to (θ4), amplifiers (2a) to (2d) are connected directly to amplifiers (2a) to (2d). (2
Among d), only one way of output will be effectively used. In the antenna switching method (method 21) shown in Fig. 2, the blade of the increase + lf8 device (2) is set by switching the switch (3) to the desired direction of VCL ((/x) to (04)). In the Patra array antenna method (method 3) shown in Fig. 3, the input terminals (Jl) to (, T4)
Output terminals (J5) to (JB) by selecting k
The relative phases φl to φ4 of the outputs appearing in K have the values shown in Shigeru 1 at the installation 1 center frequency fO.

衣 1 増幅器(2a)〜(2d)も含めた出力端子(J5)〜
(JB)から索子空中線(4a)〜(4d)捷での給電
線電気長がそろっているものとすると、素子空中線(4
a)〜(4,d、)の開口に現わtつる相対位相φ1′
〜φ4′も設計中心周波数fすにおいては表1に示す個
々なる。
Clothes 1 Output terminal (J5) including amplifiers (2a) to (2d)
Assuming that the electrical lengths of the feeder lines at the cable antennas (4a) to (4d) are the same from (JB), the element antenna (4
The relative phase φ1' appearing in the apertures of a) to (4, d,)
.about.φ4' also have the values shown in Table 1 at the design center frequency f.

一般にアレー空中線において、@接素子空中線間の給屯
位相差全一定値δ(If)とした場合、仝中細ヒームの
走査角θ8は次式で衣わされる。
In general, in an array antenna, if the feed phase difference between the contacting element antennas is a total constant value δ (If), the scan angle θ8 of the medium-thin beam is given by the following equation.

(式1)において、λは使用周波数の波長である。In (Equation 1), λ is the wavelength of the frequency used.

(式1)かられかるように走査角θθばδ、d。As can be seen from (Equation 1), the scanning angle θθ is δ, d.

λの関数であり、d(j一定値とすると、δがλに反比
例して、増減する場合以外はθSはλの関数となる。
If d(j is a constant value, θS is a function of λ except when δ increases or decreases in inverse proportion to λ.

パトラアレー空中線方式の場合、中心周波数fOにおい
ては基本的に δ−φ1−ψ2−φ2−φ3−φ3−φ4 ・・・(式
2)であり、畏1に示すように入力端子(Jl)、 (
、T2)。
In the case of the Patra array antenna system, at the center frequency fO, basically δ-φ1-φ2-φ2-φ3-φ3-φ4 (Equation 2), and as shown in A1, the input terminal (Jl), (
, T2).

(J3)、 (J4)に対応して δ−−456,135°、 (35°、45゜と一義的
に決まる。したがって、ある周波数における所期の走査
角θθを決定するのけ素子間隔dということになる。即
ち である。
Corresponding to (J3) and (J4), it is uniquely determined as δ−456,135°, (35°, 45°. Therefore, the element spacing d that determines the desired scanning angle θθ at a certain frequency is That is to say.

マタ、パトラマトリクス(5(は第4図に示すようにf
過位相信が基本的には周波数に無関係な90゜ハイブリ
ッド(6)と、透過位相鑓が周波数に比例するディール
ライン部(7)とから成り立っているためパトラマトリ
クス(51全体の隣接出力端子間位相差δ々周波叔との
比例関係(波長との反比例関係)に、成り立たない。即
ち、(式l)中のλδが周波数特性を持つため走査角θ
Sも周波数特性を持つことに斤り、設計中心周波数fO
I21外では所期の角度に空中線ビームは指向さねない
。寸た、走査VCLる走森角腿方向の利得は(式3)で
与えらt]る素子間隔dと素子空中線(4a)〜(4d
)の形状に、Lつて決まる素子パターン形状に依存して
ΔGたけ低下する。この様子を第5図に示す。
Mata, Patra matrix (5) is f as shown in Figure 4.
Since the overphase signal basically consists of a 90° hybrid (6) that is independent of frequency and a deal line section (7) whose transmission phase is proportional to the frequency, The phase difference δ does not have a proportional relationship with the frequency (inversely proportional relationship with the wavelength).In other words, since λδ in (Equation 1) has frequency characteristics, the scanning angle θ
Since S also has frequency characteristics, the design center frequency fO
Outside I21, the antenna beam may not be directed at the desired angle. In addition, the gain of the scanning VCL in the scanning direction is given by (Equation 3), where the element spacing d and the element antennas (4a) to (4d
) is reduced by ΔG depending on the element pattern shape determined by L. This situation is shown in FIG.

従来の移置は以−ヒのように構成されているので、個別
空中線方式(方式1)では傾数個の増幅器の出力ポカの
有効利用ができないこと、空中線切換方式(式2)では
切換の尚速性が要求される場合にスイッチとして゛重子
スイッチを用いる必要が生じ、耐′市カ性、損失特性の
面で問題があること、同時に複数の方向に送はで@ない
こと寺の欠点があった。捷た、パトラアレー空中線方式
(方式3)においては、走食角θ日が与えられると、素
子間隔dが一義的に決まり、素子空中線の寸法、形状の
選択に自由度が少ないこと、走査による利得低下がある
こと等の欠点があった。
Conventional relocation is configured as shown below, so the individual antenna method (method 1) cannot effectively utilize the output power of the tilted amplifiers, and the antenna switching method (formula 2) has the disadvantages of switching. When high speed is required, it becomes necessary to use a multiplex switch as a switch, which has problems in terms of market resistance and loss characteristics, and disadvantages such as not being able to send in multiple directions at the same time. was there. In the truncated Patra array antenna method (method 3), when the scanning angle θ is given, the element spacing d is uniquely determined, and there is little freedom in selecting the dimensions and shape of the element antenna, and the gain due to scanning is There were drawbacks such as a decrease in

〔発明のa要〕[A essential point of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになさネタもので、パトラマトリクスによって分配さ
ねた゛重力全素子増幅器で増幅し、その出力?再びパト
ラマトリクスで合成して、所期の方向に向けて、設置さ
ねた空中線に給゛屯することにより、回路内及び空間的
両面から見て′重力合成効率のよい送は空中線装置を・
提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as mentioned above, and the output is amplified by a ``gravitational all-element amplifier'' which is not distributed by a Patora matrix. By synthesizing it again using the Patoramatrix and feeding it to the antenna that was not installed in the desired direction, the antenna device can be transmitted with high gravity synthesis efficiency from both the inside of the circuit and spatially.
is intended to provide.

〔発り]の実施例〕[Example of origin]

以下、この発明の一実施例を図について説り」する。第
6図において、(1a)〜(1d、ljそねそれ空間的
Qて(θ1)、(θ2)、 (03)、 (θ4)の方
向を指向するように設置された空中線、(2a)〜(2
d)は増幅器、(ea)はへカイ則パトラマトリクス、
(5b) ri′i出力側パトラマトリクス、(Jla
、)〜(La) 、 (Jtb)〜(J<b)は入力端
子、(Jea、) 〜(Jea) 、 (J5b)〜(
Jab) tri出力端子である。入力側パトラマトリ
クス(5a)ど出力側パトラマトリクス(5b)は全く
同一の特性を有する虹のを使用し、それぞれの出力端子
(、T5a)−(Jea) 、 (、Thb) −(、
Tab)が゛電気長6等しい増幅器(2a)〜(2d)
 k介して互いに対向する向きに(入力側パトラマトリ
クス(5a)と出力側パトラマトリクス(5b)は逆向
きに)接続さハる。
An embodiment of the present invention will be explained below with reference to the drawings. In Fig. 6, the antennas (2a) are installed so as to point in the spatial Q directions (θ1), (θ2), (03), (θ4); ~(2
d) is an amplifier, (ea) is a Hekai law Patora matrix,
(5b) ri′i output side Patora matrix, (Jla
,)~(La), (Jtb)~(J<b) are input terminals, (Jea,)~(Jea), (J5b)~(
Jab) tri output terminal. The input-side Patora matrix (5a) and the output-side Patora matrix (5b) are made of rainbow rays having exactly the same characteristics, and the respective output terminals (,T5a)-(Jea), (,Thb)-(,
Amplifiers (2a) to (2d) whose electrical lengths (Tab) are equal to 6
They are connected in opposing directions (the input-side Patora matrix (5a) and the output-side Patora matrix (5b) are in opposite directions) via k.

次に卯1作について説明する。Next, I will explain about the first rabbit.

従来の方式3と同様、入力側パトラマトリクス(5a)
の入力端子を選択することにより、中心1M波数foに
おいては出力端子(C現わハる位相差は表IK示す値と
なる。増幅器(2a)〜(2d)の電気長が等しいから
、出力側パトラマトリクス(5b)の端子(J5b)〜
(yeb)には表1に示す位相差ケ持った随号が入力さ
れる。出力側パトラマトリクス(5b)汀入出力可逆性
かあるから、ある位相差を持って出力端子(Jzb)〜
(Jab)に入力された@号は、その位相差に対応する
入力端子(Jxb)〜(J4b)に合成されて現われる
。したがって、入力側パトラマトリクス(5a)の入力
端子(Jla)、 (Jza)、 (Jaa)、 (J
4a)全選択した場合、増幅器(2a)〜(2d)で増
幅された13号は合成されて、出力側パトラマトリクス
(5b)の入力端子(Jxb) 、 (J2b) 、 
(J3b) 、 (J4b)にそれぞ′h現わtする。
As with conventional method 3, the input side Patora matrix (5a)
By selecting the input terminal of , at the center 1M wave number fo, the phase difference at the output terminal ( Patora matrix (5b) terminal (J5b) ~
The number having the phase difference shown in Table 1 is input to (yeb). Since the output side Patora matrix (5b) has reversibility of input and output, the output terminal (Jzb) has a certain phase difference.
The @ sign input to (Jab) is synthesized and appears at the input terminals (Jxb) to (J4b) corresponding to the phase difference. Therefore, the input terminals (Jla), (Jza), (Jaa), (J
4a) When all are selected, No. 13 amplified by amplifiers (2a) to (2d) are combined and output to the input terminals (Jxb), (J2b),
(J3b) and (J4b) appear, respectively.

よって増幅器(2a)〜(2d)の合成出力が選択した
入力端子(Jta)〜(J4a)Ic対応した1つの空
中線(la、)、 (lb)、 (lc)、 (ldl
のいずれかから放射さね、ることになる。
Therefore, the combined output of amplifiers (2a) to (2d) corresponds to one antenna (la,), (lb), (lc), (ldl) corresponding to the selected input terminal (Jta) to (J4a) Ic.
It will radiate from either of them.

中心周波数fO以外の周波数においては、入力側パトラ
マトリクス(5a)の出力端子(J5a、)〜(、Ta
b)に現わハる1d号の位相差は均一にはならないが、
パトラマトリクスの可逆性によりこの場合にも上記した
゛重力合成の効率は全く低下せず、全ての増幅器(2a
) 〜(2d)の出力が空中線(1aL (lb)、 
(]、c)、 (1d)のいずれか、から放射される。
At frequencies other than the center frequency fO, the output terminals (J5a, ) to (, Ta
Although the phase difference of No. 1d appearing in b) is not uniform,
Due to the reversibility of the Patora matrix, the efficiency of the above-mentioned ``gravitational synthesis'' does not decrease at all in this case, and all amplifiers (2a
) ~ (2d) output is antenna (1aL (lb),
It is emitted from either (], c), or (1d).

空中+ll C1a) 〜(ld)は機械的に角1tθ
1〜’74 ’e向くように設置されているので、従来
の方式3に見られるような走査による利得低丁埃象はな
ぐ、東予間隔の制限もないので、素子空中線寸法、形状
の選択にも自由度がある。捷た、高速性が要求される際
には従来の方式2と異なり、゛電子′スイッチを人力I
11パトラマトリクス(5a)の@に設けねば工rので
、極立った耐電力性は不要である。出力(Itl+パト
ラマトリクス(5b)には大゛嘔力が通るが、電子スイ
ッチに比V、するとノ(トラマトリクスは耐電力性の艮
好なものが笑現しやすいので、構成は楽である。
Air +ll C1a) ~ (ld) is mechanically the angle 1tθ
1 to '74'e, there is no problem of low gain due to scanning as seen in the conventional method 3, and there is no restriction on the Toyo spacing, so it is easy to select the element antenna dimensions and shape. There is also a degree of freedom. Unlike the conventional method 2, when high-speed operation is required, an electronic switch can be replaced manually.
11 Since it is necessary to provide it at @ of the Patora matrix (5a), it is not necessary to have extremely high power resistance. Although a large amount of power passes through the output (Itl+Patra matrix (5b)), compared to the electronic switch, the configuration is easy because it is easy to create a Tramatrix with good power resistance.

さら(で、従来の方式1.方式3と同様に、同時に複数
ρ方向に送信を行うことも可能である。
Furthermore, as with conventional methods 1 and 3, it is also possible to simultaneously perform transmission in multiple ρ directions.

なお、ヒ記笑栴例では、パトラマトリクスの入出力端子
数、空中線数、増幅器の故がいずれも4の場合について
示したが、数についてはこの限りで月なく、数を増やす
こ々によって送j言電力、空中線利得の両方を」二げる
ことも可能である。
In addition, in this example, the number of input/output terminals, the number of antennas, and the number of amplifiers of the Patoramatrix are all 4, but this is not the case and the number of transmissions is not limited to this and can be increased by increasing the number. It is also possible to increase both the power and the antenna gain.

〔発1−1の効果〕 以ヒのように、この発明にLt″Lは、回路ケ第6図の
ように#/? fM、l、たので、広帯域にわたって、
回(訟由ムbrc■IT−H6’s筒而カー自シ1イカ
介醒が効高工(行われ、回路部品の]大抵も答易な、同
時複数方向送信も0J′能な毘KRP (実効放射重力
)型送治空中線が得られる効果がある。
[Effect of Irradiation 1-1] As described below, in this invention, Lt″L is #/?fM,l, as shown in FIG. 6 in the circuit, so over a wide band,
(Course procedure brc ■IT-H6's internal car 1) The high efficiency construction (conducted, circuit components) is mostly easy, simultaneous multi-directional transmission is also possible BIKRP This has the effect of providing a (effective radiation gravity) type radiation antenna.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の個別仝中線方式を不すブロック図、第2
図は従来の空中線切換方式を不すブロック図、第3図は
従来のバトラア1/−空中線方式金示すブロック図、第
4図はパトラマトリクス構成図、第5図は従来σ)パト
ラアレー空中線方式による走査時利得低下を示す図、第
6図はこの発明の一実施例による送1g苧中線装置tを
示すブロック図である。 図において、(la)、 (より)、 (lc)、 (
la)は空中線、(21、(2a)、 (2bL (2
cL (2a)は増幅器、(3)はスイッチ、(4a、
)、 (4N、 (4c)、 (4dlは素子空中線、
(5)はパトラマトリクス、(5a)u入力端パトラマ
トリクス、tabnet出力(ti11パトラマトリク
ス、+[ilは90°ハイブリツド、(7)はディI/
−ライン部。 なお、各図中の同−狩りは同−又は相当部分をボす。 代理人 大岩増雄 第1図 第214 第4−r4 第5図 第(1図 手続袖正書(自発) 2、発明の名称 送信空中線装置 3、補正をする者 事件との関係 主、1・許出願人 代表者片山仁へ部 4、代理人 7、 添付書類の目録 (1)訂正後の特許請求の範囲を示す書面 1通以上 特許請求の範囲 同一特性を有する2個のパトラマトリクスを複数個の増
幅器を介して各々対向する方向に接続し、これによって
合成された増幅器の出力を所期の方向に向けて設置され
た複数個の空中線のうちのいずれかから集中的に放射さ
竺たことを特徴とする送信空中線装置。
Figure 1 is a block diagram that eliminates the conventional individual center line system;
The figure is a block diagram without the conventional antenna switching system, Figure 3 is a block diagram showing the conventional Butler array antenna system, Figure 4 is a block diagram of the Patora matrix configuration, and Figure 5 is based on the conventional σ) Patra array antenna system. FIG. 6 is a block diagram illustrating a feed 1g midline device t according to an embodiment of the present invention. In the figure, (la), (than), (lc), (
la) is the antenna, (21, (2a), (2bL (2
cL (2a) is an amplifier, (3) is a switch, (4a,
), (4N, (4c), (4dl is the element antenna,
(5) is a Patram matrix, (5a) u input terminal Patram matrix, tabnet output (ti11 Patram matrix, +[il is 90° hybrid, (7) is di I/
-Line section. Note that the same or similar portions in each figure are omitted. Agent Masuo Oiwa Figure 1 Figure 214 4-r4 Figure 5 (Figure 1 Procedural Sleeve (spontaneous) 2. Name of the invention Transmitting antenna device 3. Person making the amendment Relationship to the case Owner, 1. Applicant Representative Hitoshi Katayama, Department 4, Agent 7, List of attached documents (1) Document indicating the scope of patent claims after correction One or more copies of two or more patra matrices having the same characteristics of the claims are connected in opposite directions through two or more amplifiers, and the combined output of the amplifiers is radiated centrally from one of the antennas installed in the desired direction. A transmitting antenna device characterized by:

Claims (1)

【特許請求の範囲】[Claims] 同一特性をイイする2個のパトラマトリクス全複数個の
増幅器を介して谷々対向する方向V(接ガ洸し、これV
CLつて合成された増幅器の出力を所期の方向に向けて
設置さtまた&g個の空中線のうちのいすね、かから集
中的に放射されたこと全特徴とする送1言全中線装置。
Two Patram matrices with the same characteristics are connected to each other in the direction V which faces each other via all the amplifiers.
A transmitting central line device which is characterized by the fact that the output of the synthesized amplifier is radiated in a concentrated manner from one of the two antennas, which is installed so that the output of the synthesized amplifier is directed in the desired direction. .
JP22802083A 1983-11-30 1983-11-30 Transmitting antenna device Pending JPS60119103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22802083A JPS60119103A (en) 1983-11-30 1983-11-30 Transmitting antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22802083A JPS60119103A (en) 1983-11-30 1983-11-30 Transmitting antenna device

Publications (1)

Publication Number Publication Date
JPS60119103A true JPS60119103A (en) 1985-06-26

Family

ID=16869931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22802083A Pending JPS60119103A (en) 1983-11-30 1983-11-30 Transmitting antenna device

Country Status (1)

Country Link
JP (1) JPS60119103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302102A (en) * 1989-04-24 1990-12-14 Hughes Aircraft Co Improved antenna beam forming system
JPH03207104A (en) * 1989-09-26 1991-09-10 Agence Spatiale Europ Multiple beam antenna feeding device
JP2003507956A (en) * 1999-08-24 2003-02-25 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for power amplification in a base station

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302102A (en) * 1989-04-24 1990-12-14 Hughes Aircraft Co Improved antenna beam forming system
JPH03207104A (en) * 1989-09-26 1991-09-10 Agence Spatiale Europ Multiple beam antenna feeding device
JP2003507956A (en) * 1999-08-24 2003-02-25 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for power amplification in a base station

Similar Documents

Publication Publication Date Title
CN1143408C (en) Radio antenna system
AU614041B2 (en) An antenna which is electronically reconfigurable in transmission
JPH06177635A (en) Cross dipole antenna system
US6052086A (en) Array antenna, antenna device with the array antenna and antenna system employing the antenna device
WO1997002623A1 (en) A dual polarized, heat spreading rectenna
US20080012778A1 (en) Antenna device
WO1997002623A9 (en) A dual polarized, heat spreading rectenna
JP3246643B2 (en) Bidirectional printed circuit board antenna
JPS60119103A (en) Transmitting antenna device
JPH0812973B2 (en) Array antenna device
JPH04122104A (en) Two-frequency shaped antenna
JP4115681B2 (en) Active phased array antenna, two-dimensional planar active phased array antenna, transmitter and receiver
EP0786826A2 (en) Intermodulation scattering communications apparatus
KR20230065502A (en) High power slotted waveguide array antenna
JP3634047B2 (en) Grating lobe cancel antenna for mobile SNG
JP3280081B2 (en) Array antenna
JP3954263B2 (en) Active phased array antenna apparatus for transmission and active phased array antenna apparatus for reception
JP2981087B2 (en) Beam antenna
JPH07142927A (en) Antenna device
JP2000138528A (en) Antenna device
JPH06125216A (en) Array antenna
JPH07142926A (en) Antenna
JPS58147203A (en) Antenna feeding device
JPS5951770B2 (en) array antenna
JPS606124B2 (en) array antenna