JPS60116172A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60116172A
JPS60116172A JP22484383A JP22484383A JPS60116172A JP S60116172 A JPS60116172 A JP S60116172A JP 22484383 A JP22484383 A JP 22484383A JP 22484383 A JP22484383 A JP 22484383A JP S60116172 A JPS60116172 A JP S60116172A
Authority
JP
Japan
Prior art keywords
region
semiconductor
regions
layer
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22484383A
Other languages
Japanese (ja)
Inventor
Kenichi Taira
健一 平
Masaru Wada
勝 和田
Yoji Kato
加藤 洋二
Masashi Dosen
道仙 政志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22484383A priority Critical patent/JPS60116172A/en
Priority to GB08430033A priority patent/GB2151078B/en
Priority to DE19843443407 priority patent/DE3443407A1/en
Priority to FR8418222A priority patent/FR2555814B1/en
Publication of JPS60116172A publication Critical patent/JPS60116172A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To perform a bipolar operation by forming the first and second regions in semi-insulating regions, and selectively providing the other third conductive type region on the semiconductor between the both the first and the second regions, thereby applying a forward bias between the third and the first regions, and forming an imaginary base region under the third region. CONSTITUTION:P type impurity is doped in high density on the main surface 10a of a semi-insulating semiconductor 10 to form a semiconductor layer 11, and a base electrode 12 is selectively coated on the layer 11. With the electrode 12 as a mask an N type impurity ions different from the layer 11 are implanted from the main surface side of the semiconductor 10, thereby forming the first and second regions 13, 14 as emitter and collector regions. Then, the layer 11 is selectively etched to set the remaining layer 11 as the third region. Emitter and collector electrodes 15, 16 are coated on the regions 13, 14, respectively. A forward bias potential is applied between the region 13 and the layer 11, an imaginary base region due to the implantation of the majority carrier from the layer 11 is formed in the semiconductor 10 under the layer 11, thereby performing a bipolar transistor operation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置、特にバイポーラトランジスタ動作
をなさしめる特殊な構成によるm「現な半導体装置を提
供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a semiconductor device, particularly a modern semiconductor device with a special configuration that allows bipolar transistor operation.

背景技術とその問題点 半導体集積回路の回路素子としてのバイポーラI・ラン
ジスタは、製造の簡易化、配線パターンの簡易化から、
エミッタ、ベース、コレクタの各領域が平面的に配置さ
れた、いわゆるラテラル構造を採ることが望ましい。し
かしながら、このラテラル構造のバイポーラトランジス
タは、一般に電流増幅率βが小さいという欠点がある。
BACKGROUND TECHNOLOGY AND PROBLEMS Bipolar I transistors as circuit elements of semiconductor integrated circuits have been developed due to the simplification of manufacturing and wiring patterns.
It is desirable to adopt a so-called lateral structure in which the emitter, base, and collector regions are arranged in a plane. However, this lateral structure bipolar transistor generally has a drawback that the current amplification factor β is small.

一方、GaAsの化合物半導体による半導体装置は、1
0、速動作性にすぐれていること、 Ga静が半絶縁性
を有していて回路素子間のアイソレーション構造が簡易
化されることなどから、二のGaAsによる半導体集積
回路が脚光を浴び°(いる。
On the other hand, a semiconductor device using a GaAs compound semiconductor has 1
0. Semiconductor integrated circuits made of GaAs have been attracting attention because of their excellent high-speed operation and the fact that GaAs has semi-insulating properties, which simplifies the isolation structure between circuit elements. (There is.

発明の目的 本発明は、例えばG a へs半導体集積回路、或いは
単体半導体装置として用いられる特に電流増幅率が大き
いバイポーラトランジスタ動作をなず、商連性にずぐれ
た半導体装置を提供するものである。
OBJECTS OF THE INVENTION The present invention provides a semiconductor device which does not operate as a bipolar transistor with a particularly large current amplification factor and which is used as a semiconductor integrated circuit or a single semiconductor device, for example, and has excellent commercial continuity. be.

発明の4既要 本発明におい′ζは、半絶縁性の半導体に1導電型のエ
ミッタ領域となる第1領域とコレクタ領域となる第2領
域とを所要の間隔を保持して配置すると共にこれら第1
及び第2#域間の半絶縁性半導体上に選択的に他の導電
型のコーピタζ1−シャル層による第3領域を設4Jる
。そして第3領域と第1領域との間に順ハイーrス電圧
を5.えてこれら第3領域から、その多数キ・トリアを
第3領域1・の、′12絶縁性半導体領域に61人し、
ごの第3領域1・に仮想ベース領域を形成してバイポー
ラトランジスタ動作をなさしめるのである。
4 Summary of the Invention In the present invention, ′ζ is characterized in that a first region serving as an emitter region of one conductivity type and a second region serving as a collector region are arranged in a semi-insulating semiconductor with a required spacing between them. 1st
A third region 4J is selectively provided on the semi-insulating semiconductor between the second region # and a copita ζ1-shall layer of another conductivity type. Then, a forward high speed voltage of 5.5 mm is applied between the third region and the first region. Then, from these third regions, 61 people were transferred to the '12 insulating semiconductor region of the third region 1.
A virtual base region is formed in each third region 1 to perform bipolar transistor operation.

実施例 図面を参照し゛(本発明による半導体装置′の一例をそ
の理解を容易に−Jるためにその製法の一例と共に説明
する。第1図にツバずように、半絶縁ir+)、すなわ
ち実η的に不純物が1−一ブされず、高抵抗を呈する例
えばl+ RA SのIll −V族化合物半導体基体
、或いは半導体層00)を設&J、これの1主面(10
a)上にP型不純物が+i:I+濃度にドープされた例
えは^j! GaAs半導体1m(11,)を例えばt
l (I Cν1〕(イ+’ tl5を金属を用いた気
相成長法)等によっ゛C形成する。そしζこの半導体I
n(II)の」二に、選択的に所要の幅Wを有するil
+l f:’ハ性金屈1rイ、J、幻成るベース電極(
12)をオーミックに被着する。。
With reference to the drawings, an example of the semiconductor device according to the present invention will be explained along with an example of its manufacturing method in order to facilitate its understanding. As shown in FIG. For example, an Ill-V group compound semiconductor substrate of l+ RA S or a semiconductor layer 00), which does not contain impurities in terms of η and exhibits high resistance, is prepared, and one main surface (10
a) An example in which P-type impurities are doped to +i:I+ concentration is ^j! For example, 1m (11,) of GaAs semiconductor is
ζThis semiconductor I
n(II), optionally with the required width W
+l f: 'Hasei Konkaku 1r I, J, Illusionary base electrode (
12) is applied ohmically. .

次に例えばこの電極(12)をエツチングレジストとし
て、第2図に承ずように、tJij% (12)の両側
の外部に露呈した部分の半導体IFti(11)をエツ
チング除去する。
Next, using this electrode (12) as an etching resist, for example, as shown in FIG. 2, the semiconductor IFti (11) exposed to the outside on both sides of tJij% (12) is removed by etching.

次に第3図にツバずように少くとも電極(I2)をマス
クとして半絶縁性基体まノこは半導体層αψの主向側か
ら半導体層(l])とは異る他の導電型の例えばN型の
不純物をイオン注入法、拡散法等によって導入して、少
くとも互いに対向する縁部の位置が電極(12)及びこ
れの下の半導体層(11)の縁部と所定の位置関係に整
合された、ずなわちこれら縁部がrtいに一致するか、
或いばこの半導体層(11) トに所要の幅をもっ“C
入り込むように規制される第1及び第2の領域(13)
及び(14)を形成する。この場合、これら領域(13
)及び(14)の11−いに対向する縁部の位置は、上
述したように、′d1極(12)及びこれのトの半導体
層(11)と所定の位置関係を保持して自動的に整合、
いわゆるセルソアラインされるように、半導体1fJ 
(11)の選択的Jエツチングにおい゛(マスクとし−
C用い)こ電極(12)をマスクとJるものであるが、
これら領域(13)及び(14)のlll+の縁部の位
置は、図ボしないが、基体または)1′−導体層oat
−i−に不純物のイオン注入、或いは拡%のマスクIH
を形成して各領域(I3)及び(14)の形成を行うご
ともできる。
Next, as shown in FIG. 3, using at least the electrode (I2) as a mask, the semi-insulating base plate is connected from the main direction side of the semiconductor layer αψ to other conductivity types different from the semiconductor layer (l). For example, N-type impurities are introduced by ion implantation, diffusion, etc., so that at least the positions of the opposing edges are in a predetermined positional relationship with the edges of the electrode (12) and the semiconductor layer (11) below. , i.e. these edges coincide with rt,
In other words, if this semiconductor layer (11) has the required width,
First and second areas regulated to enter (13)
and (14) are formed. In this case, these areas (13
) and (14), the position of the edge facing 11-i is automatically adjusted to maintain a predetermined positional relationship with the 'd1 pole (12) and its semiconductor layer (11), as described above. Consistent with
Semiconductor 1fJ is so-called cell soar aligned.
In the selective J-etching of (11) (as a mask)
C) This electrode (12) is used as a mask,
Although the positions of the edges of these regions (13) and (14) are not shown in the figure, the positions of the edges of the
-I-Ion implantation of impurity or expansion mask IH
It is also possible to form each region (I3) and (14) by forming a .

次に第1及び第2の領域(13)及び(14)上にエミ
ッタ及びコレクタ各電極(15)及び(16)をオーミ
ックに被着゛・1イ3゜ このようにして得た半導体装置は、例えばN型の人々エ
ミッタ及びこlレクタ名領域となるil:Ii不純物濃
度9第1及び第2領域(13)及び(14)量子に、例
えば1)型の+11+不純物濃度の半導体1:4rll
)より成る第3領域が平面的に並随:された構成とされ
る。E、C及びBは夫々コーミノタ、−lレクタ及びベ
ースの名θlitイを示−3−。
Next, the emitter and collector electrodes (15) and (16) are ohmically deposited on the first and second regions (13) and (14). , for example, an N-type emitter and a semiconductor with impurity concentration of +11+ impurity concentration of type 1:Ii impurity concentration 9 in the first and second regions (13) and (14), for example, a semiconductor of type 1:4rll
) are arranged side by side in a plane. E, C and B represent the names of kominota, -l rector and base, respectively -3-.

ソj、7、ffi l /y−7d’?(S 3領Ji
4(13)及ヒ(lI)間に順バイアス、f133及び
第2領域(11)及び(14)間に逆バイアソをりえる
。ごのよっにすると、第3領域(jl)からその多数キ
ャリアのボールが、この第3領域(II) ドの第1及
び第2領j13i(13)及び(14)間の半絶縁性半
導体00)による高抵抗領域(17)に注入され、ここ
に仮想、すなわちヴアーチュアル(virtual )
なベース領域を生成し1、これによっ′C第1領域(1
3)からのその多数キャリ“1の電子の+1人を促し、
この仮想ベース領域をJ1]1じ(第1 flJJ域(
13)の多数キャリアが第2領域(+4)4j達し、N
−P−N型のバイポーラトランジスタ動作をなさしめる
Soj, 7, ffil /y-7d'? (S 3 territory Ji
A forward bias can be applied between f133 and the second region (11) and (14), and a reverse bias can be applied between f133 and the second region (11) and (14). As a result, the ball of the majority carrier from the third region (jl) is transferred to the semi-insulating semiconductor 00 between the first and second regions j13i (13) and (14) of this third region (II). ) is implanted into the high resistance region (17), where a virtual
A base region 1 is generated, and this creates the first region ′C (1
3) Promote that majority carry “+1 person of 1 electron,”
This virtual base area is defined as J1]1 (first flJJ area (
13) majority carrier reaches the second region (+4)4j, N
-Performs P-N type bipolar transistor operation.

また1、J−: 3Aiした例においては、第1及び第
2領域(I3)〜(14)をイオン注入法、或いは拡散
法によっ゛ζ形成した場合であるが、これらをアロイ法
によって形成することもできる。
In addition, in the example of 1, J-: 3Ai, the first and second regions (I3) to (14) are formed by the ion implantation method or the diffusion method, but these are formed by the alloy method. You can also.

発明の効果 I−述した本発明による半導体装置によれば、各領域(
11) 、(13) 、(14)が平面的に配置された
ラテラル構造をとるので、その電極とり出し。
Effects of the Invention I - According to the semiconductor device according to the present invention described above, each region (
11) , (13) and (14) have a lateral structure arranged in a plane, so take out the electrodes.

配線が容易となり、集積回路を構成する場合に有利なも
のである。
Wiring becomes easy, which is advantageous when configuring an integrated circuit.

また、上述したように本発明装置においては、ラテラル
構造をとるものであるが、それにもかかわらず、その?
Ii流増幅率βが人にできるという利益がある。ずなわ
I)本発明においては、」二連したように、実〃、的に
ベース領域、すなわら注入キ中リアによる電流路を11
1+不純物濃度をイ1する第53領域(11)外の半組
15fl+、オなわら低不純物61表度の領域(17)
中に形成するようにC7たのC1注入↑−ヤリアの1広
11k長が杓3めζ]叱く、まノこ半糾へ縁1牛領賊(
17)の、ボテンシートルハリーJ′が低く平均でJI
レクタ電圧の影響を受けにくい(!II 舅を流れるな
どが相俟って電流増す1.1イ4βが市く、また動作速
度のJ1!いバイボーラトランジスク動作がなされる。
Further, as mentioned above, the device of the present invention has a lateral structure, but nevertheless, the device of the present invention has a lateral structure.
There is an advantage that humans can obtain Ii style amplification factor β. Zunawa I) In the present invention, the current path by the base region, that is, the injection center rear, is actually
Half group 15fl+ outside the 53rd region (11) with a 1+ impurity concentration of 1, and a region (17) with a low impurity concentration of 61
C1 injection of C7 to form inside ↑ - Yaria's 1 wide 11k length is the 3rd ladle ζ] Scolding, Manoko Hangai to the edge 1 cattle bandit (
17), the bottom seat harry J′ is low and the average JI
It is less susceptible to the influence of the collector voltage (!II), and the current increases by 1.1 × 4β, and the bibolar transistor operates at a faster operating speed.

更にまた、このzIY性は、ぞの実質的ベース領域が半
絶縁性の’K j#体中に形成されるので、第13領域
(11)の厚さ、特性等のばらつきに、」、っ′(コシ
りる影響が小さく、これがため、安定した均一な牛1性
の才導体装置を容易に!ItJJ造することができる。
Furthermore, this zIY property is caused by variations in the thickness, characteristics, etc. of the thirteenth region (11), since each substantial base region is formed in a semi-insulating 'Kj# body. (The influence of stiffness is small, and therefore, a stable and uniform conductor device can be easily manufactured.

まゾζ、第3領域(11)に対し、第1及び第2領域(
13)及び(14)が対称性を有するので1.:lL 
ミッタ及びコレクタが対(!1、性をイ1するトランジ
スタを(h成できる。
Maso ζ, for the third region (11), the first and second regions (
13) and (14) have symmetry, so 1. :lL
It is possible to form a transistor in which the emitter and collector are a pair (!1).

また、半絶縁性半導体に構成するので、集積回b’B 
&こ適用した場合、素子間のアイソレーションが簡f1
1化される利益がある。
In addition, since it is configured as a semi-insulating semiconductor, the integrated circuit b'B
When applying &, isolation between elements becomes simple f1
There is a profit to be made into one.

【図面の簡単な説明】[Brief explanation of drawings]

j’(S 1図へ・第4図は本発明による半導体装置の
一例の一製造方法の各工程の路線的拡大lす1面図であ
る。 00)は半絶縁IIト半導体、(11) (13)及び
(14)は人々第3.第1及び第2領域である。
j' (S Go to Figure 1/Figure 4 is a one-dimensional enlarged view of each step of a manufacturing method of an example of a semiconductor device according to the present invention. 00) is a semi-insulating II semiconductor, (11) (13) and (14) are people number 3. These are first and second regions.

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性の半導体に1導電型のエミッタ領域となる第1
領域とコレクタ領域となる第2領域とを所要の間隔を保
持して配置し、該第1及び第2領域間の上記半絶縁性半
導体上に選択的に他の導電型のエピタキシャル層による
第3領域を設け、該第3領域と上記第1領域との間に順
ハ・イアスミ圧を与えて上記第3領域からのその多数キ
ャリアの注入による仮想ベース領域を上記第3領域トの
上記半絶縁性の半導体に形成してバイポーラ1−ランジ
スタ動作を行わしめるようにした半導体装置。
A first layer that becomes an emitter region of one conductivity type in a semi-insulating semiconductor.
A third epitaxial layer of a different conductivity type is selectively formed on the semi-insulating semiconductor between the first and second regions. A region is provided, and a forward high-intensity pressure is applied between the third region and the first region to transform the virtual base region into the semi-insulating region of the third region by injecting the majority carriers from the third region. 1. A semiconductor device which is formed of a polar semiconductor to perform bipolar 1-transistor operation.
JP22484383A 1983-11-29 1983-11-29 Semiconductor device Pending JPS60116172A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22484383A JPS60116172A (en) 1983-11-29 1983-11-29 Semiconductor device
GB08430033A GB2151078B (en) 1983-11-29 1984-11-28 Semiconductor devices
DE19843443407 DE3443407A1 (en) 1983-11-29 1984-11-28 SEMICONDUCTOR COMPONENT
FR8418222A FR2555814B1 (en) 1983-11-29 1984-11-29 SEMICONDUCTOR COMPONENT OPERATING AS A BIPOLAR TRANSISTOR FOR A PRINTED CIRCUIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22484383A JPS60116172A (en) 1983-11-29 1983-11-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60116172A true JPS60116172A (en) 1985-06-22

Family

ID=16820038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22484383A Pending JPS60116172A (en) 1983-11-29 1983-11-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60116172A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231362A (en) * 1984-04-27 1985-11-16 Fujitsu Ltd Hetero-junction bipolar transistor and manufacture thereof
JPS6320871A (en) * 1986-07-14 1988-01-28 Matsushita Electronics Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231362A (en) * 1984-04-27 1985-11-16 Fujitsu Ltd Hetero-junction bipolar transistor and manufacture thereof
JPH0343791B2 (en) * 1984-04-27 1991-07-03 Fujitsu Ltd
JPS6320871A (en) * 1986-07-14 1988-01-28 Matsushita Electronics Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JPS60196974A (en) Conduction modulation type mosfet
US3873372A (en) Method for producing improved transistor devices
US5063167A (en) Method of producing a bipolar transistor with spacers
JPS5891682A (en) Semiconductor device
JPS60116172A (en) Semiconductor device
JPS60242661A (en) Semiconductor device
JPH0326535B2 (en)
JPH0654784B2 (en) Semiconductor device
JPH0766966B2 (en) Semiconductor device
JPS60116170A (en) Semiconductor device
GB2151078A (en) Semiconductor devices
JP2979638B2 (en) Method for manufacturing heterojunction bipolar transistor
KR910006751B1 (en) Semiconductor integrated circuit device and its manufacturing method
JPS63314866A (en) Bipolar transistor
JP3060500B2 (en) Manufacturing method of integrated circuit device
JP2570770B2 (en) Bipolar transistor
JPH0513705A (en) Semiconductor device
JPH0432754Y2 (en)
JPS6114755A (en) Semiconductor transistor and manufacture thereof
JPS6159872A (en) Semiconductor device
JPH0550856B2 (en)
JPS60100472A (en) Field effect transistor
JPS61222176A (en) Schottky gate field effect transistor and manufacture thereof
JPS6152575B2 (en)
JPS6276775A (en) Semiconductor device