JPS60118807A - Production of optical fiber for high-output infrared laser - Google Patents

Production of optical fiber for high-output infrared laser

Info

Publication number
JPS60118807A
JPS60118807A JP58227335A JP22733583A JPS60118807A JP S60118807 A JPS60118807 A JP S60118807A JP 58227335 A JP58227335 A JP 58227335A JP 22733583 A JP22733583 A JP 22733583A JP S60118807 A JPS60118807 A JP S60118807A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
core
crystal
finished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58227335A
Other languages
Japanese (ja)
Inventor
Fumiaki Higuchi
文章 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58227335A priority Critical patent/JPS60118807A/en
Publication of JPS60118807A publication Critical patent/JPS60118807A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/84Halide glasses other than fluoride glasses, i.e. Cl, Br or I glasses, e.g. AgCl-AgBr "glass"
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/86Chalcogenide glasses, i.e. S, Se or Te glasses

Abstract

PURPOSE:To obtain an optical fiber for a high-output IR laser in which impurities and foam are not contained by forming a fiber by machining alone from a base crystal material for an optical fiber without heating and melting the same and coating a clad layer thereon in a vapor phase. CONSTITUTION:A base crystal material for an optical fiber for a high-output IR laser such as alkali halide optical fiber, silver halide, thallium optical fibers, II-VI group compds. and their mixed crystal optical fibers or the like is cut to a square, hexagonal or other sectional shape. The cut material is then subjected to chemical or physical polishing and is thus finished to a circular columnar crystal having 1mm. diameter. The end face is finished to obtain a blank material for the optical fiber. Such blank material is used as a core and ZnS is coated on the surface of the core by a chemical vapor deposition method using Zn vapor and gaseous H2S to form a clad layer thereon. The fiber which has good adhesion betwen the core and the clad, good flexibility and extremely small surface roughness, is free from influence of scattering and has a small transmission loss is obtd.

Description

【発明の詳細な説明】 〔本発明の技術分野〕 本発明は、高出力赤外レーザー用、特に炭酸ガスレーザ
ー用光ファイバの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing an optical fiber for high-power infrared lasers, particularly for carbon dioxide lasers.

〔背景技術〕[Background technology]

近年高出力赤外レーザー例えば10.6μmの炭酸ガス
レーザー等の開発が進み、レーザー加工機およびレーザ
ーメスの応用が盛んである。
In recent years, high-power infrared lasers such as 10.6 μm carbon dioxide lasers have been developed, and their applications in laser processing machines and laser scalpels have become popular.

レーザー光の導光路には、ミラーおよびレンズからなる
多関jIiT型導光路方式と、光ファイバによる方式が
あるが、自由度や光軸調節の容易さなどの機能性の点で
光フアイバ方式が優れていると考えらJし、NaC(5
,KClfr、どのアルカリハライド系光))′イバ、
クリラムハライド系光ファイバ、タリウムハシイド混晶
光ファイバ、金属ハライド光ファイバなどのII)1究
が盛んである。ファイバの作成方試作されている。
There are two types of light guide path for laser light: a multi-sensor jIiT light guide path method consisting of mirrors and lenses, and a method using optical fibers, but the optical fiber method is preferred in terms of functionality such as degree of freedom and ease of adjusting the optical axis. Thought to be superior, NaC (5
, KClfr, which alkali halide light))'iba,
II) Research on Kuril halide optical fibers, thallium hashide mixed crystal optical fibers, metal halide optical fibers, etc. is active. A prototype of how to make the fiber has been made.

しかしながら、押し出し法による多結晶ファイバにおい
ては、光フアイバ結晶は、コンテナ中で加熱溶融後、ダ
イス穴から押し出されるため不純物が混入し、不純物吸
収が増大する欠点を有している。−!た、結晶粒径の制
御が困難であり、粒界での散乱が大きくなる。さらに、
ファイバ内部に気泡、り)ツクが発生しやすく、光散乱
が生じ、また、ファイバ表面の粗さが太き(散乱が生じ
やすいなどの欠点を有している。
However, in polycrystalline fibers produced by extrusion, the optical fiber crystal is extruded from a die hole after being heated and melted in a container, which has the drawback of contamination with impurities and increased absorption of impurities. -! In addition, it is difficult to control the crystal grain size, and scattering at grain boundaries becomes large. moreover,
It has drawbacks such as air bubbles and cracks being easily generated inside the fiber, causing light scattering, and the fiber surface being rough (easily causing scattering).

一方、引き上げ法ないしは引き下げ法による単結晶ファ
イバにおいては、光フアイバ結晶は、溶融保持されるた
め、保持容器壁面より不純物の混入が生じやすく不純物
吸収が生じやすい。また、溶融したファイバ結晶から、
ファイバが引き上げ、引−き下げられ固化する時にクラ
ックが生じやすく、散乱吸収が生じる。さらに溶融固化
する場合結晶内部に気泡が発生しやすく、散乱吸収が生
じやすい欠点を有している。
On the other hand, in a single crystal fiber produced by a pulling method or a pulling method, since the optical fiber crystal is molten and held, impurities are likely to be mixed in from the wall surface of the holding container and impurity absorption is likely to occur. Also, from molten fiber crystal,
When the fiber is pulled up, pulled down, and solidified, cracks are likely to occur, causing scattering and absorption. Furthermore, when melting and solidifying, bubbles are likely to be generated inside the crystal, which has the disadvantage that scattering and absorption are likely to occur.

さらに、光ファイバの実用化のためにはクラッド一層の
形成いわゆる、コアークラッド方式の光ファイバの製作
が重要である。すなわち、光フアイバ自身を保護し、外
部からのキズの発生をおさえるため、光ファイバの曲げ
や衝撃に対する強度を向上させるためにコアークラッド
方式が重要である。
Furthermore, for the practical use of optical fibers, it is important to manufacture optical fibers with a single layer of cladding, that is, the so-called core-clad method. That is, the core-clad method is important in order to protect the optical fiber itself, suppress the occurrence of scratches from the outside, and improve the strength of the optical fiber against bending and impact.

しかしながら、上記のファイバの製作方法において、現
実には、KH2−5コアにKH2−6を蒸着する方法ふ
・よびAgC1にAgBrを製作する方が試みられてい
るが有効な手段に乏しい。
However, in the method for manufacturing the above-mentioned fiber, in reality, methods of vapor depositing KH2-6 on the KH2-5 core and manufacturing AgBr on AgC1 have been tried, but effective means are lacking.

このように現存するファイバの作成方法は、いづれもそ
れぞれ上記した欠点を有しており、その11′1′1果
として、伝送J工4失が大きく、また、ファイバ作成歩
留りも良くなく、新しい光フアイバ作成方法が望まれて
いた。
In this way, all of the existing fiber manufacturing methods have the above-mentioned drawbacks, and as a result, there is a large loss of transmission J4, and the fiber manufacturing yield is not good. A method for making optical fibers was desired.

〔本発明の;」的〕[Objective of the present invention]

本発明は、上記欠点を解消し、そして、コアークラッド
構造を有する伝送損失が小さい高出力赤外レーリ′−用
光ファイバの新規な製造方法を提供゛J−ることをLI
的とするものである。
The present invention solves the above-mentioned drawbacks and provides a novel method for manufacturing a high-power infrared Rayleigh optical fiber having a core-clad structure and low transmission loss.
The target is

〔本発明の措成〕[Construction of the present invention]

そして、本発明は、上記目的を達成する手段として、光
フアイバ結晶母材より、加熱あるいは溶li’l’、l
!することすく、機械加工のみで、ファイバを作成し、
クラッド層を気相コーティングする方法である。すなわ
ち、本発明は、光フアイバ母材結晶から、切断あるいは
研削により、ファイバ仕上り断面より大きな断面を有す
る光フアイバ素材を作成し、さらにその光フアイバ素材
を研JMすることにより、所望の直径に仕上げた後、光
ファイバのクラッド層を気相反応によりコーティングす
ることを特徴とする高出力赤外レーザー用光フアイバの
製造方法である。
As a means to achieve the above object, the present invention provides heating or melting li'l', l, from an optical fiber crystal base material.
! Simply create a fiber using just machining.
This is a method of vapor phase coating the cladding layer. That is, the present invention creates an optical fiber material having a cross section larger than the finished fiber cross section from an optical fiber base material crystal by cutting or grinding, and further grinds the optical fiber material to finish it to a desired diameter. This method of manufacturing an optical fiber for high-power infrared lasers is characterized in that the cladding layer of the optical fiber is coated by a gas phase reaction.

本発明を第1図に基づいて詳肩■に説明する。この図は
本発明の加工工程を示すブロック図である。
The present invention will be explained in detail based on FIG. This figure is a block diagram showing the processing steps of the present invention.

まず、高品質の光フアイバ結晶母材より、切断、研削お
よび切削工程により、仕上げ直径より大きな光フアイバ
素材を作成する。
First, an optical fiber material larger than the finished diameter is created from a high-quality optical fiber crystal base material through cutting, grinding, and cutting processes.

次いで端面を仕上げた後、光フアイバ素材を、ラッピン
グ、ポリシングすることにより所望の直径に仕上げて、
光ファイバを製造)る。なお、端面加工は、加工中のい
ずれの工程でも良い。仕上げられた光ファイバにそれ自
身をコアとして、気相反応によりコアより低い屈折率を
持つ物質をコーティングし、コアークラッド構造の光フ
ァイバが完成される。
After finishing the end face, the optical fiber material is finished to the desired diameter by lapping and polishing.
manufactures optical fiber). Note that end face processing may be performed at any step during processing. The finished optical fiber is coated with a material having a lower refractive index than the core using a gas-phase reaction, thereby completing an optical fiber with a core-clad structure.

本発明における高出力赤外レーザー用光フアイバは、ア
ルカリハライド系光ファイバ(KC1!、NaC1!。
The optical fiber for high-power infrared laser in the present invention is an alkali halide optical fiber (KC1!, NaC1!).

KBr+CsBr )、金属ハライド(kgcl 、A
gBr )、タリウム系光ファイバ(タリウムハライド
、タリウムハライド混晶)、I+−Vl族化合物および
その混晶光ファイバ(Zn5e+ZnS+Zn5xSe
l −x )など、どのファfバにも適用できるもので
あり、そして、このファイバIiJ’ 4’A’ #+
!を品は、どのような製法で作成された・ムのでも良い
が、より適するのは、気相反応により作成された母拐結
晶を使用する場合である。ま/こ、本発明において光フ
アイバ母材結晶の切断手!生としては、内周式スライサ
ー、外周式スライサー、バンドソー(Bandsaw 
)などの切断方法のいり゛れでも良< 、Itui面形
状は四角形、六角形いずれの形状でもよい。
KBr+CsBr), metal halide (kgcl, A
gBr), thallium-based optical fibers (thallium halide, thallium halide mixed crystal), I+-Vl group compounds and their mixed crystal optical fibers (Zn5e+ZnS+Zn5xSe
l −x ), and can be applied to any fiber such as IiJ'4'A'#+
! The product may be produced by any method, but it is more suitable to use a matrix crystal produced by a gas phase reaction. Ma/ko, the cutting hand of the optical fiber base material crystal in the present invention! For raw materials, there are internal slicers, external slicers, and bandsaws.
) may be used, and the surface shape may be either quadrilateral or hexagonal.

ま/こ、本発明において光フアイバ素材の研磨手段とし
ては、メカニカル研磨、メカノケミカル研磨、ケミカル
研磨、フロート研磨、液中研磨などいずれの方法でもよ
く、また、研磨のポリシャおよび砥粒、分散媒体はいず
れでも良い。クラッド層を形成するための気相コーティ
ング法は、化学気+11堆積法(以下CVD法と称す)
、蒸着法、イオンブレーティング法、スパッタリング法
など気相によるコーティング法ならばいづれでも良い。
In the present invention, the optical fiber material may be polished by any method such as mechanical polishing, mechanochemical polishing, chemical polishing, float polishing, or submerged polishing. Either is fine. The vapor phase coating method for forming the cladding layer is the chemical vapor +11 deposition method (hereinafter referred to as CVD method).
Any vapor phase coating method such as vapor deposition, ion blating, or sputtering may be used.

〔実施例〕〔Example〕

以下実施例に基づき説明する。 The following will be explained based on examples.

化学気相堆積法により合成されたZn5e 多結晶から
、内周式スライサーにて1.2 x’1.2 x 10
0IuL の角柱状結晶を切り出した。
From Zn5e polycrystal synthesized by chemical vapor deposition method, 1.2 x'1.2 x 10 with an internal slicer
A prismatic crystal of 0 IuL was cut out.

次に、ダイヤモンド砥石により、外周研削し、直径1肱
の円柱状結晶に仕上げ、光フアイバ素材とし、ここで端
面を仕上げた。次に、光フアイバ素材を研磨にて0.7
 #rnXx 100 mXLの光ファイバに仕上げた
。その後、これの光ファイバにクラッド層を形成するた
めZn蒸気とHas ガスを用いたCVD法によりZn
Sを光フアイバ表面にQ、1mNの厚さにコーティング
し、コアークラッド方式の光ファイバとした。
Next, the outer periphery was ground using a diamond grindstone to form a cylindrical crystal with a diameter of one elbow, which was used as an optical fiber material, and the end face was finished here. Next, the optical fiber material was polished to 0.7
Finished into #rnXx 100 mXL optical fiber. Then, to form a cladding layer on this optical fiber, Zn was deposited by CVD using Zn vapor and Has gas.
The surface of the optical fiber was coated with S to a thickness of 1 mN to form a core-clad optical fiber.

この方法にて製造したコアークラッド方式のZn5e 
光ファイバは次の(1) −(5)の特性を示し、炭酸
ガス用光ファイバとして、十分なものであることがわか
った。
Core-clad Zn5e manufactured using this method
The optical fiber exhibited the following characteristics (1) to (5) and was found to be sufficient as an optical fiber for carbon dioxide gas.

(1)可とう性 良好。(1) Good flexibility.

(2)伝送損失 0.52 dB/m 0(3)化学気
相堆積法により合成されたZn5e 多結晶の粒径は、
70μmであり、ファイバー成形後も70μm と変化
がない。
(2) Transmission loss 0.52 dB/m 0 (3) The grain size of Zn5e polycrystal synthesized by chemical vapor deposition method is
The diameter is 70 μm, and it remains 70 μm even after fiber molding.

(4)ファイバー表面粗さは非常に小さく、このための
散乱の影響がない。
(4) The fiber surface roughness is very small, so there is no scattering effect.

(5)クラッドKWとコア層の付着性良好。(5) Good adhesion between cladding KW and core layer.

本発明は、以上詳記したように、ファイバ結晶IiJ材
より、加熱あるいは溶融することなしに、機械加工によ
り製造するため、不純物の混入がなく、不純物による吸
収損失が生じないものである。
As described in detail above, the present invention is manufactured from fiber crystal IiJ material by machining without heating or melting, so there is no contamination of impurities and absorption loss due to impurities does not occur.

また1本発明にふ・いて−は、ファイバ結晶母材の品質
が維持できるため気泡の発生がなく、母材の結晶粒径が
維持でき、ファイバ加工での結晶粒の変化がなく、最適
結晶粒が維持できる効果が生ずるものである。
Another feature of the present invention is that the quality of the fiber crystal base material can be maintained, so there is no generation of bubbles, the crystal grain size of the base material can be maintained, and there is no change in the crystal grains during fiber processing, resulting in optimal crystallization. This produces the effect that grains can be maintained.

さらに、本発明においては、ファイバを研磨によって仕
上げるため、粗さが小さく光散乱が小さくなり、また、
押し出し法に比ベファイバーの表面加工影響層が小さく
、光吸収が小さいものが製造できる。
Furthermore, in the present invention, since the fiber is finished by polishing, the roughness is small and light scattering is small, and
Compared to the extrusion method, fibers with a smaller layer affected by surface treatment and less light absorption can be produced.

さらに、本発明においては、気相コーティングによりク
ラッド層を形成できるため、コアークラッド方式の光フ
ァイバの作成が可能であり、コア層が保護され、取扱い
も容易となる。
Furthermore, in the present invention, since the cladding layer can be formed by vapor phase coating, it is possible to create a core-clad optical fiber, the core layer is protected, and handling becomes easy.

〔産業上の利用可能性〕[Industrial applicability]

本発明は、以上の結果、伝送損失が小さいコアークラッ
ド方式の光ファイバが得られる顕著な効果が生じるもの
であり、また、本発明は多結晶および単結晶いずれのフ
ァイバー製造法にも適するものである。
As a result of the above, the present invention has the remarkable effect of providing a core-clad optical fiber with low transmission loss, and is suitable for both polycrystalline and single-crystalline fiber manufacturing methods. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するためのブロック図である。 FIG. 1 is a block diagram for explaining the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)光フアイバ母材結晶から、切断あるいは研削Qζ
より、ファイバ仕上り断面より大きな断面を有する光フ
アイバ素材を作成し、さらにその光フアイバ素材を研磨
することにより、所望の直径に仕上げた後、この光ファ
イバのクラッド層を気相反応によりコーティングするこ
とを特徴とする高出力赤外レーザー用光ファイバの製造
方法。
(1) Cutting or grinding Qζ from the optical fiber base material crystal
In this method, an optical fiber material having a cross section larger than the finished fiber cross section is created, and the optical fiber material is further polished to a desired diameter, and then the cladding layer of this optical fiber is coated by a gas phase reaction. A method for manufacturing an optical fiber for high-power infrared lasers, characterized by:
JP58227335A 1983-11-30 1983-11-30 Production of optical fiber for high-output infrared laser Pending JPS60118807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58227335A JPS60118807A (en) 1983-11-30 1983-11-30 Production of optical fiber for high-output infrared laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58227335A JPS60118807A (en) 1983-11-30 1983-11-30 Production of optical fiber for high-output infrared laser

Publications (1)

Publication Number Publication Date
JPS60118807A true JPS60118807A (en) 1985-06-26

Family

ID=16859192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58227335A Pending JPS60118807A (en) 1983-11-30 1983-11-30 Production of optical fiber for high-output infrared laser

Country Status (1)

Country Link
JP (1) JPS60118807A (en)

Similar Documents

Publication Publication Date Title
KR101423963B1 (en) Sapphire material and production method thereof
US4504298A (en) Process for producing infrared light transmitting optical fiber
TW201444955A (en) Silicon wafer for solar cells and method for producing same
CN108406450A (en) A kind of super thick LED light lens processing technology
JPS60118807A (en) Production of optical fiber for high-output infrared laser
US20010022705A1 (en) Glass substrate for recording medium
KR101164672B1 (en) Fabrication Method of Glass Preform for Holey Fiber, and Holey Fiber and Fabrication Method Therereof
Venkatesh Precision manufacture of spherical and aspheric surfaces on plastics, glass, silicon and germanium
JPH08248227A (en) Polarizing glass and its production
JPS6048002A (en) Manufacture of optical fiber for use in high output infrared laser
JP2000119034A (en) Production of quartz glass preform for optical fiber
JPH05301732A (en) Production of fluoride glass preform
WO2001059323A1 (en) Quartz coil spring and method of producing the same
Locher et al. Large diameter sapphire dome: fabrication and characterization
JPS59141500A (en) Preparation of optical part
JPS59182247A (en) Preparation of optical fiber of infrared rays
JPH0787186B2 (en) Method for manufacturing BSO wafer
JPH04181901A (en) Infrared ray optical element and production thereof
JPS5975201A (en) Manufacture of optical parts
JPS62166959A (en) Machining method for fiber raw material and device
JPS62245201A (en) Chemical phase synthesizing method for crystal stock having curvature
JP3201442B2 (en) Fabrication method of optical waveguide
JPH04132633A (en) Production of glass structure for light transmission, glass structure for light transmission and optical fiber
JPS61110103A (en) Optical waveguide lens and its manufacture
JPH0219921B2 (en)