JPS60118469A - Manufacturing method of metal bond grindstone - Google Patents

Manufacturing method of metal bond grindstone

Info

Publication number
JPS60118469A
JPS60118469A JP22626283A JP22626283A JPS60118469A JP S60118469 A JPS60118469 A JP S60118469A JP 22626283 A JP22626283 A JP 22626283A JP 22626283 A JP22626283 A JP 22626283A JP S60118469 A JPS60118469 A JP S60118469A
Authority
JP
Japan
Prior art keywords
grindstone
water
solvent
sintered body
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22626283A
Other languages
Japanese (ja)
Inventor
Ginrou Ishihara
石原 吟郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP22626283A priority Critical patent/JPS60118469A/en
Publication of JPS60118469A publication Critical patent/JPS60118469A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • B24D3/10Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements for porous or cellular structure, e.g. for use with diamonds as abrasives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To form the pore in a grindstone and promote an autogeny function of the grindstone, by mixing a material whose melting point is above the determined degree, and which is fusible in a solvent whose main component part is such as water, and the super abrasive, in a metal bond powdered matrix, after sintering them, taking off the fusible material by stepping the sintered body in the solvent. CONSTITUTION:A pore-forming material such as sodium chloride, whose melting point is above 500 deg.C, and which is fusible in a solvent whose masin component parts are more than one kind of material, selected from a group of materials, such as water, alcohol, acetone, ammonia and acetic acid, and super abrasive 3 such as diamonds, are mixed in a matrix 2 which consists of metal bond powder, such as bronze powder. After the mixture is sintered, pores 4 are formed in the sintered body, by taking off the pore-forming material from the sintered body, by steeping it in the said solvent, such as water. In this way, a work difficult to grind as it is hard and brittle, can be precisely processed, because the material of the sintered body without the porse, maintains it's combining power, as the dense mixture was sintered while the sintering processing was performed, and an autogeny function of a grindstone is raised, as the pores are formed after the sintering.

Description

【発明の詳細な説明】 本発明は、焼結法を用いたメタルボンド砥石の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metal bonded grindstone using a sintering method.

天然又は合成ダイヤモンド砥粒や立方晶窒化硼素砥粒(
CBN)のような超砥粒に適した砥石としてメタルボン
ド砥石が知られている。メタルボンド砥石は、レジンボ
ンド砥石やビトリファイドボンド砥石と比較して砥粒の
保持力が強く、従って、かなり強い力が作用するような
研削若しくは切断に際しても砥粒の脱落が生じ難いとい
う利点を有している。又、メタルボンド砥石は、ボンド
自体に強度や耐熱性があるために一般に長寿命であると
いう利点をも有している。
Natural or synthetic diamond abrasive grains or cubic boron nitride abrasive grains (
A metal bond grindstone is known as a grindstone suitable for superabrasive grains such as CBN. Compared to resin bonded grindstones and vitrified bonded grindstones, metal bonded grindstones have a stronger ability to retain abrasive grains, and therefore have the advantage that abrasive grains are less likely to fall off even during grinding or cutting, where a fairly strong force is applied. are doing. Metal bonded grindstones also have the advantage of generally having a long life because the bond itself has strength and heat resistance.

しかしながら、従来のメタルボンド砥石では、その構造
上の特性から砥石の自生作用が少なく、このため、切れ
味の劣化が著しいという欠点があった。即ち、メタルボ
ンド砥石は、通常、粉末体から焼結法(ホットプレス法
、コールドプレス法等)によって製造されるが、従来の
この種の焼結法では砥石中に気孔を形成することができ
なかった。このため、従来のメタルボンド砥石には気孔
が存在しなかった。この結果、従来のメタルボンド砥石
には、気孔による砥石の自生作用がなく、又、砥粒が脱
落し離いために、却って、研削若しくは切断作業中に砥
石面が目詰まり状態や目つぶれ状態になり易かった。
However, conventional metal bonded whetstones have a disadvantage in that due to their structural characteristics, there is little self-sharpening action of the whetstone, resulting in significant deterioration of sharpness. In other words, metal bonded grindstones are usually manufactured from powder by sintering methods (hot press method, cold press method, etc.), but conventional sintering methods of this type cannot form pores in the grindstone. There wasn't. For this reason, conventional metal bond grindstones do not have pores. As a result, conventional metal bonded whetstones do not have the self-growth effect of the whetstone due to pores, and the abrasive grains fall off and separate, causing the whetstone surface to become clogged or crushed during grinding or cutting operations. It was easy.

このような理由から、従来のメタルボンド砥石は、既述
したような利点を有するにもかかわらず、半導体ウェハ
やレンズ、フェライト等の硬脆難削性+A料を切削する
ことが困難である等、その適用範囲が、レジンボンド砥
石等に比べて非常に限られていた。
For this reason, although conventional metal bonded grindstones have the advantages mentioned above, it is difficult to cut hard and brittle + A materials such as semiconductor wafers, lenses, and ferrite. However, its scope of application was very limited compared to resin bonded grindstones.

本発明はこのような問題点に鑑みてなされたものであっ
て、メタルボンド砥石中に気孔を形成させることにより
、砥石の自生作用を促進して、従来研削若しくは切断し
難かったような素材をも容易に研削若しくは切断し得る
ようなメタルボンド砥石の製造方法を提供しようとする
ものである。
The present invention was made in view of these problems, and by forming pores in the metal bond grindstone, the self-sharpening action of the grindstone is promoted, and materials that are conventionally difficult to grind or cut can be processed. It is an object of the present invention to provide a method for manufacturing a metal bond grindstone that can be easily ground or cut.

この目的は本発明により次のようにして達成される。即
ち、本発明によれば、水、アルコール、アセトン、アン
モニア及び酢酸からなる群より選ばれた少なくとも一種
を主成分とした溶剤に可溶でかつ融点が500 ’C以
上の物質と超砥粒とをメタルボンド粉末からなるマトリ
ックス中に混入し、この混合物を焼結した後、この焼結
体を上記溶剤に浸漬して上記物質を除去することにより
、上記焼結体中に気孔を形成させる。
This object is achieved according to the invention as follows. That is, according to the present invention, a substance soluble in a solvent containing at least one selected from the group consisting of water, alcohol, acetone, ammonia, and acetic acid as a main component and having a melting point of 500'C or higher and superabrasive grains are combined. is mixed into a matrix of metal bond powder, this mixture is sintered, and the sintered body is immersed in the solvent to remove the substance, thereby forming pores in the sintered body.

本発明において、7トリックスを構成するメタルボンド
材料としてはブロンズ系粉末が好ましく用いられる。し
かしながら、他のメタルボンド材料、例えば、銅、錫、
コバルト、ニッケル、鉄、銀、タングステン等の金属粉
の混合体又は単体を用いることも可能である。
In the present invention, bronze powder is preferably used as the metal bond material constituting the 7 trix. However, other metal bond materials such as copper, tin,
It is also possible to use a mixture or a single substance of metal powders such as cobalt, nickel, iron, silver, and tungsten.

砥粒としては、一般に超砥粒と呼ばれるもの、例えば、
天然又は合成ダイヤモンド砥粒や立方晶窒化硼素砥粒(
CBN)を用いる。
As abrasive grains, those generally called super abrasive grains, for example,
Natural or synthetic diamond abrasive grains or cubic boron nitride abrasive grains (
CBN).

本発明においては、焼結に先立って、気孔形成用の物質
を上記砥粒と共にマトリックス中に混入する。そして、
焼結後に、その焼結体を所定の溶剤に浸漬して上記気孔
形成用物質を溶解除去する。
In the present invention, a pore-forming substance is mixed into the matrix together with the abrasive grains prior to sintering. and,
After sintering, the sintered body is immersed in a predetermined solvent to dissolve and remove the pore-forming substance.

このように構成することによって、焼結時には密に詰ま
った混合物が焼結され、焼結後、上記気孔形成用物質が
溶解除去された跡に気孔が形成される。
With this configuration, a densely packed mixture is sintered during sintering, and after sintering, pores are formed at the sites where the pore-forming substance has been dissolved and removed.

焼結は従来公知のポットプレス法又はコールドプレス法
により行われて良い。いずれの方法においても、焼結時
に混合物は加圧(ホットプレス法の場合約100〜50
0 kg/cA、コールドプレス法の場合約3〜10t
/cn+)及び加温(約500°C以上)される。この
ため、混合物中に気孔が存在したとしても、それらは焼
結時には全て潰されてしまう。このことは、緻密な焼結
体を得るための必要条件である。従って、本発明による
方法においても、最終的製品である砥石中の気孔以外の
部分の結合力を維持するために、焼結時には、気孔の存
在しない密な混合物を焼結し、焼結後に、この焼結体中
に混入されている気孔形成用物質を溶解除去することに
よって砥石中に気孔を形成させるのである。
Sintering may be performed by a conventionally known pot press method or cold press method. In either method, the mixture is pressurized during sintering (approximately 100 to 50
0 kg/cA, approximately 3 to 10 tons in the case of cold press method
/cn+) and heated (about 500°C or higher). Therefore, even if there are pores in the mixture, they are all crushed during sintering. This is a necessary condition for obtaining a dense sintered body. Therefore, in the method according to the present invention, in order to maintain the bonding strength of the parts other than the pores in the final product, the grinding wheel, during sintering, a dense mixture without pores is sintered, and after sintering, By dissolving and removing the pore-forming substance mixed in this sintered body, pores are formed in the grindstone.

気孔形成用物質を溶解除去するための溶剤としては水を
用いるのが、安価でもあり、最も一般的であるが、他の
溶剤、例えば、アルコール(本発明においては、エチル
アルコール、メチルアルコール等を含むアルコール類の
意味で用いる)、アセトン、アンモニア又は酢酸を用い
ることもできる。又、これらの混合溶剤であっても良い
Water is the most common solvent for dissolving and removing pore-forming substances, but other solvents such as alcohol (in the present invention, ethyl alcohol, methyl alcohol, etc.) are also used. It is also possible to use acetone, ammonia or acetic acid. Alternatively, a mixed solvent of these may be used.

これらの溶剤によって溶解除去される気孔形成用物質と
しては、焼結時に溶融しないことが必要であり、従って
、その融点が500℃以上であることが必要である。本
発明に使用可能な気孔形成用物質を例示すると(括弧内
に、対応する溶剤を例示する)、アルミン酸ナトリウム
(水)、塩化カリウム (水)、塩化カルシウム(水、
エチルアルコール、酢酸、アセトン)、塩化第■鉄(水
、エチルアルコール、アセトン)、塩化マグネシウム 
(水、エチルアルコール)、塩化ナトリウム(水)、ク
ロム酸カリウム (水)、ケイ酸ナトリウム(水)、酸
化バリウム(エチルアルコール)、臭化カリウム (水
、エチルアルコール)、臭化カルシウム(水、エチルア
ルコール、アセトン)、臭化ナトリウム(水、エチルア
ルコール、アンモニア)、臭化マグネシウム(水、エチ
ルアルコール、メチルアルコール)、炭酸ナトリウム(
水)、硫化カリウム(水、エチルアルコール)、硫化ナ
トリウム(水)、硫酸カリウム(水)、硫酸ナトリウム
(水)等がある。勿論、ここに例示した物質以外の物質
であっても、上述した溶剤に可溶でかつ融点が500°
C以上のものであれば、必要に応じて使用可能である。
The pore-forming substance that is dissolved and removed by these solvents must not melt during sintering, and therefore must have a melting point of 500° C. or higher. Examples of pore-forming substances that can be used in the present invention (corresponding solvents are listed in parentheses) include sodium aluminate (water), potassium chloride (water), calcium chloride (water,
ethyl alcohol, acetic acid, acetone), ferrous chloride (water, ethyl alcohol, acetone), magnesium chloride
(water, ethyl alcohol), sodium chloride (water), potassium chromate (water), sodium silicate (water), barium oxide (ethyl alcohol), potassium bromide (water, ethyl alcohol), calcium bromide (water, ethyl alcohol, acetone), sodium bromide (water, ethyl alcohol, ammonia), magnesium bromide (water, ethyl alcohol, methyl alcohol), sodium carbonate (
water), potassium sulfide (water, ethyl alcohol), sodium sulfide (water), potassium sulfate (water), sodium sulfate (water), etc. Of course, even substances other than those exemplified here can be used as long as they are soluble in the above-mentioned solvents and have a melting point of 500°.
If it is C or higher, it can be used as necessary.

気孔形成用物質の粒径は後述するU、S、メソシュ番号
で46〜600程度であるのが好ましい。この粒径があ
まり小さ過ぎると砥石の自生効果が少なくなり、一方、
あまり大き過ぎると砥石が脆くなってしまうので好まし
くない。又、砥石中に形成される気孔の体積率(気孔率
)は約5〜50%であるのが好ましく、約10〜40%
であるのがより好ましい。この体積率が上記範囲外であ
ると、上述したと同様の理由により好ましくない。砥石
中の気孔率は、混入する気孔形成用物質の混入量によっ
て調節することができる。
The particle size of the pore-forming substance is preferably about 46 to 600 in terms of U, S, and mesh numbers, which will be described later. If this particle size is too small, the self-growth effect of the grinding wheel will be reduced;
If it is too large, the whetstone will become brittle, which is not preferable. Further, the volume fraction (porosity) of pores formed in the grindstone is preferably about 5 to 50%, and about 10 to 40%.
It is more preferable that If this volume fraction is outside the above range, it is not preferable for the same reason as mentioned above. The porosity in the grindstone can be adjusted by adjusting the amount of the pore-forming substance mixed therein.

本発明の方法によって製造される砥石の形状は特に限定
されるものではなく、ストレート型やセグメント型或い
は合金のあるものやないもの等を問わず、種々のものに
適用が可能である。
The shape of the grindstone manufactured by the method of the present invention is not particularly limited, and it can be applied to various types, such as straight type, segment type, and those with or without alloy.

本発明の方法により製造されたメタルボンド砥石は、従
来のものと違って、多孔質であるために、切り粉の排出
及び冷却水の循環が良く、又、ボンドの性質も比較的軟
らかくなって、摩滅したダイヤモンド砥粒等の脱落自生
作用を促進する。そして、これらの相互、相乗作用によ
って、従来切削し難かった素材をも容易に切削できるよ
うになる。
Unlike conventional grinding wheels, the metal-bonded grinding wheel manufactured by the method of the present invention is porous, which allows for better removal of cutting chips and circulation of cooling water, and the properties of the bond are relatively soft. , which promotes the spontaneous shedding of worn diamond abrasive grains, etc. Through these mutual and synergistic effects, it becomes possible to easily cut materials that were previously difficult to cut.

なお、本発明の方法により製造されたメタルボンド砥石
においては、実用上充分な厚さ、例えば、約3mの厚さ
まで気孔が略一様に分布していることが実験により確か
められている。
It has been experimentally confirmed that in the metal bonded grindstone manufactured by the method of the present invention, pores are distributed substantially uniformly up to a thickness sufficient for practical use, for example, approximately 3 m.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

なお、以下の例において、砥粒及び気孔形成用物質の粒
径は、U、S、メソシュ番号(以下、記号“#”で示す
)によって規定されている。粒径は、U、S、メソシュ
番号に対応するメソシュの方形開口の辺長さによって規
定される。例えば、#320は、U、S、メソシュ番号
320のメソシュの方形開口の辺長さ44μに対応する
In the following examples, the particle sizes of the abrasive grains and the pore-forming substance are defined by U, S, and mesh numbers (hereinafter indicated by the symbol "#"). The particle size is defined by the side length of the square aperture of the mesh that corresponds to U, S, and the mesh number. For example, #320 corresponds to the side length of the rectangular opening of the mesh of U, S, and mesh number 320 of 44μ.

実施例1及び比較例1 メタルボンド材料としてブロンズ系粉末100g、砥粒
として#1000の合成ダイヤモンド11g、気孔形成
用物質として#180〜320の塩化すトリウム15g
を用いた。これらを混合して、ホットプレス法(800
℃、300kg/cれ1時間)により焼結した後、常温
で水に8時間浸漬して塩化ナトリウムを溶解除去した。
Example 1 and Comparative Example 1 100 g of bronze powder as metal bond material, 11 g of #1000 synthetic diamond as abrasive grain, 15 g of thorium chloride #180-320 as pore-forming material
was used. Mix these and use the hot press method (800
℃, 300 kg/c for 1 hour), and then immersed in water at room temperature for 8 hours to dissolve and remove sodium chloride.

そして、外径52m1、内径40龍、厚さ0.211の
ドーナツ状の砥石を得た(気孔の体積率は約32%)。
A donut-shaped grindstone with an outer diameter of 52 m1, an inner diameter of 40 mm, and a thickness of 0.211 mm was obtained (the volume fraction of pores was about 32%).

一方、比較例として、同じブロンズ系粉末160g及び
合成ダイヤモンドl1gから、上と同じ条件のホットプ
レス法により、同じ寸法の砥石を作成した。
On the other hand, as a comparative example, a grindstone with the same dimensions was created from 160 g of the same bronze-based powder and 1 g of synthetic diamond by the hot press method under the same conditions as above.

これらの砥石を用いて、ガラスボンディングされた単結
晶フェライトの溝入れ加工を行った。溝入れ速度(送り
速度)はl 1m/sec %溝入れ深さは2.0龍で
あった。この結果、本発明の実施例による砥石では0.
211の柱残しが可能であったのに対し、比較例のもの
では、研削によって柱の部分が壊れてしまい、柱残しは
不可能であった。
These grindstones were used to groove glass-bonded single crystal ferrite. The grooving speed (feeding speed) was 1 m/sec, and the grooving depth was 2.0 m/sec. As a result, the grindstone according to the embodiment of the present invention has 0.
While it was possible to leave the pillars in No. 211, in the comparative example, the pillars were broken due to grinding, and it was impossible to leave the pillars in place.

」面倒2 び比較例2 実施例1と同じブロンズ系粉末100g、#4000の
合成ダイヤモンド16g、#220〜400の塩化ナト
リウム]、 Ogを用い、実施例1と同様にして同寸法
のドーナツ状砥石を作成した(気孔の体積率は約23%
)。
"Troublesome 2 and Comparative Example 2 100 g of the same bronze powder as in Example 1, 16 g of #4000 synthetic diamond, #220 to 400 sodium chloride], Og, and a donut-shaped grindstone of the same size as in Example 1. (The volume fraction of pores is approximately 23%)
).

一方、比較例2として、同じブロンズ系粉末140g及
び合成ダイヤモンド16gから同様の砥石を作成した。
On the other hand, as Comparative Example 2, a similar grindstone was created from 140 g of the same bronze-based powder and 16 g of synthetic diamond.

これらの砥石を用いて、単結晶フェライトの溝入れ加工
を行った。溝入れ速度は3 van /see 、、溝
入れ深さは0.31であった。この結果、本発明の実施
例による砥石ではチッピングが1μ以下であったのに対
し、比較例のものでは3μ以上であった。
Grooving of single crystal ferrite was performed using these grindstones. The grooving speed was 3 van/see, and the grooving depth was 0.31. As a result, the chipping of the grindstone according to the example of the present invention was 1μ or less, whereas the chipping of the grindstone of the comparative example was 3μ or more.

以上の例から明らかなように、本発明の方法で製造した
メタルボンド砥石は、従来のものでは不可能であった硬
脆難削性材料の精密加工が可能である。
As is clear from the above examples, the metal bonded grindstone manufactured by the method of the present invention is capable of precision machining of hard, brittle, and difficult-to-machine materials, which was impossible with conventional grindstones.

スJ1舛J− 実施例1と同じブロンズ系粉末100g、#800の合
成ダイヤモンド1.1 g、#180〜320の塩化ナ
トリウム15gを用い、実施例10 と同様のホットプレス法により、外径52顛、内径40
+n、厚さ3.0鰭のドーナツ状砥石を作成した。
Using 100 g of the same bronze powder as in Example 1, 1.1 g of #800 synthetic diamond, and 15 g of #180-320 sodium chloride, an outer diameter of 52 Texture, inner diameter 40
A donut-shaped grindstone with a thickness of +n and a thickness of 3.0 fins was prepared.

この砥石1の断面を添付図面に示すが、ブロンズ系粉末
からなるマトリックス2中に20μ程度のダイヤモンド
砥粒3が保持されている。砥石1には、その最深部に至
るまで40〜100μ程度の気孔4が略一様に分布して
いた。これらの気孔4は、塩化ナトリウムが水によって
溶解除去された跡で、砥石1の表面に連通している。気
孔4は砥石体積の略1/3を占めていた。
A cross section of this grindstone 1 is shown in the attached drawing, and diamond abrasive grains 3 of about 20 μm are held in a matrix 2 made of bronze-based powder. In the grindstone 1, pores 4 of about 40 to 100 microns were distributed almost uniformly up to the deepest part. These pores 4 are traces of sodium chloride dissolved and removed by water, and communicate with the surface of the grindstone 1. The pores 4 occupied approximately 1/3 of the volume of the grinding wheel.

また、マトリックス2中には、表面と連通していないた
めに溶解除去されなかった塩化ナトリウム5が僅かでは
あるが残っていた。このような塩化ナトリウム5は、例
えば、砥石1をある程度使用した後に、再び水に浸漬す
ることによって溶解除去することができる。また、溶剤
として水を使用する場合、通常、研削は冷却用に水をか
けながら行うので、このときに自動的に溶解除去されて
しまう。このような使用方法は、例えば、本発明1 の方法によってかなり厚い砥石を製造した場合に、気孔
形成用物質が最初の浸漬によっては溶解除去され得ない
ような深さまで存在している場合に有効である。
In addition, a small amount of sodium chloride 5 remained in the matrix 2, which was not dissolved and removed because it did not communicate with the surface. Such sodium chloride 5 can be dissolved and removed by, for example, immersing the whetstone 1 in water again after it has been used for some time. Further, when water is used as a solvent, the grinding is usually performed while water is being applied for cooling, so that the material is automatically dissolved and removed at this time. Such a method of use is effective, for example, when a fairly thick grinding wheel is manufactured by the method of the present invention 1 and the pore-forming substance is present at such a depth that it cannot be dissolved and removed by the initial immersion. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の一実施例による砥石の部分拡大断面図
である。 なお図面に用いられた符号において、 2 −−−−−−−−−−−−−−−−−マトリックス
3 −−−−−−−−−−−−−−−−ダイヤモンド砥
粒4 −−−−−−−−−−−−−−−−−一気孔であ
る。 代理人 土星 勝 常包芳男 杉浦俊貴 2
The drawing is a partially enlarged sectional view of a grindstone according to an embodiment of the present invention. In addition, in the symbols used in the drawings, 2 -------------------- Matrix 3 ----------Diamond abrasive grain 4 - -------------------It is a single pore. Agent Saturn Katsunekane Yoshio Sugiura Toshiki 2

Claims (1)

【特許請求の範囲】[Claims] 水、アルコール、アセトン、アンモニア及び酢酸からな
る群より選ばれた少なくとも一種を主成分とした溶剤に
可溶でかつ融点が500 ”c以上の物質と超砥粒とを
メタルボンド粉末からなるマトリックス中に混入し、こ
の混合物を焼結した後、この焼結体を上記溶剤に浸漬し
て上記物質を除去することにより、上記焼結体中に気孔
を形成させるようにしたことを特徴とするメタルボンド
砥石の製造方法。
A substance that is soluble in a solvent and whose main component is at least one selected from the group consisting of water, alcohol, acetone, ammonia, and acetic acid and has a melting point of 500"C or more and superabrasive grains are placed in a matrix made of metal bond powder. and sintering the mixture, the sintered body is immersed in the solvent to remove the substance, thereby forming pores in the sintered body. Manufacturing method of bonded whetstone.
JP22626283A 1983-11-30 1983-11-30 Manufacturing method of metal bond grindstone Pending JPS60118469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22626283A JPS60118469A (en) 1983-11-30 1983-11-30 Manufacturing method of metal bond grindstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22626283A JPS60118469A (en) 1983-11-30 1983-11-30 Manufacturing method of metal bond grindstone

Publications (1)

Publication Number Publication Date
JPS60118469A true JPS60118469A (en) 1985-06-25

Family

ID=16842441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22626283A Pending JPS60118469A (en) 1983-11-30 1983-11-30 Manufacturing method of metal bond grindstone

Country Status (1)

Country Link
JP (1) JPS60118469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030194A (en) * 2001-11-21 2008-02-14 Saint-Gobain Abrasives Inc Porous abrasive tool and its manufacturing method
WO2009138435A1 (en) * 2008-05-13 2009-11-19 Micheal O'ceallaigh An abrasive material, wheel and tool for grinding semiconductor substrates, and method of manufacture of same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030194A (en) * 2001-11-21 2008-02-14 Saint-Gobain Abrasives Inc Porous abrasive tool and its manufacturing method
WO2009138435A1 (en) * 2008-05-13 2009-11-19 Micheal O'ceallaigh An abrasive material, wheel and tool for grinding semiconductor substrates, and method of manufacture of same

Similar Documents

Publication Publication Date Title
US4776861A (en) Polycrystalline abrasive grit
US4828582A (en) Polycrystalline abrasive grit
EP0243825B1 (en) Wire incrusted with abrasive grain and method for producing the same
KR100623900B1 (en) Porous abrasive tool and method for making the same
JPH11165261A (en) Porous abrasive grain grinding wheel and its manufacture
JP3210548B2 (en) Abrasive processing tool bonded using a novel metal bond and its manufacturing method
CN103934758A (en) Aggregation-type abrasive grain superabrasive grinding wheel and preparing method thereof
JPS6384875A (en) Manufacture of composite diamond polishing molded form
KR20000005280A (en) Glass grinding machine including metal-clothed abrasive
JP2972488B2 (en) Sintered composite abrasive grits, their production and use
JP2006001007A (en) Vitrified bond grinding wheel and its manufacturing method
JPS60118469A (en) Manufacturing method of metal bond grindstone
JP2006297528A (en) Method for manufacturing resinoid grinding tool having massive abrasive grain
JP2990579B2 (en) Superabrasive grindstone and method of manufacturing the same
EP0137711B1 (en) Method of making abrasive grit
JP2005319556A (en) Pore generating type resinoid grinding wheel
JP2001088035A (en) Porous or air hole incorporating type grinding wheel/ stone
JP3055084B2 (en) Porous metal bond whetstone and method of manufacturing the same
JP2641438B2 (en) Centrifugal firing method of metal whetstone with porous part
JPH03190670A (en) Porous super abrasive grain grindstone
WO2022102335A1 (en) Method for manufacturing porous metal bonded grindstone, and method for manufacturing porous metal bonded wheel
JPS64183B2 (en)
JPS61257772A (en) Grinding wheel truing method
JPH09248768A (en) Super abrasive particle metal bond grinding wheel excellent in grinding accuracy and manufacture thereof
JPH10113876A (en) Diamond grindstone, its manufacturing method and tool