JPS60117058A - Temperature regulating circuit device - Google Patents

Temperature regulating circuit device

Info

Publication number
JPS60117058A
JPS60117058A JP22520383A JP22520383A JPS60117058A JP S60117058 A JPS60117058 A JP S60117058A JP 22520383 A JP22520383 A JP 22520383A JP 22520383 A JP22520383 A JP 22520383A JP S60117058 A JPS60117058 A JP S60117058A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
temperature
heat exchanger
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22520383A
Other languages
Japanese (ja)
Other versions
JPH0341744B2 (en
Inventor
今飯田 毅
伊坂 安生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22520383A priority Critical patent/JPS60117058A/en
Publication of JPS60117058A publication Critical patent/JPS60117058A/en
Publication of JPH0341744B2 publication Critical patent/JPH0341744B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、空気調和(代や冷凍装置などのような、室温
を調a:Xする温度調整回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature regulating circuit device, such as an air conditioner or a refrigeration device, which adjusts the room temperature a:X.

〜・般に、温度1nyl整装置(空気調和fi)として
は、第1図に示すように、作動流体(冷媒)を循環させ
て外気との熱交換をさせるべく、圧縮機1.四方切換弁
2.室外熱交換器3.絞り4.室内熱交換器5およびア
キュムレータ6からなる温度調整回路がそなえられてい
る。
In general, as shown in FIG. 1, a temperature control device (air conditioning fi) includes a compressor 1. Four-way switching valve2. Outdoor heat exchanger 3. Aperture 4. A temperature adjustment circuit consisting of an indoor heat exchanger 5 and an accumulator 6 is provided.

このような装置によって冷房を行なう際には、四方切換
弁2を第1図に実線で示したような状態に設定して、圧
縮機1の吐出側を凝縮器としての室外熱交換器3に7キ
ユムレータ6の吸込側を蒸発器としての室内熱交換器5
にそれぞれ接続する。この時、冷媒の循環は図中の実線
矢印で示したようになる。
When cooling with such a device, the four-way switching valve 2 is set to the state shown by the solid line in Fig. 1, and the discharge side of the compressor 1 is connected to the outdoor heat exchanger 3 as a condenser. 7 Indoor heat exchanger 5 using the suction side of the cumulator 6 as an evaporator
Connect to each. At this time, the refrigerant circulates as shown by the solid arrows in the figure.

すなわち、圧縮機1により昇圧されて高温高圧のガスと
なった冷媒は、四方切換弁2を経て室外熱交換器3へ導
かれ、そこで凝縮されて高温高圧の液体となる。
That is, the refrigerant that has been pressurized by the compressor 1 to become a high-temperature, high-pressure gas is led to the outdoor heat exchanger 3 via the four-way switching valve 2, where it is condensed and becomes a high-temperature, high-pressure liquid.

そして、絞り4を通って低温低圧の液体となった冷媒は
、室内熱交換器5に入ってここで蒸発する。この際室内
空気より蒸発熱を奪ってその温度を下げることにより冷
房が行なわれるのである。
The refrigerant that passes through the throttle 4 and becomes a low-temperature, low-pressure liquid enters the indoor heat exchanger 5 and evaporates there. At this time, cooling is performed by removing heat of evaporation from the indoor air and lowering its temperature.

その後、冷媒はアキュムレータ6を経て再び圧縮機1に
吸込まれ、上述のサイクルを繰返すのである。
Thereafter, the refrigerant is sucked into the compressor 1 again through the accumulator 6, and the above-mentioned cycle is repeated.

一方、上述の装置によって暖房を行なう際には、四方切
換弁2を破線で示したように切換えて、圧縮機1の吐出
側を凝縮器としての室内熱交換器5に、アキュムレ−タ
ロの吸込側を蒸発器としての室外熱交換器3にそれぞれ
接続する。この際、冷媒の循環は破線矢印で示したよう
になり、上述の冷房の場合とは逆に、冷媒は室内熱交換
器5で凝縮して、その潜熱を室内空気に与えるので、室
内空気の温度が上列し、暖房が行なわれるのである。
On the other hand, when performing heating with the above-mentioned device, the four-way switching valve 2 is switched as shown by the broken line, and the discharge side of the compressor 1 is connected to the indoor heat exchanger 5 as a condenser, and the suction side of the accumulator The sides are each connected to an outdoor heat exchanger 3 as an evaporator. At this time, the refrigerant circulates as shown by the dashed arrow, and contrary to the above-mentioned cooling case, the refrigerant condenses in the indoor heat exchanger 5 and gives its latent heat to the indoor air. The temperature rises and heating is performed.

通常、」二連のような空気調和機は、その最大負荷に近
い負荷において十分な空気調和を行ないうる能力を有す
るように設計されている。ところか、冷房(暖房)を行
なう期間を通してみると、最大負荷となる外気温度を越
える時間比率は僅かであり、大部分の時間は最大負荷以
下の外気温度で運転されている。
Typically, an air conditioner such as a "duplex" is designed to have the ability to provide sufficient air conditioning at a load close to its maximum load. However, when looking at the entire cooling (heating) period, the proportion of time when the outside air temperature exceeds the maximum load is small, and most of the time the system is operated at an outside air temperature below the maximum load.

冷房を行なって室温を一定に保つ場合の外気温度と冷房
負荷の関係は、第2図に示すように、外気温度35°C
で最大負荷A1に達するものとした場合、冷房期間の平
均外気温度(本例では29℃としている)における冷房
負荷をA、とすると、ノ\、はA1に比べ大幅に小さく
、通常半分り、下である。したがって、最大負荷AIの
能力を持つ、二の空気調和機は冷房期間の大半にわたっ
て過大な能力を有することになり、室温を過度に低下(
あるいは上昇)させるという問題点が生じる。
The relationship between outside air temperature and cooling load when cooling is performed to keep the room temperature constant is as shown in Figure 2, when the outside air temperature is 35°C.
If the maximum load A1 is reached at , and the cooling load at the average outside temperature during the cooling period (29°C in this example) is A, then \ is significantly smaller than A1, usually about half, It's below. Therefore, the second air conditioner, which has the capacity of maximum load AI, will have excessive capacity for most of the cooling period, causing the room temperature to drop excessively (
The problem arises that the amount of water is increased.

そこで、従来より、サーモスタットにより室温を検知し
、その検出信号により圧縮+!’11をON −OF 
F制御して、室温が低下しすぎないようにすることが行
なわれている。
Therefore, conventionally, the room temperature is detected using a thermostat, and the detection signal is used to compress +! '11 ON-OF
F control is carried out to prevent the room temperature from dropping too much.

第3図は、サーモスタットを用いてON −OF F制
御を行なった場合の室温の時間変化を示すグラフであり
、図中右下り線は冷房運転中(圧縮機運転中)、右」ニ
リ線は冷房停止中(圧縮機停止中)を示している。
Fig. 3 is a graph showing the change in room temperature over time when ON-OFF control is performed using a thermostat. Indicates that cooling is stopped (compressor is stopped).

また、線Aはサーモスタンドの設定値27°C,サーモ
ディファレンシャル4°Cの場合の制御の様−r−を示
しており、この場合は室温が25°Cまで下がった時点
で圧縮機が停止されて室温は上昇し、29°Cに達した
時点で再び冷房運転が再開されている。
In addition, line A shows the control mode -r- when the thermostand setting value is 27°C and the thermodifferential is 4°C. In this case, the compressor stops when the room temperature drops to 25°C. As a result, the room temperature rose, and when it reached 29°C, cooling operation was restarted.

しカルながら、このような制御では、快適な温度範囲と
される18°C〜28°Cの範囲を越えた不快なゾーン
(図の斜線部)を有することとなるので、多くの場合サ
ーモスタットの設定値を下げることが行なわれる。
However, with this type of control, there is an uncomfortable zone (shaded area in the diagram) that exceeds the comfortable temperature range of 18°C to 28°C, so in many cases the thermostat is The set value is lowered.

第3図の線Bはサーモスタットの設定値を下げて26°
Cとし、サーモディファレンシャルは上述の場合と同様
に4°Cとした場合を示しており、この場合は不快なゾ
ーンは)1イ消されたが、線1)の場合に比し空気調和
機の運転11’i間か延反し、その消費エネルギーが増
加するという弊r!i’か生じる。
Line B in Figure 3 is 26° by lowering the thermostat setting.
C, and the thermodifferential is set to 4°C as in the case described above. In this case, the uncomfortable zone is 1 The disadvantage is that the paper spreads during operation and energy consumption increases! i' occurs.

1−なJ)r、、一定外気温度ドでの室温に対する冷房
負荷の関係は、第4図に示したようになっているので、
ザーモスタッ1の設定値が27°Cから26℃に変更さ
れると冷房負荷は線1)から線Eへと増加し、その分だ
け圧&il>9. Iを運転する時間が延反腰消費エネ
ルギーか増加するのである。。
1- J) r, The relationship between the cooling load and the room temperature at a constant outside temperature is as shown in Figure 4, so
When the setting value of thermostat 1 is changed from 27°C to 26°C, the cooling load increases from line 1) to line E, and the pressure &il>9. This means that the time required to run the I will increase the amount of energy consumed during the spread. .

ノJ、第:(図の線Cは、サーモスタッ1の設定値と2
 ’7 Y、’、・リーモディファレンシ〜、ルをI 
’Cトして○N−01・1′制1lll した場合を示
しており、室温は26.5°Cと2°7 、5 ’(:
との間を往復するようになり不快なゾーンはI’lq消
されている。
No. J, No.: (Line C in the diagram shows the setting value of thermostat 1 and 2.
'7 Y,', Lee modification ~, I
'C and ○N-01・1' system 1llll, the room temperature is 26.5°C and 2°7,5' (:
I'lq has been erased from the uncomfortable zone.

このように、快適でしかも効率のよい状態での運転を1
1なうためには、サーモディ7Tレンシヤルを小さくす
ればよい。
In this way, you can drive comfortably and efficiently.
1, all you have to do is make the Thermomod 7T lential smaller.

しh化ながら、サーモディファレンシャルを小さくする
場合には、第3図に示すように圧縮機1の発停回数が多
くなり、その時間間隔も短くなるので、以下のような2
つの重要な障害が生しる。
However, when reducing the thermodifferential, the number of times the compressor 1 starts and stops increases and the time interval becomes shorter, as shown in Figure 3.
Two important obstacles arise.

その1は圧縮機1の再起動の問題である。The first problem is restarting the compressor 1.

すなわち、圧縮機1を停止すると、その直後においては
、その吐出管は高圧に、その吸入管は低圧になっており
、冷媒が高圧側から低圧側に流入することでやがてその
両方は均圧されるようになる。そして、圧縮(幾1の吐
出側と吸込側とが確実に均圧されるには通常約3分はど
の所定時間が必要であり、もし均圧されていない状態で
圧縮機1を再起動しにうとすると、起動不良をおこし、
再起動に失敗する場合かある。
In other words, immediately after the compressor 1 is stopped, its discharge pipe is at high pressure and its suction pipe is at low pressure, and as the refrigerant flows from the high pressure side to the low pressure side, the pressures of both will eventually be equalized. Become so. Then, it takes a certain amount of time, usually about 3 minutes, to ensure that the pressure on the discharge side and suction side of Compressor 1 is equalized, and if the pressure is not equalized, restart Compressor 1. If you try to sleep, it will cause a startup problem,
Sometimes the reboot fails.

ところかサーモディファレンシャルを小さくすれは圧縮
機1の発停間隔が短くなるため、圧縮機1はその吐出側
と吸込側とが完全に均圧されずに差圧のある状態で、そ
の差圧に抗して起動されることになり、起動不良をおこ
し、再起動に失敗する危険性が生しるのである、。
However, if the thermodifferential is made smaller, the interval between the start and stop of the compressor 1 becomes shorter, so the compressor 1 is in a state where the pressure on the discharge side and the suction side are not completely equalized, and there is a differential pressure. This creates a risk that the device will start up against the resistance, resulting in startup failure and failure to restart.

第2は圧縮機1の発停に伴う熱損失の問題である。The second problem is heat loss caused by the start and stop of the compressor 1.

孝−なわち、冷凍サイクルに封入された冷媒は、大半か
液体としてサイクル中に存在し、定常運転時には大半、
か凝縮器(冷房時は室外熱交換器3)に片寄って存在し
・C1特に凝縮器の中央から絞1)4に到る管路内に液
冷りjLとして存在している。
In other words, most of the refrigerant sealed in the refrigeration cycle exists in the cycle as a liquid, and during steady operation, most of the refrigerant is present in the cycle as a liquid.
It is present in the condenser (outdoor heat exchanger 3 during cooling), and exists as liquid cooling jL, especially in the pipe line from the center of the condenser to the constrictor 1)4.

ノへ圧&iB’J ]の停止時には、凝縮器(冷房時は
室外熱交換器3)内の液冷媒が絞り4を通って蒸発器(
冷房時は室内熱交換器5)側に流れるために、蒸発器に
火゛1′、の液冷媒が片寄って存在することになる。
When the air pressure &iB'J is stopped, the liquid refrigerant in the condenser (outdoor heat exchanger 3 during cooling) passes through the throttle 4 and flows into the evaporator (
During cooling, the liquid refrigerant flows toward the indoor heat exchanger 5), so that the liquid refrigerant of the flame 1' is present in the evaporator.

このような冷媒分布状態で、圧縮機1を再起動した場合
に、蒸発器の大゛1−の液冷媒は、アキュムレータ6に
流れ込むと其に、凝縮器内には十分な液冷媒が存在しな
いため、蒸発器に絞り4を通って供給される冷媒は極め
て少なくなる。この結果として、蒸発器には蒸発すべ外
液冷媒が存在せず、圧縮機1を起動しても、なかなか室
内熱交換器5からの吹出空気の温度が下がらず、冷風か
吹き出すまでに2〜3分を要するという問題点がある。
When the compressor 1 is restarted in such a refrigerant distribution state, when the liquid refrigerant in the evaporator flows into the accumulator 6, there is not enough liquid refrigerant in the condenser. Therefore, the amount of refrigerant supplied to the evaporator through the throttle 4 becomes extremely small. As a result, there is no external liquid refrigerant to evaporate in the evaporator, and even when the compressor 1 is started, the temperature of the air blown from the indoor heat exchanger 5 does not drop easily, and the temperature of the air blown out from the indoor heat exchanger 5 does not decrease until the cold air is blown out. There is a problem that it takes 3 minutes.

このような従来例にて、冷房運転の際に圧縮機1が再起
動された時の空気調和+幾の吸込温度、吹出温度、蒸発
器(室内熱交換器5)中央部の温度の変化の実測例を第
5図に示す。
In such a conventional example, when the compressor 1 is restarted during cooling operation, changes in the air conditioning + air intake temperature, outlet temperature, and temperature at the center of the evaporator (indoor heat exchanger 5) are calculated. An example of actual measurement is shown in FIG.

第5図において、符号Gは空気調和機の吸込空気温度、
符号Hは吹出空気温度、符号Iは蒸発器(室内熱交換器
5)の中央部の温度をそれぞれ示している。
In FIG. 5, the symbol G represents the temperature of the air intake air of the air conditioner.
The symbol H indicates the temperature of the blown air, and the symbol I indicates the temperature at the center of the evaporator (indoor heat exchanger 5).

そして、圧縮機1が再起動すると、蒸発器内の圧力は低
下するため、蒸発器の温度は一旦低下するが、凝縮器か
ら液冷媒が絞り4を通じて供給されないため、逆に吸込
空気で加熱されて上昇し、その後低下していく現象を示
している。このため、吹出温度11は圧縮(尺1再起動
後もながなが低下せず、冷風が定常的に吹出すまでに2
〜:)分を要するのである。
Then, when the compressor 1 is restarted, the pressure inside the evaporator decreases, so the temperature of the evaporator temporarily decreases, but since the liquid refrigerant is not supplied from the condenser through the throttle 4, it is heated by the suction air. This shows a phenomenon in which the value increases and then decreases. For this reason, the blowing temperature 11 does not decrease even after restarting, and the blowing temperature 11 does not decrease even after restarting, and it takes 2
It takes ~:) minutes.

このような、圧縮機1の再起動にイ′1′う熱損失は、
圧縮機1の発停回数とともに増加し、空気調和機の年間
エネルギー効率を大ぎく低下させる原因となっている。
The heat loss caused by restarting the compressor 1 is as follows:
This increases with the number of times the compressor 1 is turned on and off, causing a significant drop in the annual energy efficiency of the air conditioner.

なお、このような熱損失は、暖房時でも、はぼ同様にし
て生じる。
Note that such heat loss occurs in the same way as during heating.

本発明の温度調整回路装置は、上述の実情に鑑み、その
圧縮機の再起動時において生しる熱損失を低減すると共
に、圧縮機の再起動時に圧縮機の吐出管と吸入管に差圧
か生ヒないようにして、圧縮機の発停を頻繁に行なえる
ようにした温度調整回路装置を提0(することを目的と
する。
In view of the above-mentioned circumstances, the temperature adjustment circuit device of the present invention reduces the heat loss that occurs when the compressor is restarted, and also reduces the pressure difference between the discharge pipe and suction pipe of the compressor when the compressor is restarted. The purpose of the present invention is to provide a temperature regulating circuit device that can frequently start and stop a compressor without causing any damage.

このため本発明の温度調整回路装置は、作動流体を()
6環させるべく、圧縮機、凝縮器、絞りおよび蒸発器を
順次接続して形成された温度調整回路をそなえ、上記圧
縮機の吐出側から上記凝縮器を経て上記絞りに至る管路
の途中に、」−記作動流体を貯蔵しうる作動流体貯蔵容
器が設けられて、同作動流体貯蔵容器と上記管路とが、
上記;に縮機の起動時に開放され」1記圧縮機の停止1
一時に閉鎖される開閉弁を介し゛C接続されたことを特
徴としている。
For this reason, the temperature adjustment circuit device of the present invention allows the working fluid to
A temperature adjustment circuit formed by sequentially connecting a compressor, a condenser, a throttle, and an evaporator to form a six-ring system is provided, and a temperature control circuit is provided in the middle of the pipe from the discharge side of the compressor to the condenser and the constrictor. A working fluid storage container capable of storing the working fluid is provided, and the working fluid storage container and the pipe line are connected to each other,
It is opened when the compressor is started in the above;
It is characterized by a "C" connection via an on-off valve that is closed at one time.

以F、図面により本発明の実施例について説明すると、
第6,7図は本発明の第1実施例としての温度調整回路
装置を示すもので、第6図はその全体構成を示す概略図
、第7図は圧縮機の吐出側圧力および吸込(1111圧
力の経時変化を示すグラフであって、第8図は本発明の
第2実施例としての温度iM整回路装置の全体構成を示
す概略図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
6 and 7 show a temperature adjustment circuit device as a first embodiment of the present invention, FIG. 6 is a schematic diagram showing the overall configuration, and FIG. 7 is a diagram showing the discharge side pressure and suction (1111 FIG. 8 is a graph showing changes in pressure over time, and is a schematic diagram showing the overall configuration of a temperature iM adjustment circuit device as a second embodiment of the present invention.

まず、本発明の第1実施例について説明すると、第6図
に示すように、作動流体(冷媒)を循環させて外気との
熱交換をさせるべく、圧縮機11.室外熱交換器13、
絞り14.室内熱交換器15およびアキュムレータ16
が順次接続されて、環状の温度調整回路が形成されてい
る。
First, a first embodiment of the present invention will be described. As shown in FIG. 6, a compressor 11. outdoor heat exchanger 13,
Aperture 14. Indoor heat exchanger 15 and accumulator 16
are connected in sequence to form a ring-shaped temperature adjustment circuit.

図中の矢印は、上述の温度調整回路によって冷房を行な
う場合の作動流体の流れる方向を示している。
The arrows in the figure indicate the flow direction of the working fluid when cooling is performed by the above-mentioned temperature adjustment circuit.

そして、圧縮機11の吐出側11aから凝縮器(室外熱
交換器13)を経て絞り14へ至る管路の途中(本実施
例では室外熱交換器13と絞り14とを結ぶ管路の途中
)に、冷媒を貯蔵しうる冷媒貯蔵容器17が連絡管19
を介して接続されている。
Then, in the middle of the pipe line from the discharge side 11a of the compressor 11 to the throttle 14 via the condenser (outdoor heat exchanger 13) (in the middle of the pipe line connecting the outdoor heat exchanger 13 and the throttle 14 in this embodiment) A refrigerant storage container 17 capable of storing refrigerant is connected to a connecting pipe 19.
connected via.

連絡管19には、開閉弁18が介挿されており、この開
閉弁18は圧縮機11の起動時に開放され、圧縮1尺1
1のjや正時1こ閉1i’iされるようになって(・る
An on-off valve 18 is inserted in the communication pipe 19, and this on-off valve 18 is opened when the compressor 11 is started, and the compression is performed once.
1 j and 1 i'i on the hour began to be used (・ru).

上述の構成により、圧縮機11を運転すると、冷媒は図
中の実線矢印のごとく循環し、冷房が行なわれる。
With the above-described configuration, when the compressor 11 is operated, the refrigerant circulates as shown by the solid arrow in the figure, and cooling is performed.

すなわち、圧縮(幾11を出た高温高圧ガス状冷媒は、
凝名1j器としての室外熱交換器13で凝縮され高温高
圧の液となり、絞り14を通る際に減圧され、蒸発器と
しての室内熱交換器15に入ってここで蒸発する。この
際、室内′!P気、Y1)蒸発熱を奪ってその温度を下
げることにより冷房か11なわれるのである。
In other words, the high-temperature, high-pressure gaseous refrigerant that has been compressed (11) is
It is condensed in the outdoor heat exchanger 13 as a condenser 1j to become a high-temperature and high-pressure liquid, which is depressurized when passing through the throttle 14, enters the indoor heat exchanger 15 as an evaporator, and evaporates there. At this time, indoors! P air, Y1) Cooling is achieved by removing the heat of evaporation and lowering the temperature.

シJ内熱2換器15を出た冷媒はアキュムレータ16を
経て、山びIi:&ili交1]に吸込まれ、」−述の
サイクルな繰返4−9 、二のとき、開閉弁1旧土開放されているため、冷媒1
[;蔵容器1”j内には、高温高圧のガス状の冷媒が人
ってくるが、冷媒1ti蔵容器17の周囲温度は、容器
内の高1−1力゛スの凝fA?+温度よりも低いため、
冷媒貯蔵容器17内の高)−13の冷W、は周囲空気に
より冷やされて、全量液化し高圧の液冷媒となる。
The refrigerant that has exited the internal heat exchanger 15 passes through the accumulator 16 and is sucked into the convex Ii:&ili exchange 1]. Since the soil is open, refrigerant 1
[;A high-temperature, high-pressure gaseous refrigerant enters the storage container 1''j, but the ambient temperature of the refrigerant storage container 17 is such that the high 1-1 force condensation fA?+ Because it is lower than the temperature
The cold water (W)-13 in the refrigerant storage container 17 is cooled by the surrounding air, and is completely liquefied to become a high-pressure liquid refrigerant.

上述の状態から圧縮機11を停止すると、室外熱交換器
〕3を含む高温高圧側の冷媒は絞り14を通って室内熱
交換器15の低圧側へ流入する。
When the compressor 11 is stopped from the above-mentioned state, the refrigerant on the high-temperature, high-pressure side including the outdoor heat exchanger] 3 flows into the low-pressure side of the indoor heat exchanger 15 through the throttle 14.

この冷媒の移動は、高圧側と低圧側とが圧力的に均衡す
るまで続く。
This movement of the refrigerant continues until the pressures on the high-pressure side and the low-pressure side are balanced.

ところが、圧縮機11の停止時に開閉弁18は閉鎖され
るため、冷媒貯蔵容器17内は圧縮に!++の停止中も
高圧をME持するとともに高圧の液冷媒で満たされてい
る。(第7図参照) その後、圧縮8!11が再起動されると同時に開閉弁j
8は開放される。このとき、圧縮機11の吐出側から絞
り14に到る冷媒回路の高圧側の部分は、圧縮機11の
起動直後のためその圧力が十分」ニガしでおらず、冷媒
貯蔵容器17内の高圧の液冷媒は冷媒回路中に押し出さ
れる。(第7図参照) したかって、冷媒貯蔵容器17に上り供給された液冷媒
は、絞り14を通って室内熱交換器15に導かれて蒸発
腰室内空気より蒸発熱を吸収するので圧縮機11の再起
動直後でも、冷風が吹ぎ出されるようになるのである。
However, since the on-off valve 18 is closed when the compressor 11 is stopped, the inside of the refrigerant storage container 17 is compressed! Even when the ++ is stopped, the ME maintains high pressure and is filled with high-pressure liquid refrigerant. (Refer to Fig. 7) Then, at the same time as the compression 8!11 is restarted, the on-off valve j
8 is released. At this time, the pressure in the high-pressure side of the refrigerant circuit from the discharge side of the compressor 11 to the throttle 14 is not sufficient because the compressor 11 has just been started, and the high pressure inside the refrigerant storage container 17 is of liquid refrigerant is forced into the refrigerant circuit. (See FIG. 7) Therefore, the liquid refrigerant that has been supplied to the refrigerant storage container 17 passes through the throttle 14 and is led to the indoor heat exchanger 15 where it absorbs the heat of evaporation from the indoor air. Even immediately after restarting, cold air continues to be blown out.

さらに、圧縮機11が運転を継続されると、冷媒貯蔵゛
?′r器ビアには再び高圧の液冷媒が満たされるように
なる。1 なす;、開閉弁1)jの開閉は圧縮1幾11の運転状態
を検知して自動的に行なわれることか可能である。
Furthermore, when the compressor 11 continues to operate, the refrigerant is stored? The vessel via is again filled with high pressure liquid refrigerant. 1) The opening/closing of the on-off valve 1)j can be performed automatically by detecting the operating state of the compression valve 1 or 11.

第;)図に示す本発明の第2実施例は、第1図に示した
従来例と同様に、圧縮機11の吐出側11a、アキュl
、レータ1Gの吸入側16i+、熱交換器13および室
内熱り換器1!3か四方切換弁12に接続されており、
四方切換弁12を実線で示すごとく切換えることにより
圧縮1iW++の111出側11aか室外熱交換器13
に、アキュl、レータ16の吸入側16aが室内熱交換
器15にそれぞれ連通され、破線で示すごとく切換える
ことにより圧縮機11の吐出側11aが室外熱交換器1
3(r、アキュl、レータ16の吸込側が室外熱交換器
13にそれぞれ連通されるようになっている。
The second embodiment of the present invention shown in FIG. 1 is similar to the conventional example shown in FIG.
, the suction side 16i+ of the rotor 1G, the heat exchanger 13 and the indoor heat exchanger 1!3 are connected to the four-way switching valve 12,
By switching the four-way switching valve 12 as shown by the solid line, the compression 1iW++ 111 outlet side 11a or the outdoor heat exchanger 13
The suction side 16a of the accelerator and rotor 16 are connected to the indoor heat exchanger 15, and the discharge side 11a of the compressor 11 is connected to the outdoor heat exchanger 1 by switching as shown by the broken line.
3(r), the suction side of the rotor 16 is connected to the outdoor heat exchanger 13, respectively.

そして、室外熱交換器13から室内熱交換器15へ到る
管路・\は絞り22および絞り14が順次設けられてい
る、。
The conduit leading from the outdoor heat exchanger 13 to the indoor heat exchanger 15 is sequentially provided with a throttle 22 and a throttle 14.

なお、第8図において、実線矢印は冷房時における冷媒
の循環を示しており、破線矢印は暖房時における冷媒の
循環を示している。
In FIG. 8, solid line arrows indicate refrigerant circulation during cooling, and broken line arrows indicate refrigerant circulation during heating.

絞り22には、−り記の冷房時における冷媒のニガすれ
を通過させる逆止弁21が、絞り14には、」1記の暖
房時における冷媒の流れを通過させる逆止弁20がそれ
ぞれ並設されている。
The throttle 22 has a check valve 21 that allows the flow of refrigerant to pass during cooling as described in 1. The throttle 14 has a check valve 20 that allows the flow of refrigerant to pass during heating as described in 1. It is set up.

さらに、絞り14と絞り22とを結」ζ管路に、冷媒貯
蔵容器17が連絡管19により接続されており、この連
絡管19には、圧縮機11の運転時に開放され、圧縮機
11の停止時に閉鎖される開閉弁18が介挿されている
Furthermore, a refrigerant storage container 17 is connected to the ζ pipe connecting the throttle 14 and the throttle 22 by a connecting pipe 19, and the connecting pipe 19 is opened when the compressor 11 is in operation. An on-off valve 18 that is closed when stopped is inserted.

−に連の構成により、四方切換弁12を第8図の実線で
示したように切換えて圧縮機11を運転すれば、11J
述の従来例と同様にして冷房が行なわれる。
- If the four-way switching valve 12 is switched as shown by the solid line in FIG. 8 and the compressor 11 is operated, 11J
Cooling is performed in the same manner as in the conventional example described above.

そして、この際、冷媒は絞り22を通過ぜずに逆止弁2
()を通過するので前述の第1実施例と同様に、冷媒貯
蔵容器17が高圧側に連通されるようになり、第1実施
例の場合と同様の作用および効果が得られる。
At this time, the refrigerant does not pass through the throttle 22 and instead passes through the check valve 22.
(), the refrigerant storage container 17 is communicated with the high pressure side as in the first embodiment, and the same functions and effects as in the first embodiment can be obtained.

また、暖房を行なう際には、四方切換弁12を第8図の
点線のよ−)に切換えて圧縮機]Jを運りtする。この
とき、冷媒は、点線矢印の如く循環する。
When performing heating, the four-way switching valve 12 is switched to the position indicated by the dotted line in FIG. 8 to move the compressor J. At this time, the refrigerant circulates as indicated by the dotted arrow.

すなわち、圧縮機11を出た高温高圧ガス状冷媒は四力
切jθ弁12を経て、室内熱交換器J5に到り、ここで
凝縮して高温高)1;の液となり、その際放出する潜熱
1ご上り室内空気の温度を−1−げて暖房を行なう。
That is, the high-temperature, high-pressure gaseous refrigerant that exits the compressor 11 passes through the four-force cut-off jθ valve 12 and reaches the indoor heat exchanger J5, where it condenses to become a high-temperature, high-pressure liquid, which is then released. The latent heat increases by 1 and raises the temperature of the indoor air by -1 to perform heating.

そして、逆」1弁21を通り、絞り22で減圧され室外
熱交換器1;)に入って、ここで蒸発する。さらに室外
熱交換器1;(を出た冷媒は、四方切換弁12を経てア
キュムレータ16を通り、圧縮機11に吸込まれ、i’
i U’ I:述のサイクルを繰返すのである。
Then, it passes through the reverse valve 21, is depressurized by the throttle 22, enters the outdoor heat exchanger 1;), and evaporates there. Furthermore, the refrigerant exiting the outdoor heat exchanger 1 passes through the four-way switching valve 12, the accumulator 16, and is sucked into the compressor 11.
i U' I: The above cycle is repeated.

と、二ろで、l−1:A11N>!il ]の定常運転
時には、開閉弁18は開放されているので、冷媒貯蔵容
器17中には高温高圧の力゛ス状の冷媒が入ってくる。
And, Nirode, l-1:A11N>! During steady operation of the refrigerant storage container 17, the on-off valve 18 is open, so that high-temperature, high-pressure refrigerant in the form of a force enters the refrigerant storage container 17.

このガス状の冷媒は、周囲温度により冷やされて余計液
化するので、冷媒1ti蔵容器] ’7内には高圧の液
冷媒が充填されるようになる。
This gaseous refrigerant is further liquefied as it is cooled by the ambient temperature, so that the refrigerant storage container 7 is filled with high-pressure liquid refrigerant.

そし、て、l it Mii磯11を停止1・すると、
室内熱交換器15の高温高圧の冷媒は、絞り22を通っ
て室外熱交換器13の低圧側へ流入し、高圧側と低rr
、側とが圧力的にバランスするようになる。
Then, when I stop Mii Iso 11,
The high-temperature, high-pressure refrigerant of the indoor heat exchanger 15 flows into the low-pressure side of the outdoor heat exchanger 13 through the throttle 22, and flows between the high-pressure side and the low rr.
, and the sides become balanced in terms of pressure.

一方、圧縮機11の停止と同時に開閉か18は閉鎖され
るので、冷媒貯蔵容器17内は、高圧の液冷媒で満たさ
れた状態に保たれる。
On the other hand, since the opening/closing valve 18 is closed at the same time as the compressor 11 is stopped, the inside of the refrigerant storage container 17 is kept filled with high-pressure liquid refrigerant.

その後、圧縮機11を再起動する際には、圧縮機の吐出
側と吸入側とは圧力的にバランスされているため圧縮機
の起動は円側に行なわれる。
Thereafter, when the compressor 11 is restarted, the compressor is started in the circular direction because the pressures on the discharge side and suction side of the compressor are balanced.

さらに、圧縮機11の再起動と同1時に開閉弁18が開
放されるので、冷媒貯蔵容器17内の高圧の液冷媒は、
冷媒回路中に押し出され、絞り22を通って室タト熱交
換器13に供給されて蒸発し、室外空気から蒸発熱を吸
収する。
Furthermore, since the on-off valve 18 is opened at the same time as the compressor 11 is restarted, the high-pressure liquid refrigerant in the refrigerant storage container 17 is
The refrigerant is pushed out into the refrigerant circuit, passes through the throttle 22, is supplied to the indoor heat exchanger 13, evaporates, and absorbs the heat of evaporation from the outdoor air.

このため、圧縮機11の再起動直後でも、室外熱交換器
13における冷媒の蒸発作用が活発に行なわれ、冷媒循
環量が増し、暖房の立上がりが早くなるので゛ある。
Therefore, even immediately after the compressor 11 is restarted, the refrigerant in the outdoor heat exchanger 13 is actively evaporated, the amount of refrigerant circulated increases, and heating starts faster.

そして、圧縮機11が運転を継続されると、冷媒貯蔵容
器17には、再び高圧の液冷媒がiμJなされるように
なる。
Then, when the compressor 11 continues to operate, iμJ of high-pressure liquid refrigerant is again supplied to the refrigerant storage container 17.

以1.詳述したように、本発明の温度調整回路装置によ
れば、作動流体を循環させるべく、圧縮機、凝縮器。
Below 1. As described in detail, according to the temperature regulating circuit device of the present invention, a compressor and a condenser are used to circulate the working fluid.

絞りおよび蒸発器を順次接続して形成された温度調整回
路をそなえ、」−配圧縮磯の吐出側から上記凝縮器を経
て1−記絞りに至る管路の途中に、」−記作動流木を貯
蔵しうる)′1動流木貯蔵容器か設けられて、同作動流
体貯蔵容器と1−配管路とが、上記圧縮機の起動時に開
放され1−記1’、I遣it磯の停止1・時に閉鎖され
る開閉弁を介して接続されるという極めて簡素な構成で
、圧縮機の起動直後にオ;いても作動流体が蒸発器に十
分供給されるようになるので、以下のような効果ないし
利点か1(1られろ。
A temperature regulating circuit formed by sequentially connecting a throttle and an evaporator is provided, and in the middle of the pipe line from the discharge side of the compression rock to the condenser and the constrictor, there is a piece of working driftwood. A working fluid storage container is provided, and the working fluid storage container and the pipe line are opened when the compressor is started up, and the operation is stopped. With an extremely simple configuration in which the compressor is connected via an on-off valve that is closed when Advantage: 1 (1)

(])冷房(暖J)3)tlj開時の立にが1)性能か
向」二される。
(]) Cooling (heating) 3) When the tlj is opened, 1) performance is affected.

(2) i”+if記第1項により圧縮機の発停にとも
なうエネルギーロスか低減される1゜ (:I) 1iij記第1,2J頁により、温度調整回
路装置をサーモスタンドを用いてON −OF’ ト’
制御する際に、そのづ−モティファレンシャルを小さく
設定することが可能になる。
(2) Energy loss due to starting and stopping of the compressor is reduced by the first term of i''+if.1゜(:I) According to pages 1 and 2J of 1iij, the temperature adjustment circuit device is turned on using a thermostand. -OF'ト'
When controlling, it becomes possible to set the differential to a small value.

(4)前記第3項により快適な温度調整が実現される。(4) Comfortable temperature control is realized by the above-mentioned item 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は従来の温度調整回路装置を示すもので、第
1図はその全体構成を示す図、第2図は」−記装置によ
り室温を一定に保つ場合の外気温度と冷房負荷の関係を
示すグラフ、f53図は」1記装置を0N−01”r’
制御した場合の室温の経時変化を示すグラフ、第4図は
一定外気温度下での室温に刻する」1記装置の冷房負荷
の関係を示すグラフ、第5図は圧縮機を再起動した後の
」1記装置の状態を示すグラフであって、第6,7図は
本発明の第1実施例としての温度調整回路装置を示すも
ので、第6図はその全体構成を示す概略図、第7図は圧
縮機の吐出側圧力および吸込側圧力の経時変化を示すグ
ラフであって、第8図は本発明のfjS2実施例として
の温度調整回路装置の全体構成を示1慨略図である。 11・・圧縮機、lla・・圧縮機の吐出側、】2・・
四方切換弁、13・・室外熱交換器、14・・絞リ、1
5・・室内熱2換器、16・・アキュムレータ、]Ga
・・アキュムレータの吸入側、17・・冷媒貯蔵容器、
1)(・・開閉弁、10・・連絡管、20.21・・逆
11.弁、22・・絞1)。 復代理人 弁理」、飯 沼 義 彦 第2図 外気温度 第 3 図 時間 第4図 室温 第 5 図 丹た 劫 第 6 図 川 力 第7図 手続補正書(方式) 昭和59年 3月 6F 昭和5Σ;年 特 R’1’ 願 第224) 203
号2 発明の名称 温度調整回路装置 3 補正をする者 ilr f’lとの関係 出願人 郵便番号 + 00 11′所 東京都千代田区丸の内二丁目5番1号名称(
620) 三菱型」二業株式会社4復代川1人 與■史番号 1 f”+ 0 11所 東京都新宿区南元町5番地3号6 補正の対象 明細書全文。 7 補正の内容 明細宙全文について、文字を大きくするため、別紙のと
おり補正する。 8 添イリ書類の目録 全文補正明細書 1通
Figures 1 to 5 show conventional temperature adjustment circuit devices. Figure 1 shows its overall configuration, and Figure 2 shows the relationship between outside air temperature and cooling load when keeping the room temperature constant using the device. The graph showing the relationship, figure f53, shows the device 0N-01"r'
A graph showing the change in room temperature over time under controlled conditions. Figure 4 shows the room temperature under a constant outside temperature. A graph showing the relationship between the cooling load of the equipment described in 1. Figure 5 shows the relationship between the cooling loads of the equipment after restarting the compressor. FIG. 6 is a graph showing the state of the apparatus described in item 1 of "1," and FIGS. 6 and 7 show a temperature adjustment circuit device as a first embodiment of the present invention. FIG. FIG. 7 is a graph showing changes over time in the discharge side pressure and suction side pressure of the compressor, and FIG. 8 is a schematic diagram showing the overall configuration of a temperature adjustment circuit device as an fjS2 embodiment of the present invention. . 11...Compressor, lla...Discharge side of compressor, ]2...
Four-way switching valve, 13... Outdoor heat exchanger, 14... Throttle, 1
5.Indoor heat exchanger, 16.Accumulator, ]Ga
... Suction side of the accumulator, 17... Refrigerant storage container,
1) (...open/close valve, 10...connection pipe, 20.21...reverse 11. valve, 22...throttle 1). "Sub-Agent Patent Attorney", Yoshihiko Iinuma Figure 2 Outside Air Temperature Figure 3 Time Figure 4 Room Temperature Figure 5 Temperature Figure 6 Figure 7 Procedural Amendment (Method) March 1980 6F Showa 5Σ; Special R'1' Application No. 224) 203
No. 2 Name of the invention Temperature adjustment circuit device 3 Relationship with the person making the amendment ilr f'l Applicant postal code + 00 11' Address 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Name (
620) Mitsubishi Type Nigyo Co., Ltd. 4 Fukudaikawa 1 Person History Number 1 f”+ 0 11 6-5-3 Minamimotomachi, Shinjuku-ku, Tokyo Full text of the specification subject to the amendment. 7 Details of the amendment. The entire text will be amended as shown in the attached sheet in order to make the font larger. 8. Specification for amendment of the full text of the list of attached documents (1 copy)

Claims (1)

【特許請求の範囲】[Claims] 作動流木を循環させるべく、圧縮機、凝縮器、絞りおよ
び蒸発器を順次接続して形成された温度調整回路をそな
え、上記1111はの吐出側から」1記凝縮器を経て上
記絞りに至る管路の途中に、上記作動流体を貯蔵しうる
作動流体貯蔵容器が設けられて、同作動流体貯蔵容器と
11記管路とが、」1記圧縮機の起動時に開放され上記
11″縮磯の停止F時に閉鎖される開閉弁を介して接続
されたことを特徴とする、温度調整回路装置。
In order to circulate the working driftwood, a temperature adjustment circuit formed by sequentially connecting a compressor, a condenser, an aperture, and an evaporator is provided, and the pipe 1111 runs from the discharge side of the pipe through the condenser 1 to the aperture. A working fluid storage container capable of storing the working fluid is provided in the middle of the line, and the working fluid storage container and the pipe line 11 are opened when the compressor is started, and the pipe line 11 is opened when the compressor is started. A temperature regulating circuit device, characterized in that it is connected via an on-off valve that is closed when stopped.
JP22520383A 1983-11-28 1983-11-28 Temperature regulating circuit device Granted JPS60117058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22520383A JPS60117058A (en) 1983-11-28 1983-11-28 Temperature regulating circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22520383A JPS60117058A (en) 1983-11-28 1983-11-28 Temperature regulating circuit device

Publications (2)

Publication Number Publication Date
JPS60117058A true JPS60117058A (en) 1985-06-24
JPH0341744B2 JPH0341744B2 (en) 1991-06-25

Family

ID=16825590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22520383A Granted JPS60117058A (en) 1983-11-28 1983-11-28 Temperature regulating circuit device

Country Status (1)

Country Link
JP (1) JPS60117058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119146A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
WO2016110974A1 (en) * 2015-01-08 2016-07-14 三菱電機株式会社 Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119146A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
WO2016110974A1 (en) * 2015-01-08 2016-07-14 三菱電機株式会社 Air conditioner
JPWO2016110974A1 (en) * 2015-01-08 2017-06-01 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH0341744B2 (en) 1991-06-25

Similar Documents

Publication Publication Date Title
US6612119B2 (en) Refrigeration circuit with reheat coil
USRE39924E1 (en) Refrigeration system with modulated condensing loops
CN107906640B (en) Integrated cold accumulation air-conditioning system for data center and control method thereof
US7540163B2 (en) Prevention of flooded starts in heat pumps
US10955149B2 (en) Dehumidification system for heat pump
CN214841801U (en) Refrigerating system capable of being started quickly in low-temperature environment
CN109869941B (en) Heat pump system, air suction superheat degree and vapor-liquid separator accumulated liquid evaporation control method
KR102210920B1 (en) Capacity control type precision air conditioner capable of partial load dehumidification operation
CN213480647U (en) Heat pump system and air conditioning equipment thereof
CN112665226A (en) Air conditioning system and control method thereof
CN213747106U (en) Air conditioning system for solving low-temperature starting and running
JPS60117058A (en) Temperature regulating circuit device
JP4090240B2 (en) Cooling system
CN105308395B (en) Refrigerating plant
JPH078999Y2 (en) Air source heat pump
JP2000055444A (en) Air conditioner
CN112303954A (en) Heat pump system, control method and device thereof, air conditioning equipment and storage medium
JP2911253B2 (en) Refrigerant heating multi refrigeration cycle
JP2013217574A (en) Air conditioner
CN212278706U (en) Constant temperature dehumidification refrigerating plant
JPH0240463A (en) Three-pipe type water cooling heat pump unit
JP2533585B2 (en) Multi-room air conditioner
JP2877278B2 (en) Air conditioner
JPH0413576Y2 (en)
JPS62162858A (en) Air-conditioning dehumidifier