JPS60117632A - Tapered etching method of resin film - Google Patents

Tapered etching method of resin film

Info

Publication number
JPS60117632A
JPS60117632A JP58224106A JP22410683A JPS60117632A JP S60117632 A JPS60117632 A JP S60117632A JP 58224106 A JP58224106 A JP 58224106A JP 22410683 A JP22410683 A JP 22410683A JP S60117632 A JPS60117632 A JP S60117632A
Authority
JP
Japan
Prior art keywords
film
resin film
photo
resist
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58224106A
Other languages
Japanese (ja)
Other versions
JPH0634349B2 (en
Inventor
Akira Eda
昭 江田
Hisao Nozawa
野沢 悠夫
Hideo Nishida
西田 秀来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP58224106A priority Critical patent/JPH0634349B2/en
Publication of JPS60117632A publication Critical patent/JPS60117632A/en
Publication of JPH0634349B2 publication Critical patent/JPH0634349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To form the angle of an etching surface in the end section of a resin film at the low angle of inclination and easily by forming an inclined plane to the end section of a photo-resist pattern and transferring the inclined plane of the photo-resist pattern to the resin film through plasma etching. CONSTITUTION:A polyimide resin film 4 is applied and formed on an SiO2 film 3 and a conductor pattern. A positive type photo-resist is applied, a positive type photo-resist film 5 is shaped, and a photo-resist pattern is formed through proximity exposure. The angle of inclination theta1 of an end surface takes approximately 80 deg. at that time. The whole is baked at the softening temperature or higher of the photo-resist. Consequently, a resist-reflow is generated in the photo-resist film 5, and the film 5 is fluidized and the angle of inclination theta2 takes approximately 25 deg.. When the baked wafer is etched by using a plasma etching device, the angle of inclination theta3 of the end surface of the photo-resist film 5 takes approximately 25 deg., and the angle of inclination theta4 of the end surface of the polyimide resin film 4 takes approximately 20 deg.. The wafer is dipped in acetone, and the photo- resist film 5 is removed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は樹脂膜のテーバエツチング方法に係わシ、特に
樹脂膜のエツチング端面の傾斜角を低くするのに好適な
エツチング方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of Taber etching a resin film, and more particularly to an etching method suitable for lowering the inclination angle of the etched end face of a resin film.

〔発明の背景〕[Background of the invention]

一般に樹脂膜のエツチング方法としては樹脂股上にフォ
トレジスト膜を形成し、このフォトレジスト膜をマスク
として酸素プラズマなどによ#)樹脂膜をエツチングす
る方法が知られている。この場合、エツチングによ多形
成される樹脂!パターン端部の傾斜角は45〜60度と
なシ、急峻な段差を発生するという問題があった。
A generally known method for etching a resin film is to form a photoresist film on the resin ridge, and use this photoresist film as a mask to etch the resin film using oxygen plasma or the like. In this case, the resin is formed by etching! Since the inclination angle of the pattern end is 45 to 60 degrees, there is a problem in that a steep step is generated.

例えば、近年、高密度磁気バブルメモリ素子を実現する
ために、使用する磁気バブル転送路のパターン周期λが
微小化し、これに用いる磁気バブル径dも小さくなシ、
現在では1Mビットの磁気バブルメモリ素子が実用化さ
れている。そして、この素子で使用されている磁気バブ
ル径dは約2μm、マイナループの転送路パターンの周
期λは7〜8μm程度であシ、この場合の記憶密度は1
Mb/ctlである。さらに高密度素子として、マイナ
ループの転送路パターン周期λが4〜6μmの素子では
、マイナループ部の下地絶縁膜の1部をエツチングし、
マイナループ部の転送マージンを向上する方法が知られ
ている。すなわち、絶縁膜として用いる樹脂膜の段差部
の発生によシ、この樹脂膜上に形成されるパーマロイパ
ターンに段差が形成され、この段差によってパーマロイ
パターンにパターン切れを発生させたシ、また、このパ
ーマロイパターンからなる磁気バブル転送路の転送マー
ジンを低下させたシするなどの問題があった。
For example, in recent years, in order to realize high-density magnetic bubble memory elements, the pattern period λ of the magnetic bubble transfer paths used has become smaller, and the diameter d of the magnetic bubbles used therein has also become smaller.
At present, a 1M bit magnetic bubble memory element has been put into practical use. The diameter d of the magnetic bubble used in this element is about 2 μm, the period λ of the minor loop transfer path pattern is about 7 to 8 μm, and the storage density in this case is 1
Mb/ctl. Furthermore, for a high-density device in which the minor loop transfer path pattern period λ is 4 to 6 μm, a part of the underlying insulating film in the minor loop portion is etched.
A method of improving the transfer margin of the minor loop portion is known. That is, due to the occurrence of a step in the resin film used as an insulating film, a step is formed in the permalloy pattern formed on this resin film, and this step causes pattern breakage in the permalloy pattern. There were problems such as a reduction in the transfer margin of the magnetic bubble transfer path made of a permalloy pattern.

〔発明の目的〕[Purpose of the invention]

したがって本発明は前述した問題に鑑みてなされたもの
であシ、その目的とするところは、樹脂膜端部のエツチ
ング面角度を基板面に対して低い傾斜角でしかも容易に
形成可能にした樹脂膜のテーパエツチング方法を提供す
ることにある。
Therefore, the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to create a resin film that can be easily formed with a low etching surface angle relative to the substrate surface at the edge of the resin film. An object of the present invention is to provide a method for taper etching a film.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために本発明は、樹脂膜上に
ポジ形フォトレジストパターンを形成し、ベーク処理を
行ない、フォトレジストパターン端部に傾斜面を形成さ
せた後、プラズマエツチングを行なってフォトレジスト
パターンの傾斜面を樹脂膜に転与させたものである。
In order to achieve such an object, the present invention involves forming a positive photoresist pattern on a resin film, performing a baking process to form an inclined surface at the end of the photoresist pattern, and then performing plasma etching. The inclined surface of the photoresist pattern is transferred to the resin film.

〔発明の実施例〕[Embodiments of the invention]

次に図面を用いて本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail using the drawings.

実施例1 第1図ないし第3図は本発明による樹脂膜のテーバエツ
チング方法を磁気バブルメモリ素子の樹脂絶縁膜の形成
に適用した場合の一実施例を示す要部断面工程図である
。これらの図において、まず第1図に示すようにG、G
、G基板1上に磁性ガーネット膜2を液相成長させた後
、S j 02 %43を被着形成する。次に、図示し
ないがこの5iOJB、43上にコンダクタパターンを
形成した後、この810g[3および図示しないコンダ
クタパターン上に厚さ約0.3 mmのポリイミド樹脂
膜4を塗布形成する。次にこの樹脂膜4上にポジ形フォ
トレジストAZ1350J(Hoechst社商品)を
回転塗布し、約80℃で20分間プリベークを行なって
ポジ形フォトレジストJN5を形成した後、i<Asp
Eg社製の2001形マスクアライナを用いて近接露光
を行なってフォトレジストパターンを形成する。この際
、このフォトレジストWA5の端面傾斜角θ1は、SE
M観察によれば約80度であった。ここで、以後の傾斜
角の測定は全てこの8部M断面観察によって行なう。次
にフォトレジストパターン形成後のウェハをフォトレジ
ストの軟化温度140度以上の高温度150度で約20
分間ベークする。これによってフォトレジスト膜5はレ
ジスト・リフローを生じ、流動して第2図に示すように
その傾斜角02は約25度となる。この場合、ベーク炉
はダン産業展の循環形クリーンオープンを使用した。
Embodiment 1 FIGS. 1 to 3 are cross-sectional process diagrams showing essential parts of an embodiment in which the Taber etching method for a resin film according to the present invention is applied to the formation of a resin insulating film of a magnetic bubble memory element. In these figures, first, as shown in Figure 1, G, G
After a magnetic garnet film 2 is grown on the G substrate 1 by liquid phase growth, S j 02 % 43 is deposited. Next, a conductor pattern (not shown) is formed on this 5i OJB 43, and then a polyimide resin film 4 with a thickness of about 0.3 mm is formed by coating on this 810g[3 and the conductor pattern (not shown). Next, a positive photoresist AZ1350J (manufactured by Hoechst) was spin-coated on this resin film 4, and prebaked at about 80°C for 20 minutes to form a positive photoresist JN5.
A photoresist pattern is formed by performing close exposure using a 2001 type mask aligner manufactured by Eg. At this time, the end face inclination angle θ1 of this photoresist WA5 is SE
According to M observation, it was about 80 degrees. Here, all subsequent measurements of the inclination angle are performed by observing this 8-section M cross section. Next, the wafer after the photoresist pattern has been formed is heated at a high temperature of 150 degrees, which is higher than the softening temperature of the photoresist at 140 degrees, for about 20 minutes.
Bake for a minute. As a result, the photoresist film 5 undergoes resist reflow and flows, so that its inclination angle 02 becomes approximately 25 degrees as shown in FIG. In this case, the baking oven used was a recirculating type clean open manufactured by Dan Industrial Exhibition.

次にこの高温度でベークしたウエノ1をバレル形プラズ
マエツチング装置(東京応化製OPM−1)を使用シ、
圧力約I Torr 、 RF出力100W、ガスは空
気を用いてエツチングを行なった。この場合、エツチン
グのレートはフォトレジストA Z 1350Jが18
0^/分、ポリイミド樹脂が150^/分である。この
ような条件で約30分間エツチングを行なうと、第3図
に示すようにフォトレジスト膜5の端面傾斜角θ8が約
25度、ポリイミド樹脂膜4の端面1頃斜角θ4は約2
0度となる。次にこのウェハをアセトンに浸積してフォ
トレジスト膜5を除去する。
Next, Ueno 1 baked at high temperature was etched using a barrel-type plasma etching device (OPM-1 manufactured by Tokyo Ohka).
Etching was performed using air at a pressure of about I Torr and an RF output of 100 W. In this case, the etching rate of photoresist AZ 1350J is 18
0^/min, polyimide resin is 150^/min. When etching is performed for about 30 minutes under these conditions, as shown in FIG. 3, the end face inclination angle θ8 of the photoresist film 5 becomes about 25 degrees, and the inclination angle θ4 around the end face 1 of the polyimide resin film 4 becomes about 25 degrees.
It becomes 0 degrees. Next, this wafer is immersed in acetone to remove the photoresist film 5.

このような方法によれば、ポリイミド樹脂膜4端部の傾
斜角θ4が約20度と極めて緩やかに形成することがで
きた。
According to such a method, the inclination angle θ4 of the end portion of the polyimide resin film 4 was able to be formed extremely gently at about 20 degrees.

実施例2 実施例1によシ製作したウェハは、ポリイミド樹脂膜4
のエツチング後にアセトンに浸漬してフォトレジスト膜
5を除去するのに長時間を要する。
Example 2 A wafer manufactured according to Example 1 had a polyimide resin film 4.
After etching, it takes a long time to remove the photoresist film 5 by immersing it in acetone.

これは前述したようにレジストフローを発生させるだめ
の高温度ベークによシフオドレジスト膜5が熱重合を起
しているためである。そこでポジ形フォトレジスト膜5
のベースレジンであるノボラック樹脂の平均分子量に着
目して平均分子量に対して軟化温度および重合温度を調
べた。その結果第4図に示すようなデーゾが得られた。
This is because the shift resist film 5 undergoes thermal polymerization due to high temperature baking to generate resist flow, as described above. Therefore, the positive photoresist film 5
Focusing on the average molecular weight of the novolak resin, which is the base resin of , the softening temperature and polymerization temperature were investigated with respect to the average molecular weight. As a result, a deso as shown in FIG. 4 was obtained.

この場合、この実施例では、Siウェハ上に約1μmの
厚さにフォトレジスト膜を形成し、約10μm幅のパタ
ーンを形成した後、前述したクリーンオープンを用いて
ベークし、光顕微鏡観察によシフオドレジストだれか発
生した温度を軟化温度とし、熱重合温度は同様にベーク
後、アセトンに約1分間浸種してフォトレジスト膜が不
溶化した温度とした。
In this case, in this example, a photoresist film is formed to a thickness of about 1 μm on a Si wafer, a pattern with a width of about 10 μm is formed, and then baked using the clean open method described above, and observed by light microscopy. The temperature at which the photoresist film was partially generated was defined as the softening temperature, and the thermal polymerization temperature was defined as the temperature at which the photoresist film became insolubilized by soaking in acetone for about 1 minute after baking.

同図において、平均分子量610o〜8300の範囲に
位置するFl、FB、FB、F4の4種類が市販されて
いるフォトレジストであシ、平均分子量1850および
4000に位置するF5およびFOは新たに作製したフ
ォトレジストであり、黒丸のドツトは熱重合温度、白丸
のドツトはレジストリフロー発生温度をそれぞれ示した
ものである。
In the figure, four types of commercially available photoresists, Fl, FB, FB, and F4, which have average molecular weights in the range of 610 to 8,300, are used, and F5 and FO, which have average molecular weights of 1,850 and 4,000, are newly prepared. The black dots indicate the thermal polymerization temperature, and the white dots indicate the resist reflow generation temperature.

同図から明らかなよりに平均分子量4000以下のフォ
トレジストF5 、Faを用いれば、軟化温度以上でか
つ熱重合が起らないベーク温度マージンが得られる。し
たがって、平均分子N1850および4000のフォト
レジストF5およびFOを用いて実施例1と同様にポリ
イミド樹脂膜のエツチングを行なったところ、ポリイミ
ド拉j脂膜の傾斜角は約15度となり、かつアセトンに
浸種することでエツチング後のフォトレジスト膜を完全
に取り除くことかできた。
As is clear from the figure, if a photoresist F5 or Fa having an average molecular weight of 4000 or less is used, a baking temperature margin above the softening temperature and without thermal polymerization can be obtained. Therefore, when a polyimide resin film was etched in the same manner as in Example 1 using photoresists F5 and FO with average molecular weights of N1850 and N4000, the inclination angle of the polyimide resin film was about 15 degrees. By doing so, we were able to completely remove the photoresist film after etching.

このような方法によれば、ノボラック樹脂の平均分子量
が4000以下のフォトレジストをその軟化温度以上の
高温ベークを行なってもアセトンで容易かつ短時間で除
去でき、作業性を向上させることができる。
According to such a method, even if a photoresist whose novolak resin has an average molecular weight of 4000 or less is baked at a high temperature above its softening temperature, it can be easily and quickly removed with acetone, and workability can be improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、樹脂膜端部の傾斜
角を約30度以下と極めて低く形成することができる。
As explained above, according to the present invention, the inclination angle of the end portion of the resin film can be formed as extremely low as about 30 degrees or less.

また、このような方法によれは、パーマロイパターンで
形成されるイ呂気バブル転送路の途中においてパーマロ
イ転送パターンの下地である樹脂膜の膜厚を変化させて
もその段光による素子の動作マージンの低下を防止する
ことができる。さらに平均分子量4000以下のノボラ
ック樹脂を含むフォトレジストを用いることにより、エ
ツチング後のフォトレジスト除去がアセトンで容易に可
能となるので、工程が簡素化され、経済的に礎気バブル
メモリ素子が生埋可能となるなどの極めて侵れた効果が
得られる。
Furthermore, in this method, even if the thickness of the resin film underlying the permalloy transfer pattern is changed in the middle of the bubble transfer path formed by the permalloy pattern, the operating margin of the element due to the light generated by the change in thickness will be reduced. It is possible to prevent a decrease in Furthermore, by using a photoresist containing a novolac resin with an average molecular weight of 4,000 or less, the photoresist can be easily removed with acetone after etching, which simplifies the process and allows for economical live burying of air bubble memory elements. You can achieve extremely profound effects such as being able to do so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明による樹脂膜のテーバエツ
チング方法の一例を示す要部断面工程図、第4図はフォ
トレジストのベースレジンの平均分子量による熱特性の
変化を示す特性図である。 1・・・・G、G、G基板、2・轡・・磁性ガーネット
、3・・e a 5ins L 4−・・・ポリイミド
樹脂膜、5・・・−フォトレジスト膜。 第4図 −1−埒分1量
Figures 1 to 3 are cross-sectional process diagrams of essential parts showing an example of the Taber etching method for a resin film according to the present invention, and Figure 4 is a characteristic diagram showing changes in thermal characteristics depending on the average molecular weight of the base resin of the photoresist. . 1... G, G, G substrate, 2... Magnetic garnet, 3... e a 5ins L 4-... Polyimide resin film, 5...- Photoresist film. Figure 4-1-1 quantity

Claims (1)

【特許請求の範囲】 1、基板上に樹脂膜を塗布形成する工程と、前記樹脂股
上にポジ形フォトレジスト膜を形成する工程と、前記フ
ォトレジスト膜をベークして該フォトレジスト膜端部に
フォトレジストの傾斜を形成する工程と、前記樹脂膜、
ポジ形フォトレジスト膜をプラズマエツチングして該樹
脂膜端部に傾斜を形成する工程と、前記ポジ形フォトレ
ジストgをエツチング除去する工程とからなることを特
徴とした樹脂膜のテーパエツチング方法。 2、前記ポジ形フォトレジスト膜に、ノボラック樹脂の
平均分子量が4000以下のフォトレジストを用いたこ
とを特徴とする特許請求の範囲第1項記載の樹脂膜のテ
ーバエツチング方法。
[Claims] 1. A step of coating and forming a resin film on a substrate, a step of forming a positive photoresist film on the resin ridge, and a step of baking the photoresist film to form an end portion of the photoresist film. a step of forming a slope of photoresist; the resin film;
A method for taper etching a resin film, comprising the steps of plasma etching a positive photoresist film to form a slope at the end of the resin film, and removing the positive photoresist g by etching. 2. The Taber etching method for a resin film according to claim 1, characterized in that the positive photoresist film is a photoresist whose novolac resin has an average molecular weight of 4000 or less.
JP58224106A 1983-11-30 1983-11-30 Method for manufacturing magnetic bubble memory device Expired - Lifetime JPH0634349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224106A JPH0634349B2 (en) 1983-11-30 1983-11-30 Method for manufacturing magnetic bubble memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224106A JPH0634349B2 (en) 1983-11-30 1983-11-30 Method for manufacturing magnetic bubble memory device

Publications (2)

Publication Number Publication Date
JPS60117632A true JPS60117632A (en) 1985-06-25
JPH0634349B2 JPH0634349B2 (en) 1994-05-02

Family

ID=16808629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224106A Expired - Lifetime JPH0634349B2 (en) 1983-11-30 1983-11-30 Method for manufacturing magnetic bubble memory device

Country Status (1)

Country Link
JP (1) JPH0634349B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044805A3 (en) * 2000-12-01 2002-11-28 Koninkl Philips Electronics Nv Method of increasing the conductivity of a transparent conductive layer
EP1503229A1 (en) * 2003-08-01 2005-02-02 BAE SYSTEMS Information and Electronic Systems Integration, Inc. Method of forming interlayer connections in integrated optical circuits, and devices formed using same
JP2014113807A (en) * 2012-12-12 2014-06-26 Toshiba Corp Ink jet head and ink jet head manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158071A (en) * 1974-11-18 1976-05-21 Nichiden Varian Kk SUPATSUTAETSUCHINGUHO
JPS5745308A (en) * 1980-01-29 1982-03-15 Nishihara Environ Sanit Res Corp Liquid surface decanter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158071A (en) * 1974-11-18 1976-05-21 Nichiden Varian Kk SUPATSUTAETSUCHINGUHO
JPS5745308A (en) * 1980-01-29 1982-03-15 Nishihara Environ Sanit Res Corp Liquid surface decanter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044805A3 (en) * 2000-12-01 2002-11-28 Koninkl Philips Electronics Nv Method of increasing the conductivity of a transparent conductive layer
EP1503229A1 (en) * 2003-08-01 2005-02-02 BAE SYSTEMS Information and Electronic Systems Integration, Inc. Method of forming interlayer connections in integrated optical circuits, and devices formed using same
JP2014113807A (en) * 2012-12-12 2014-06-26 Toshiba Corp Ink jet head and ink jet head manufacturing method

Also Published As

Publication number Publication date
JPH0634349B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US5275695A (en) Process for generating beveled edges
US20110171585A1 (en) Photolithography Method
US4599137A (en) Method of forming resist pattern
JP2553079B2 (en) Via formation method
JPS60117632A (en) Tapered etching method of resin film
EP0304077B1 (en) Method of forming a fine pattern
JPH01124219A (en) Method of forming masking structure on substrate
JPH05343279A (en) Manufacture of semiconductor device
JP2713061B2 (en) Method of forming resist pattern
KR940007064B1 (en) Forming method of fine pattern
TW200303583A (en) Method for forming a pattern in a semiconductor substrate
JP2654147B2 (en) Thin film magnetic head
KR100557980B1 (en) Photoresist lessen method
KR100310943B1 (en) Photolithography techniques for superconducting device
KR20000037885A (en) Fine pattern formation method
KR100190369B1 (en) Psg film pattern forming method of semiconductor device
JPS62200732A (en) Manufacture of semiconductor device
KR100310978B1 (en) Photolithography techniques for superconducting device
JPH0249017B2 (en)
JPS63207132A (en) Manufacture of semiconductor device
JPS6030101B2 (en) Pattern formation method
JPS5852341B2 (en) Manufacturing method of semiconductor device
JPH04250624A (en) Pattern formation
JPH04225353A (en) Production of photomask with phase shift layer
JPH0821574B2 (en) Pattern forming method