JPS60116723A - Heat treatment of roll for rolling - Google Patents

Heat treatment of roll for rolling

Info

Publication number
JPS60116723A
JPS60116723A JP22607883A JP22607883A JPS60116723A JP S60116723 A JPS60116723 A JP S60116723A JP 22607883 A JP22607883 A JP 22607883A JP 22607883 A JP22607883 A JP 22607883A JP S60116723 A JPS60116723 A JP S60116723A
Authority
JP
Japan
Prior art keywords
roll
temperature
rolling
radial direction
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22607883A
Other languages
Japanese (ja)
Inventor
Motohiro Egawa
江川 元浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22607883A priority Critical patent/JPS60116723A/en
Publication of JPS60116723A publication Critical patent/JPS60116723A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain efficiently a roll for rolling whose inner part is resistant to breakage and whose surface is hard and resistant to abrasion by ferritizing a diffusion-annealed roll for rolling by cooling, austenitizing by elevating the temp., and then hardening the surface by rapid heating. CONSTITUTION:The roll for rolling which is diffusion-annealed to remove a remaining strain is ferritized by slow cooling to <= transformation point A1. Then the roll is slowly heated to a temp. close to the transformation temp. A3 not to generate a plastic strain, and is austenitized. Then the surface is rapidly heated to a quenching temp. and hardened. Although the vicinity of the surface is transformed by a CCT curve into primary sorbite which is fine pearlite or fine primary troostite from austenite, the inner part is only transformed into pearlite. Accordingly, the roll for rolling whose surface is hard resistant to abrasion and whose inner part is soft and resistant to breakage can be obtained.

Description

【発明の詳細な説明】 本発明は、圧延ロールの熱処理方法に係り、特に、鋳造
によって形成された圧延用作業ロールに適用するのに好
適な、一体式圧延ロールの熱処理類方法の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat treatment method for a mill roll, and more particularly to an improvement in a heat treatment method for an integral mill roll, which is suitable for application to rolling work rolls formed by casting.

熱間又は冷間圧延に使用される圧延ロールは、表面は硬
く耐摩耗性番有し、内面は柔かく耐折損性を有ず゛ると
いう相反する性質が要求される。この要求を満たすた゛
めに、従来内面の鴻を変える中書き法、又は、別々に鋳
込んだ後に両者を一体化させる焼嵌法、あるいは鋳込み
後に熱処理を施す熱処理法等の手法が採用されている。
Rolls used for hot or cold rolling are required to have contradictory properties: the surface should be hard and wear resistant, and the inner surface should be soft and break resistant. In order to meet this requirement, conventional methods have been adopted, such as the inlay method that changes the inner surface roughness, the shrink-fitting method that integrates the two after casting them separately, or the heat treatment method that heat-treats them after casting. .

このうち、□熱処理法としては、従来、例えば、下記第
1表に示されるような成分で、第1図に示すような形状
を有し、各部の寸法が、中央部の外径D1’1350u
φ、同長さJ21−209011111、左端部の外@
!0x−1030日φ、同長さβ、2−1180n、右
端部の4径Da=670nφ、同長さ15−780mで
あり、且つ、硬度がショア硬度で50程度の圧延用作業
O−ルWについて熱処理を行う際、第2図に示すように
、A3変態点以上の温度T1まで昇渇して拡散焼鈍処理
をした後、焼入れ温度T2まで炉温を下げ、それから焼
入れ処理を行う方法が知られている。
Among these, the □ heat treatment method has conventionally used, for example, the ingredients shown in Table 1 below, the shape shown in Figure 1, and the dimensions of each part being 1350 u
φ, same length J21-209011111, outside of left end @
! 0x-1030 days φ, same length β, 2-1180n, right end 4 diameter Da = 670nφ, same length 15-780m, and hardness is about 50 on Shore hardness. As shown in Figure 2, when performing heat treatment on steel, there is a known method in which the temperature is raised to a temperature T1 higher than the A3 transformation point, diffusion annealing is performed, the furnace temperature is lowered to the quenching temperature T2, and then the quenching is performed. ing.

(単位%) しかしながら、このような従来の熱処理方法にあっては
、鋳造段階で生じた残留歪の除去という観点からは良好
な結果が得られるものの、熱処理後のロール半径方向の
硬度分布については、第3図に示す゛ように、表面から
中心にかけて漸次ゆるやかに変化していくような特性し
か得られず、所定の耐折損性と耐摩耗性の両立が困難、
特に耐折損性の維持が困難であるという問題があった。
(Unit: %) However, although such conventional heat treatment methods yield good results in terms of removing residual strain generated during the casting stage, they do not improve the hardness distribution in the radial direction of the roll after heat treatment. , as shown in Figure 3, it is difficult to obtain properties that gradually change from the surface to the center, making it difficult to achieve both desired breakage resistance and abrasion resistance.
In particular, there was a problem in that it was difficult to maintain breakage resistance.

本発明は、このような従来の問題に鑑みてなされたもの
であって、ロール半径方向中央側では充分柔かく、良好
な耐折損性を具備すると共に、表面側では充分硬く、良
好な耐摩耗性を具備した圧延ロールを得ることのできる
圧延ロールの熱処理方法を提供づることをその目的とし
ている。
The present invention has been made in view of such conventional problems, and the roll is sufficiently soft on the center side in the radial direction and has good breakage resistance, while the surface side is sufficiently hard and has good wear resistance. The object of the present invention is to provide a method for heat treatment of a rolling roll, which makes it possible to obtain a rolling roll having the following properties.

本発明は、一体式の圧延ロールの熱処理方法において、
前記圧延ロールを拡散焼鈍処理する手順と、該拡散焼鈍
処理をした後に、A1変態点以下に温度を下げて組織を
フェライト化づる手順と、該フェライト化をした後に、
A3変態点付近まで徐々に昇温して組織をオーステナイ
ト化する手順と、該オーステナイト化をした後に、圧延
ロールの半径方向で所定の温度分布が得られるような炉
温昇温速度により急速加熱する手順と、該急速加熱によ
って圧延ロールがその半径方向で目的の温度分布に到達
した後に、焼入れを行う手順と、を含む構成とりること
によって上記目的を達成したものである。
The present invention provides a heat treatment method for an integrated rolling roll, comprising:
A procedure of diffusion annealing the rolling roll, a procedure of lowering the temperature to below the A1 transformation point to ferrite the structure after the diffusion annealing, and after the ferrite,
The procedure is to gradually raise the temperature to around the A3 transformation point to austenite the structure, and after the austenite formation, rapid heating is performed at a furnace temperature increase rate such that a predetermined temperature distribution is obtained in the radial direction of the rolling roll. The above object has been achieved by adopting a configuration including a step of quenching the rolling roll after the rapid heating reaches the desired temperature distribution in the radial direction of the roll.

本発明は、焼入れ時にロール半径方向に、所定の温度勾
配がつくように加熱・冷却の熱処理制御を行うことによ
ってロール半径方向の硬度分布の最適調整を可能とし、
ロール半径方向中央側の耐折損性を充分に維持し、同表
面側の耐摩耗性との両立を可能にしたものである。
The present invention makes it possible to optimally adjust the hardness distribution in the radial direction of the roll by controlling heat treatment of heating and cooling so that a predetermined temperature gradient is created in the radial direction of the roll during quenching.
This makes it possible to maintain sufficient breakage resistance on the center side of the roll in the radial direction, and to achieve both abrasion resistance on the same surface side.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、まず、鋳造時に生じた残留歪を除去づるため
に、圧延ロールをA3変態点以上に昇温し、組織をオー
ステナイト化して拡散焼鈍を行う。
In the present invention, first, in order to remove residual strain generated during casting, a rolling roll is heated to a temperature higher than the A3 transformation point, the structure is changed to austenite, and diffusion annealing is performed.

この後は徐冷してA1変態点以下まで温度を下げ、組織
を一度フエライト化する。これらの手順については、公
知の知見に基づく温度設定、あるいは加熱・冷却速度の
設定が行われる。
Thereafter, the temperature is lowered to below the A1 transformation point by slow cooling, and the structure is once converted into ferrite. For these procedures, temperature settings or heating/cooling rates are set based on known knowledge.

次に徐々に昇渇し、組織内に塑性歪が生じないようにし
ながらA3変態点付近まで加熱し、組織を再びオーステ
ナイト化させた後に、急速加熱免理を行い、ロール半径
方向に温度勾配を付けるものである。
Next, the temperature is gradually increased and heated to around the A3 transformation point while avoiding plastic strain in the structure, and after the structure is austenitized again, rapid heating is performed to create a temperature gradient in the radial direction of the roll. It is something.

この悠遠加熱処理での炉温昇温速度a (’C/hr)
保持温度T (℃)及び保持時間X(hr)は、炉加熱
能力、発生熱応力、及び冷却速度等の条件を考慮し、例
えば差分法によるシミュレーション温度分布計算によっ
てめることができる。
Furnace temperature increase rate a ('C/hr) in this eternal heating treatment
The holding temperature T (° C.) and the holding time X (hr) can be determined by, for example, a simulation temperature distribution calculation using the difference method, taking into consideration conditions such as furnace heating capacity, generated thermal stress, and cooling rate.

該計算には、円柱座標半径゛方面1次元の熱伝導方程式
である(1)式を、変換温度φ、含熱uHを使った(2
)式に変形したものが利用できる。
For this calculation, equation (1), which is a one-dimensional heat conduction equation in the cylindrical coordinate radius direction, was converted into (2
) can be used.

ここで変換温度φ、含熱量Hは(3)式で定義される。Here, the conversion temperature φ and the heat content H are defined by equation (3).

但し、上記(1)〜(3)式においてρは密度、Cpは
比熱、kは熱伝導率、kdは基準熱伝導率、Tは温度、
rは半径、tは時間である。
However, in the above equations (1) to (3), ρ is density, Cp is specific heat, k is thermal conductivity, kd is standard thermal conductivity, T is temperature,
r is radius and t is time.

(3)式を差分化して表面、内部、中心について表わす
と、それぞれ(4)(5)(6)式にな(6)式のQi
は表面点lへの熱流で、炉内では(7)式、冷却時には
(8)式で示される。
When equation (3) is differentiated and expressed for the surface, interior, and center, Qi of equation (6) becomes equations (4), (5), and (6), respectively.
is the heat flow to the surface point l, which is expressed by equation (7) in the furnace and equation (8) during cooling.

但し、ここでφcoは炉内総括熱機収率、T。However, here φco is the overall heat exchanger yield in the furnace, T.

は炉内ガス温度、Tcは冷却媒体(水、空気)温度、α
は冷却時熱伝達率である。
is the furnace gas temperature, Tc is the cooling medium (water, air) temperature, α
is the heat transfer coefficient during cooling.

以上の式を使って熱処理炉内、焼入れ時のロール半径方
向の温度分布をめることができ、前述のパラメータa 
、T、Xを決定プることができる。
Using the above equation, the temperature distribution in the heat treatment furnace and in the roll radial direction during quenching can be calculated, and the above-mentioned parameter a
, T, and X can be determined.

このようにして決定されたパラメータa 、 T。Parameters a, T determined in this way.

Xを使って急速加熱を行い、該急速加熱によって圧延ロ
ールがその半径方向で目的の温度分布に到達した後に、
焼入れ、処理を行うことにより、表面付近では冷却速度
が大きいが、内部に向ってゆくに従い冷却速度が加速度
的に小さくなるという特性を得ることができる。
After rapid heating is carried out using
By performing quenching and treatment, a characteristic can be obtained in which the cooling rate is high near the surface, but the cooling rate decreases at an accelerating rate toward the inside.

これにより、表面付近の金属組織は、いわゆる連続冷却
変態的II (OCT曲線)において、オーステナイト
からパーライトの微細組織である一次ンルバイト、ない
しは更に微細な組織の一次トルースタイトに変化するが
、内部の金属組織は、オーステナイトからパーライトに
変化するのみであるため、焼入れを行った後の硬度がそ
れぞれ異なり、意図する硬度分布に調整することができ
る。
As a result, the metal structure near the surface changes from austenite to primary nrubite, which is a fine structure of pearlite, or to primary troostite, which has a finer structure of pearlite, in the so-called continuous cooling transformation II (OCT curve), but the metal structure inside Since the structure only changes from austenite to pearlite, the hardness after quenching is different, and it is possible to adjust the hardness distribution to the intended one.

その結果、表面では硬く耐摩耗性に優れ、且つ内部では
柔か(耐折損性に優れた圧延用作業ロールを製造するこ
とができる 次に本発明の実施例について説明する。
As a result, it is possible to manufacture a rolling work roll that is hard on the surface and has excellent abrasion resistance, and is soft (and has excellent breakage resistance) on the inside.Examples of the present invention will now be described.

この実施例は、前記第1表と同じ成分の圧延用作業ロー
ルを、通常のバッチ式熱処理炉を用いて、第4図に示す
よう・な熱処理パターンで行ったものである。同図にお
いて、’l0SA3変態点より高い瀉・度T8まで加熱
して拡散焼鈍処理を行う手順、12が該拡散処理の後に
そのまま徐冷してA1’変態点以下の温度T4まで下げ
て組織をフェライト化する手順、14が該フェライト化
した後にA3変態点付近の温度Ts (=800℃)ま
で徐々に昇温して組織をオーステナイト化する手順、1
6が該オーステナイト化した後に圧延用作業ロールの半
径方向で所定の温度分布が得られるような炉温昇温速度
により更に温度Tまで急速加熱する手順、18が該急速
加熱によって作業ロールがその半径方向で目的の温度分
布に到達するまで該温度をX時間保持づる手順、20が
保持した後に焼入れを行う手順である。
In this example, a rolling work roll having the same composition as shown in Table 1 was heat-treated in a conventional batch-type heat-treating furnace in a heat-treating pattern as shown in FIG. In the figure, 12 shows the procedure of heating to a temperature T8 higher than the '10SA3 transformation point and performing a diffusion annealing treatment, and 12 shows the procedure of slowly cooling the structure after the diffusion treatment to a temperature T4 below the A1' transformation point. Steps for converting into ferrite, Step 1: After 14 is turned into ferrite, the temperature is gradually raised to a temperature Ts (=800° C.) near the A3 transformation point to turn the structure into austenite, 1
Step 6 is a step of further rapidly heating the rolling work roll to temperature T at a heating rate such that a predetermined temperature distribution is obtained in the radial direction of the rolling work roll after the austenitization; The procedure is to hold the temperature for X hours until the target temperature distribution is reached in the direction 20, and the procedure is to perform quenching after the temperature is held at 20.

ここで、焼入れ前での急速加熱操作時のパラメータであ
る昇温速度a (℃/hr) 、保持温度T(℃)及び
保持時間X(11r)は、前述した差分法によるシミュ
レーション温度分布計算より、半径方向について目的の
冷却速度になるような焼入れ時の温度分布から決定でき
る。
Here, the temperature increase rate a (°C/hr), holding temperature T (°C), and holding time X (11r), which are the parameters during the rapid heating operation before quenching, are obtained from the simulation temperature distribution calculation using the difference method described above. , can be determined from the temperature distribution during quenching that provides the desired cooling rate in the radial direction.

計算からめた昇温速度a、保持温度T、及び保持時間X
の最適な範囲を(9)ないしく11)式に示ず。
Calculated heating rate a, holding temperature T, and holding time X
The optimum range of is not shown in equations (9) to 11).

40≦a≦80 (’C,/hr) −(9)950≦
T≦11oo (℃) ・・・(1o)0≦X≦10 
(hr) ・=(11)ここで、(9)式において、昇
温速度aが40’CZ 1rJJ上とあるのは、40℃
/’hrJ:J、上でなイト、半径方向の温度分布に差
がつがず、このまま焼入れを行っても硬度の差がつがな
いという理由による。なお、このaは、前述(7)式で
のToにおいて次式で定義される。
40≦a≦80 ('C,/hr) −(9)950≦
T≦11oo (℃) ... (1o) 0≦X≦10
(hr) ・=(11) Here, in equation (9), the temperature increase rate a is above 40'CZ 1rJJ because it is 40°C.
/'hrJ: J, the reason is that there is no difference in the temperature distribution in the radial direction, and even if quenching is performed as it is, there is no difference in hardness. Note that this a is defined in To in the above-mentioned equation (7) by the following equation.

To−ax時間+800 −(12) このaは、ロール半径方向の硬度差を大ぎくするには、
大きい程好ましいが、80℃1hru上の昇温を行うと
、発生熱応力が大きくなって割れの危iがでてくるため
、上限は80’C/l+r&!度に抑えるのが良好であ
る。
To-ax time +800 - (12) This a is, in order to maximize the hardness difference in the roll radial direction,
The higher the temperature, the better, but if the temperature is raised above 80°C by 1 hour, the generated thermal stress will increase and there is a risk of cracking, so the upper limit is 80'C/l+r&! It is best to keep it to a minimum.

又、(10)式において、保持温度Tが950℃以上と
あるのは、作業0−ル材貿の変態点Ac5JX上に昇温
するため、及び、半径方向に温度勾配を付けることがで
きる最低条件であるためである。又、1100℃以下と
あるのは、1100℃以上にすると温度勾配が大きくな
りすぎて熱応力による歪、割れ等の発生の危険が高くな
るためである。
In addition, in equation (10), the holding temperature T is set at 950°C or higher because the temperature rises above the transformation point Ac5JX of the working material, and also because it is the lowest temperature that can create a temperature gradient in the radial direction. This is because it is a condition. The reason why the temperature is 1100° C. or lower is that if the temperature is 1100° C. or higher, the temperature gradient becomes too large, increasing the risk of distortion, cracking, etc. due to thermal stress.

又、(11)式において保持時間Xが10br以下とあ
るのは、10hr以上保持すると、半径方向の温度分布
が均一になってしまい、温度差がつかなくなってしまう
からである。なお保持時間Xの下限については、硬度分
布の必要な深さ、即ち硬化深度が得られる程度のもので
あればよく、従って急速加熱の終了と同時に作業ロール
がその半径方向で目的の温度分布に到達するものならば
零としてもよい。
Furthermore, the reason why the holding time X is set to 10 br or less in equation (11) is that if the holding time is held for 10 hr or more, the temperature distribution in the radial direction becomes uniform and no temperature difference is established. Regarding the lower limit of the holding time It may be set to zero if it can be reached.

上記く9)〜(11〉式の範囲の中から、昇温速度a−
80℃/11r、保持温度T−1040℃、保持時間X
 −3hrの値を選択し、上記第4図の手順に基づき熱
処理を行った後に、作業ロールの硬度分布を測定してみ
たところ、第6図の硬度分布が得られた。
From the range of formulas 9) to (11) above, the temperature increase rate a-
80℃/11r, holding temperature T-1040℃, holding time X
After selecting the value of -3 hr and performing heat treatment based on the procedure shown in FIG. 4 above, the hardness distribution of the work roll was measured, and the hardness distribution shown in FIG. 6 was obtained.

同図から明らかな如く、ロール半径方向中央側の大部分
はショア硬度で30程度に抑えられ、充分な耐折損性を
備え、且つ、ロール半径方向の深さ300 in付近か
ら急速に硬度が上り、最外表面においては55のショア
硬度まで上昇し、充分な耐摩耗性が得られていることが
確認できた。
As is clear from the figure, the shore hardness of most of the central part in the radial direction of the roll is suppressed to about 30, providing sufficient breakage resistance, and the hardness increases rapidly from around 300 inches in the radial direction of the roll. The Shore hardness of the outermost surface increased to 55, confirming that sufficient wear resistance was obtained.

なお、ここでaを80℃/hrにしたのは、熱処理の効
率化のため、又、王を1040℃にしたのは、Orが多
い場合、表面温度が1030℃以上になると微細クラッ
クが入る危険性が出てくること、及び温度勾配が′大き
くなって応力値が大きくなりづぎるためである。また、
Xを3hrとしたのは、第5図に示すように、焼入れ時
の冷却速度が100+am深さ付近まで6℃/winに
するには、1040℃の炉温を3hr保持して深さ10
0關での濃度を940℃にする必要があるためである。
The reason why a is set to 80℃/hr here is to improve the efficiency of heat treatment, and the reason why the temperature is set to 1040℃ is because if there is a large amount of Or, microcracks will occur if the surface temperature exceeds 1030℃. This is because the danger arises and the stress value continues to increase due to the temperature gradient becoming large. Also,
The reason for setting X to 3 hr is that, as shown in Figure 5, in order to make the cooling rate during quenching 6°C/win up to a depth of around 100+am, the furnace temperature of 1040°C is maintained for 3 hr and the cooling rate at a depth of 10
This is because the concentration at zero temperature needs to be 940°C.

本実施例においては、ロール半径方向に非直線的な!l
!!度分布、即ち、表面付近でのみ急激に硬度が高くな
るように急速加熱を行ったが、硬度分布曲線の形状につ
いては、特に第6図のような形状のみに限定されるもの
でない。
In this example, the roll is non-linear in the radial direction! l
! ! Although rapid heating was performed so that the hardness distribution, that is, the hardness sharply increases only near the surface, the shape of the hardness distribution curve is not particularly limited to the shape shown in FIG.

以上説明してきた如く本発明によれば、ロール半径方向
中央側で従来より充分柔かく、良好な耐折損性を具備づ
ることができるようになると共に、表面側では充分硬く
、従来と同等以上の耐摩耗性を具備することができると
いう効果が得られる。
As explained above, according to the present invention, the center side of the roll in the radial direction is sufficiently soft and has good breakage resistance compared to the conventional roll, while the surface side is sufficiently hard and has a durability equal to or higher than that of the conventional roll. The effect of providing wear resistance is obtained.

又、熱処理時間も短縮されるため、省エネルギー化及び
高効率化にも寄与するものである。
Furthermore, since the heat treatment time is shortened, it also contributes to energy saving and high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、圧延用作業ロールの形状の一例を示−4正面
図、 第2図は、従来の圧延用作業ロールの熱処理方法の一例
を示す温度一時開線図、 第3図は、上記従来例による熱処理後のロール半径方向
の硬度分布を示す硬度−深さ線図、第4図は、本発明に
係る圧延ロールの熱処理方法の実施例を示す第2図相当
の温度−vi間綿線図第5図は、同実施例に4おけるO
−ル半径方向の湯度−加熱VI間線図、 第6図は、同じく熱処理後におけるロール半径方向の硬
度分布を示す第3図相当の硬度−深さ線図である。 代理人 高 矢 論 (ほか1名) 第1図 W レー92−4−−−−司1−−−−キーλ32第2図 時M 113図 m ロール表如がらの呼さ 第4図 時間 啼 便
Fig. 1 is a front view showing an example of the shape of a rolling work roll, Fig. 2 is a temperature temporary line diagram showing an example of a conventional heat treatment method for a rolling work roll, and Fig. 3 is a diagram showing the above-mentioned rolling work roll. A hardness-depth diagram showing the hardness distribution in the radial direction of the roll after heat treatment according to the conventional example, FIG. 4 is a temperature-vi interval diagram corresponding to FIG. The diagram in FIG. 5 shows O in 4 in the same example.
FIG. 6 is a hardness-depth diagram corresponding to FIG. 3 showing the hardness distribution in the radial direction of the roll after heat treatment. Agent Takaya Ron (and 1 other person) Fig. 1 W Ray 92-4 ----- Tsukasa 1 ----- Key λ32 Fig. 2 Time M 113 m Roll table number call Fig. 4 Time cry flight

Claims (1)

【特許請求の範囲】[Claims] (1)一体式の圧延ロールの熱処理方法において、前記
圧延ロールを拡散焼鈍処理する手順と、該拡散焼鈍処理
をした後に、A1変態点以下に湿度を下げて組織をフェ
ライト化する手順と、該フェライト化をした後に、As
変態点付近まで徐々に昇温して組織をオーステナイト化
する手順と、 該オーステナイト化をした後に、圧延ロールの半径方向
で所定の温度分布が得られるような炉瀉昇易速度により
急速加熱する手−と、 該急速加熱によって圧延ロールがその半径方向で目的の
温度分布に到達した後に、焼入れを行う手順と、 を含むことを特徴とする圧延ロールの熱処理方法。
(1) A heat treatment method for an integrated rolling roll, which includes the following steps: diffusion annealing the rolling roll; after the diffusion annealing, lowering the humidity to below the A1 transformation point to turn the structure into ferrite; After ferritizing, As
There are two methods: one is to gradually raise the temperature to near the transformation point to austenitize the structure, and the other is to rapidly heat the material after the austenitization process by using a furnace at an easy-to-rise rate to obtain a predetermined temperature distribution in the radial direction of the rolling rolls. A method for heat treating a roll, comprising: - and quenching after the roll has reached a desired temperature distribution in its radial direction by the rapid heating.
JP22607883A 1983-11-30 1983-11-30 Heat treatment of roll for rolling Pending JPS60116723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22607883A JPS60116723A (en) 1983-11-30 1983-11-30 Heat treatment of roll for rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22607883A JPS60116723A (en) 1983-11-30 1983-11-30 Heat treatment of roll for rolling

Publications (1)

Publication Number Publication Date
JPS60116723A true JPS60116723A (en) 1985-06-24

Family

ID=16839469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22607883A Pending JPS60116723A (en) 1983-11-30 1983-11-30 Heat treatment of roll for rolling

Country Status (1)

Country Link
JP (1) JPS60116723A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741319A (en) * 1980-08-26 1982-03-08 Kubota Ltd Production of roll

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741319A (en) * 1980-08-26 1982-03-08 Kubota Ltd Production of roll

Similar Documents

Publication Publication Date Title
CN103667665B (en) Cast steel with high chromium centrifugal compound working roll differential temperature heat treating method
CN104087742A (en) Differential temperature heat treatment method for centrifugal compound high-chromium steel roller
CN104561504A (en) Heat treatment method for one-piece casting hot-rolled strip supporting roller
JP2009074155A (en) Method for quenching die
KR20090123597A (en) Heat treatment method of press roll
JP5023441B2 (en) Heat treatment method for steel members for die casting dies
CN104775009A (en) Heating method during quenching of large supporting roller
JPS6115930B2 (en)
JPS60116723A (en) Heat treatment of roll for rolling
CN108774672A (en) A method of utilizing forging part waste heat rapid heating and quenching
JPS58141333A (en) Heat treatment of forging
JPH0328318A (en) Method for hardening hot die steel
JPH0576524B2 (en)
JPH08225830A (en) Quenching of die made of hot die steel
KR102560881B1 (en) Local heat treatment method of work roll
JPH11315322A (en) Method for soften-annealing high carbon steel
JPS59136422A (en) Preparation of rod steel and wire material having spheroidal structure
RU2153942C1 (en) Method for preparing rolling rolls to operation
JPH04103715A (en) Method for spheroidizing high-carbon chromium bearing steel
JPS61199035A (en) Manufacture of composite roll having tough neck part
JPS59136423A (en) Preparation of rod steel and wire material having spheroidal structure
JPS59573B2 (en) Heat treatment method for spheroidal graphite cast iron pipes
JPH0135901B2 (en)
JPH10298640A (en) Method for spheroidize-annealing steel material
JP3736717B2 (en) Manufacturing method of high strength steel