JPS60115991A - Molded soundproof material - Google Patents

Molded soundproof material

Info

Publication number
JPS60115991A
JPS60115991A JP58223079A JP22307983A JPS60115991A JP S60115991 A JPS60115991 A JP S60115991A JP 58223079 A JP58223079 A JP 58223079A JP 22307983 A JP22307983 A JP 22307983A JP S60115991 A JPS60115991 A JP S60115991A
Authority
JP
Japan
Prior art keywords
molded
parts
synthetic resin
fiber
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58223079A
Other languages
Japanese (ja)
Inventor
川岸 正夫
譲 高橋
新田 隆行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Tokushu Toryo Co Ltd
Original Assignee
Nihon Tokushu Toryo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Tokushu Toryo Co Ltd filed Critical Nihon Tokushu Toryo Co Ltd
Priority to JP58223079A priority Critical patent/JPS60115991A/en
Publication of JPS60115991A publication Critical patent/JPS60115991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 混合して得られる嵩高性不織布を加熱条件下で任意の凹
凸形状に成形してなる成形防音材に関し、史に詳細には
、耐水性、耐熱性、耐衝撃性、強度に優れ、且つ熱履歴
後の成形品の形状保持性に優れ、更に深絞り成形性の改
良された成形防音材に関する。
[Detailed Description of the Invention] Regarding the molded soundproofing material obtained by molding the bulky nonwoven fabric obtained by mixing into an arbitrary uneven shape under heating conditions, the molded soundproofing material has water resistance, heat resistance, impact resistance, The present invention relates to a molded soundproofing material that has excellent strength, excellent shape retention of molded products after heat history, and improved deep drawability.

例えば、自動車のボンネット裏面に、動物性、植物性、
鉱物性及び合成樹脂性不連続繊維月相の1種もしくは2
種以上と熱硬化性合成樹脂粉末とを主体としてなる嵩高
性不織布の成形品が吸音材として装着されている。これ
らの成形吸音材は本発明者が先に提案したものであって
厚さが約2〜5%の平担な高密度部分と厚さが約3〜1
0%で特定範囲の空気流れ抵抗値を持つ任意形状の張り
出し部から成っており、平担な高密度部分は成形吸音拐
に剛性、強度を与え且つボンネット裏面に装着する際の
基部として働き、任意形状の張り出し,部はボンネット
との間に中間層を形成し、いわゆる背後空気層を有する
吸音部として働くもので病る。
For example, on the back of the hood of a car, animal-based, vegetable-based,
One or two types of mineral and synthetic resin discontinuous fibers
A molded article of a bulky nonwoven fabric mainly composed of a thermosetting synthetic resin powder and a thermosetting synthetic resin powder is attached as a sound absorbing material. These molded sound absorbing materials were previously proposed by the present inventor, and have a flat high-density portion with a thickness of approximately 2 to 5% and a thickness of approximately 3 to 1%.
It consists of an arbitrarily shaped protruding part that has an air flow resistance value in a specific range at 0%, and the flat high-density part gives rigidity and strength to the molded sound absorption board, and also acts as a base when attached to the back of the bonnet. The arbitrarily shaped overhang forms an intermediate layer between the bonnet and the bonnet and acts as a sound absorbing section with a so-called rear air layer.

これらのエンジンルーム内に装着して用いられる成形吸
音利の繊維成分の1つの例として従来、落綿や反毛等の
動植物性繊維及び/又は合成樹脂性繊維材料を開繊した
不連続繊維材料成分に、熱硬化性合成樹脂粉末及び熱可
塑性合成樹脂粉末の適宜割合の混合粉末を混合しフリー
ス形成機でフリースを形成した後適度の熱を加えて該樹
脂粉末を熱融着せしめあつかい得る状態となした嵩高性
不織布を製造し、所望の形状に加熱加圧成形した成形体
が用いられており、又他の例としてガラス繊維性の不連
続繊維材料及び熱硬化性合成樹脂を主体として成る嵩高
性不織布(ガラスウールマット)全所望の形状に加熱加
圧成形した成形体が知られている。
One example of the fiber components of these molded sound-absorbing fibers installed in the engine room is discontinuous fiber material, which is made by opening animal and vegetable fibers such as fallen cotton and wool, and/or synthetic resin fiber materials. A mixture of thermosetting synthetic resin powder and thermoplastic synthetic resin powder in an appropriate ratio is mixed with the ingredients, a fleece is formed using a fleece forming machine, and then an appropriate amount of heat is applied to heat-fuse the resin powder to a ready-to-handle state. A molded article is used in which a bulky non-woven fabric is produced and molded under heat and pressure into a desired shape.Another example is a fabric made mainly of glass fiber discontinuous fiber material and thermosetting synthetic resin. BACKGROUND ART A molded article made of a bulky nonwoven fabric (glass wool mat) that is heated and press-molded into a desired shape is known.

一方、自動車エンジンに対するターボチャーヂャー化の
進展に伴ないエンジンルームに装着されるこれらの防音
材、吸音材に対するより高温度域での耐熱性(即ち高温
にさらされることにより生ずる燃焼性、強度の低下、衝
撃性の低下、成形品の形状保持性等に対する抵抗性を包
含)の改良の要望に加え、耐水性及び深絞り成形性に対
する改良要望も強まる一方であった。
On the other hand, with the advancement of turbocharging in automobile engines, the heat resistance of soundproofing and sound absorbing materials installed in engine compartments in higher temperature ranges (i.e., the combustibility and strength caused by exposure to high temperatures) has increased. In addition to demands for improvements in water resistance and deep drawing formability, there have been increasing demands for improvements in water resistance and deep drawability.

これらの要望に照し合せて前記成形体を見た場計、前者
の動植物性及び/又は合成樹脂性繊維材から成る成形体
は、成形性、たわみ性、衝撃性、経済性の面で優れるも
のの耐水性、耐熱性がこれらの要望を満足し得す、後者
のガラスウール製成形体は、耐水性、強度、燃焼性の而
で田れるものの折れ易く衝撃性や高熱劣化時に於ける成
形品の形状保持性の面で前記要望を満足1−f4;なか
った。
When looking at the above-mentioned molded products in light of these demands, we find that the former molded products made of animal/vegetable and/or synthetic resin fiber materials are superior in terms of moldability, flexibility, impact resistance, and economic efficiency. The latter type of molded product made of glass wool satisfies these demands due to its water resistance and heat resistance, but although it has water resistance, strength, and combustibility, it is easy to break, has impact resistance, and is a molded product that is susceptible to high heat deterioration. The above requirements were not satisfied in terms of shape retention.

かかる実情に鑑み本発明者らは鋭意研死の結果本発明に
至ったものであり、而して本発明の目的とするところは
、耐水性、耐熱性、面]衝撃件、強度に優れ、且つ高熱
劣化時に於ける成形品の形状保持性に優れ、更に深絞り
成形品の改良された成形防音材の製造方法を提供するこ
とにある。
In view of these circumstances, the inventors of the present invention have arrived at the present invention as a result of intensive research, and the object of the present invention is to provide a material with excellent water resistance, heat resistance, surface/impact resistance, and strength. Another object of the present invention is to provide a method for producing a molded soundproofing material that has excellent shape retention properties during high-temperature deterioration and is further improved in deep drawing molded products.

しかして本発明の要旨とするところは、軟化点が80〜
250℃である1種もしくは2種以上の合成イσI脂注
繊維材料とガラス繊維拐料とが9:1〜1:9の割合で
混合、解繊された不連続繊維材料100重:11一部に
、熱硬化性合成樹脂5〜40重ね1部を加えて成る嵩高
性不織布を加熱状態において任意の凹凸形状に圧縮成形
して成る成形防音月 に存する。
However, the gist of the present invention is that the softening point is 80~80~
Discontinuous fiber material 100 weights: 11 weights of one or more types of synthetic σI fat-filled fiber materials and glass fiber fibers mixed and defibrated at a ratio of 9:1 to 1:9 at 250°C. The molded soundproofing material is obtained by compression-molding a bulky nonwoven fabric made by adding 5 to 40 layers of a thermosetting synthetic resin to 1 part and 1 part of a thermosetting synthetic resin in an arbitrary uneven shape under heating.

本発明者は先に動植物性及び/又は合成樹脂性繊維材科
等の有機質繊維材料とグラスウール、ロックウーノへス
ラグウール等の無機質繊8イ1.材料との混合繊維材料
と、結合剤成分から成る嵩高性不織布を加熱加圧成形し
た成形防音材に関する提案をしたが、本発明は更に、■
耐水性;■200℃以上の高温度条件下の履歴にも酬え
得る耐熱性、特に高熱履歴後の成形品の形状保持性と耐
衝撃性;及び■深絞り成形性が著しく改良された成形防
音材に関する提案である。
The present inventor first discovered organic fiber materials such as animal/plant and/or synthetic resin fiber materials and inorganic fibers such as glass wool, rock wool, and slag wool. Although we have proposed a molded soundproofing material in which a bulky nonwoven fabric consisting of a mixed fiber material and a binder component is heated and pressed, the present invention further provides the following features:
Water resistance; ■ Heat resistance that can withstand high temperature conditions of 200°C or higher, especially shape retention and impact resistance of molded products after high heat history; and ■ Forming with significantly improved deep drawability. This is a proposal regarding soundproofing materials.

本願発明に使用する合成樹脂性繊維材の素材としては、
ポリエステル繊維、アクリル繊維、ポリアミド繊維、ナ
イロン、ポリクラ−7し繊維、ポリウレタン繊維、ポリ
塩化ビニル系繊維、ポリ塩化ビニリデン系繊維、ビニロ
ン、アセテート繊維、フッ素繊維、ポリプロピレン繊維
、ポリエチレン繊維等であって良く、これらの1種もし
くは2種以上の混合物を用い得る。
Materials for the synthetic resin fiber material used in the present invention include:
May be polyester fibers, acrylic fibers, polyamide fibers, nylon, polycrystalline fibers, polyurethane fibers, polyvinyl chloride fibers, polyvinylidene chloride fibers, vinylon, acetate fibers, fluorine fibers, polypropylene fibers, polyethylene fibers, etc. , one or a mixture of two or more of these may be used.

これらの合成樹脂性繊維材は軟化点が80〜250℃の
ものの使用を必須とし、軟化点が80℃未満の合成樹脂
性繊維材の使用であっては、成形体の形状変化が起こり
易く、著しく強度が低下し、軟化点が250℃を超える
合成樹脂性繊維イ旧・ま、非常に高価な点に加え成形作
業性が劣る不具合がある。
It is essential to use these synthetic resin fiber materials with a softening point of 80 to 250°C, and if a synthetic resin fiber material with a softening point of less than 80°C is used, the shape of the molded product is likely to change, Synthetic resin fibers with significantly reduced strength and a softening point exceeding 250° C. are very expensive and have the disadvantage of poor molding workability.

これらの繊維の径は、100μ以下であれば良いがより
好ましくは15μ以下とすることが防音材として史に優
れた吸音性を有するものとなり、軽量化のためにも好都
合である。
The diameter of these fibers may be 100 μm or less, but more preferably 15 μm or less, which provides excellent sound absorbing properties as a soundproofing material and is also advantageous for weight reduction.

上記合成樹脂性繊維相と共に不連続繊&!i利料金構成
する必須のガラス繊維材料としては、グラスウール、グ
ラスファイバー等が好寸しい。かかるグラスウールある
いはグラスファイバーは従来公知のものであって良く、
溶融ガラスを高速度で引いて紡糸し、線維状あるいは綿
状にしたものを用い得る。ロンド式、ポット式で作られ
るりAi繊Q11.又は蒸気吹付法により作られた綿状
物のいずれを・用いても良い。
Along with the above synthetic resin fiber phase, discontinuous fibers &! Glass wool, glass fiber, etc. are suitable as the essential glass fiber material constituting the i-rate. Such glass wool or glass fiber may be of conventionally known type.
Molten glass may be drawn and spun at high speed to form fibers or fluff. Ai fiber Q11 made with Rondo style and pot style. Alternatively, a cotton-like material made by steam spraying may be used.

1種もしくは2種以上の合成樹脂性繊維IJ料とガラス
繊維材料とは9:1〜1:9の割合で、好ましくは7:
3〜3ニアの割合で混合することを必須とする。成形体
を見た場合、合成樹脂性繊維材料が多きに過ぎると耐熱
性に満足し得ない欠点があり、ガラス繊維材料が多きに
過ぎると、折れ易く衝撃性や成形品の形状保持の面で要
望を満足し得ない欠点がある。
The ratio of one or more synthetic resin fiber IJ materials and glass fiber material is 9:1 to 1:9, preferably 7:1.
It is essential to mix at a ratio of 3 to 3 Nia. When looking at the molded product, if there is too much synthetic resin fiber material, the heat resistance will be unsatisfactory, and if too much glass fiber material is used, it will break easily and have problems in terms of impact resistance and shape retention of the molded product. There are drawbacks to not being able to satisfy requests.

合成樹脂性繊維材料とガラス繊維材料とを混合、解繊し
てなる不連続繊維材料100重量部に熱硬化性合成樹脂
5〜40重量部を加えること全必須とする。熱硬化性合
成樹脂としては、フェノール樹脂、熱硬化型アクリル樹
脂、メラミン樹脂等であって良い。
It is essential to add 5 to 40 parts by weight of a thermosetting synthetic resin to 100 parts by weight of a discontinuous fiber material obtained by mixing and defibrating a synthetic resin fiber material and a glass fiber material. The thermosetting synthetic resin may be a phenol resin, a thermosetting acrylic resin, a melamine resin, or the like.

以下に本発明の製造方法を更に詳細に説明する。The manufacturing method of the present invention will be explained in more detail below.

ポリエステル繊維、アクリル繊維、ポリアミド繊kIF
等の合成樹脂性繊維材と所要量のグラスウーノペグラス
ファイバー等のガラス繊維材料をベールフィーダーに投
入して繊維材料の第一次開繊を行ないラッパーで相箔厚
みのウェブを形+jyl、、形成したウェブ土にレジン
散布機により熱硬化性樹脂粉末を散布しホーミングマシ
ン中のビータ−で再度17i−1繊と樹脂粉末の混合を
行ない、再びラッパーで所望厚みのフリースとし加熱炉
のネットコンベアー上に順次流して行く。得られたフリ
ースは取り扱いを容易にするため加熱炉によυ熱を加え
、混入樹脂粉末の一部を硬化せしめたセミキュアー状態
で取り出し加熱加圧成形しても良く、あるいは混入した
樹脂粉末を十分に硬化せしめて弾力性、緩衝性にすぐれ
たフェルト状物として取り出しても良い。
Polyester fiber, acrylic fiber, polyamide fiber kIF
Synthetic resin fiber materials such as and the required amount of glass fiber materials such as Glass Unope glass fibers are put into a bale feeder, the fiber materials are first opened, and a web with a similar thickness is formed using a wrapper. Thermosetting resin powder is spread on the formed web soil using a resin spreader, the 17i-1 fibers and the resin powder are mixed again using the beater in the homing machine, and the fleece is made into a desired thickness using a wrapper again and transferred to the net conveyor of the heating furnace. Pour it on top one by one. To make the obtained fleece easier to handle, heat may be applied to it in a heating furnace, and the mixed resin powder may be partially cured and taken out in a semi-cured state and molded under heat and pressure. Alternatively, the mixed resin powder may be sufficiently removed. It may be cured and taken out as a felt-like material with excellent elasticity and cushioning properties.

次いで、セミキュアー状態で取り出しグζ該嵩高性不織
布に、180℃〜250℃の加熱状態の金型を−用い凹
凸形状に1〜100にり/c〃1の圧力で圧縮成形を加
えて成形防音材を得るものである。
Next, the bulky nonwoven fabric is taken out in a semi-cured state and compressed into an uneven shape using a mold heated at 180°C to 250°C at a pressure of 1 to 100 mm/c to form soundproofing. It is used to obtain wood.

本発明においては合成園脂繊維と特定割合のグラスウー
ルへグラスファイバー等のガラス繊維側斜を併用するこ
とによりその相乗効果において成形性、たわみ性、衝撃
性、経済性、耐水性、強度、燃焼性等に優れ、熱履歴後
の成形品の形状保持性に優れた成形防音材を得ることが
出来るものであり、得られた成形防音材はその圧縮の程
度により通気性のある吸音材にも、実質的に通気性のな
い遮音側、例えばエンジンアンダーカバー等にも成し得
るものである。本願発明の成形防音拐はその優れた耐水
性、250℃近い耐熱性を有し、故にボンネット裏面よ
りむしろ、エンジンに隣接するアンダ一部や側壁、ダッ
シュアウタ一部等に好適である。
In the present invention, by using synthetic resin fibers and a specific proportion of glass wool together with glass fiber sidewalls, the synergistic effect of the combination is moldability, flexibility, impact resistance, economic efficiency, water resistance, strength, and combustibility. It is possible to obtain a molded soundproofing material that has excellent shape retention properties of molded products after heat history, and depending on the degree of compression, the molded soundproofing material obtained can also be used as a breathable soundabsorbing material. It can also be used as a sound insulating side that has substantially no air permeability, such as an engine undercover. The molded soundproofing material of the present invention has excellent water resistance and heat resistance of nearly 250° C., and is therefore suitable for the underside of the engine, side walls, part of the outer dash, etc., rather than the back of the bonnet.

本発明において得られる成形防音月に比重の重いゴムや
塩ビ等をバインダーとするシート状物や水蜜性付与のた
めプラスチックフィルム等を貼着したり、一体成形した
りすることは妨はない。
There is no problem in attaching a sheet-like material made of rubber, vinyl chloride, or the like with a heavy specific gravity as a binder to the molded soundproofing material obtained in the present invention, or attaching a plastic film or the like to impart water-retaining properties, or integrally molding the material.

以下に比較例を交えて実施例を挙げ本発明のより詳細な
理解に供する。当然のことながら本発明は以下の実施例
のみに限定されるものではない。
Examples are given below along with comparative examples to provide a more detailed understanding of the present invention. Naturally, the present invention is not limited to the following examples.

実施例1 軟化点105℃のアクリル繊維40重量部、グラスウー
ル60mQ部を開繊混合し、融点150℃で反応温度1
80℃のフェノール樹脂粉末20重者部を散布混合し、
フリース形成機でフリースとなした後160℃の加熱炉
を通して厚さ26%、面’J?Hff94A!iI/η
72のセミキュアータイプの′w:窩性不織布を得た。
Example 1 40 parts by weight of acrylic fiber with a softening point of 105°C and 60 mQ parts of glass wool were spread and mixed, and the reaction temperature was 1 at a melting point of 150°C.
Sprinkle and mix 20 parts of phenolic resin powder at 80°C,
After forming a fleece with a fleece forming machine, it is passed through a heating furnace at 160°C to a thickness of 26%, and the surface 'J? Hff94A! iI/η
A semi-cured type 'w: foveal nonwoven fabric of 72 was obtained.

得られた嵩高性不織布を300×300%の正方形に2
00℃に加熱した金型を用いて15 Kg / cnl
にて周辺部20 ′Xn’l: 2 ′Xn厚に、他の
吸音部分を6%に圧縮成形した。
The obtained bulky nonwoven fabric was divided into 2 squares of 300 x 300%.
15 Kg/cnl using a mold heated to 00℃
The peripheral part 20'Xn'l: 2'Xn thickness was compression molded with other sound absorbing parts at 6%.

実施例2 軟化点146℃のポリエステル繊維50重唱部、グラス
ウール5(1:tt部を開繊混合し、融点150℃で反
応温度180℃のフェノール樹脂粉末20重量部を散布
混合し、フリース形成機で)IJ−スとなした後160
℃の加熱炉を通して厚さ27%、面密度955 f /
n?のセミキュアータイプの嵩高性不織布を得た。得ら
れた嵩高性不織布子300X300%の正方形に200
℃に加熱した金型を用いて15にり/ crrffiに
て周辺部20%を2%厚に、他の吸音部分を6%厚に圧
縮成形した。
Example 2 50 parts of polyester fiber with a softening point of 146°C, 5 parts of glass wool (1:tt part) were opened and mixed, 20 parts by weight of phenolic resin powder with a melting point of 150°C and a reaction temperature of 180°C was sprinkled and mixed, and a fleece forming machine was used. 160 after making it with IJ-su
℃ heating furnace to a thickness of 27% and an areal density of 955 f/
n? A semi-cured type bulky nonwoven fabric was obtained. 200 pieces of bulky nonwoven fabric obtained in a 300 x 300% square
Using a mold heated to 15° C., 20% of the peripheral portion was compression molded to a thickness of 2%, and the other sound absorbing portions were compression molded to a thickness of 6%.

実施例3 軟化点178℃のポリアミド繊維50市川部、グラスウ
ール50重量部を開繊混合し、融点150℃で反応温度
180℃のフェノール樹脂粉末20 N−Wc部を散布
混合し、フリース形成機でフIJ −スとなした後16
0℃の加熱炉を通して厚さ25%、面密度937 ? 
/glのセミキュアータイプの嵩高性不織布を得た。得
らnた嵩高性不織布を300X300%の正方形に20
0℃に加熱した金型を用いて15 Kg / cutに
て周辺部20%を2%厚に、他の吸音部分音6駕厚に圧
縮成形した0実施例4 軟化点146℃のポリエステル繊維25重量部と軟化点
105℃のアクリル繊維25重量部、グラスウール50
重量部を開繊混合し、融点150℃で反応温度180℃
のフェノール樹脂粉末20重量部を散布混合し、フリー
ス形成機でフリースとなした後160℃の加熱炉を通し
て厚さ26%、面密度942 ?/ tr?のセミキュ
アータイプの嵩高性不織布を得た。得られた嵩高性不織
布を300×300%の正方形に200℃に加熱した金
型を用いて15 Kq/ critにて周辺部20%を
2%厚に、他の吸音部分を6%厚に圧縮成形した。
Example 3 50 Ichikawabe polyamide fibers with a softening point of 178°C and 50 parts by weight of glass wool were spread and mixed, 20 N-Wc parts of a phenolic resin powder with a melting point of 150°C and a reaction temperature of 180°C was sprinkled and mixed, and a fleece forming machine was used. 16 after making a face IJ-S
Passed through a heating furnace at 0°C to a thickness of 25% and an areal density of 937?
A semi-cured type bulky nonwoven fabric of /gl was obtained. The obtained bulky nonwoven fabric was placed into a 300x300% square.
Example 4 Polyester fiber 25 with a softening point of 146°C was compression-molded using a mold heated to 0°C at 15 kg/cut to have a thickness of 2% in the peripheral part and 6 thicknesses in other sound-absorbing parts. 25 parts by weight of acrylic fiber with a softening point of 105°C, 50 parts by weight of glass wool
The parts by weight were opened and mixed, and the melting point was 150°C and the reaction temperature was 180°C.
20 parts by weight of phenolic resin powder was scattered and mixed, formed into a fleece using a fleece forming machine, and passed through a heating furnace at 160°C to a thickness of 26% and an areal density of 942? /tr? A semi-cured type bulky nonwoven fabric was obtained. The obtained bulky nonwoven fabric was compressed into a 300 x 300% square using a mold heated to 200°C at 15 Kq/crit to a thickness of 2% in the peripheral area and a thickness of 6% in the other sound absorbing parts. Molded.

比較例1 アクリル樹脂性繊維30重量部、反毛20重量部、落綿
50重量部全開繊混合し、融点150℃で反応温度18
0℃のフェノール樹脂粉末20重量部全散布混合し、フ
リース形成機でフリースとなした後160℃の加熱炉を
通して厚さ25%、面密度930 ii’ / m”の
セミキュアータイプの嵩高性不織布を得た。得られた嵩
高性ント織布を300×300%の正方形に200℃に
加熱した金型全層いて15にり/ arfにて周辺部2
0%を2%厚に、他の吸音部分を6%厚に圧縮成形した
Comparative Example 1 30 parts by weight of acrylic resin fiber, 20 parts by weight of recycled wool, and 50 parts by weight of fallen cotton were fully opened and mixed at a melting point of 150°C and a reaction temperature of 18°C.
20 parts by weight of phenolic resin powder at 0°C was completely dispersed and mixed, formed into a fleece using a fleece forming machine, and passed through a heating furnace at 160°C to form a semi-cured bulky nonwoven fabric with a thickness of 25% and an areal density of 930 ii'/m''. The obtained bulky woven fabric was molded into a 300 x 300% square in a mold heated to 200°C, and the entire layer was heated to 15 mm/arf to form a peripheral area 2.
The 0% part was compression molded to a 2% thickness, and the other sound absorbing parts were compression molded to a 6% thickness.

比較例2 アクリル樹脂性繊維20重量部、反毛15重量部、落綿
30重量部、グラスウール35重吊二部を開繊混合し、
融点150℃で反応温度180℃のフェノール樹脂粉末
20重量部を散布混合し、フリース形成機でフリースと
なした後160℃の加熱炉全通して厚さ26%、面密度
94.0 ? / tri”のセミキュアータイプの嵩
高性不織布を得た。イ4)られた嵩高性不織布を300
×300%の正方に200℃に加熱した金型を用いて1
5にり/C7I′Lにて周辺部20%を2%厚に、他の
吸音iτじ分音6駕厚に圧縮成形した。
Comparative Example 2 20 parts by weight of acrylic resin fiber, 15 parts by weight of recycled wool, 30 parts by weight of fallen cotton, and 2 parts of 35 suspended glass wool were opened and mixed,
20 parts by weight of phenolic resin powder with a melting point of 150°C and a reaction temperature of 180°C was sprinkled and mixed, formed into a fleece using a fleece forming machine, and then passed through a heating furnace at 160°C to a thickness of 26% and an areal density of 94.0? / tri” semi-cured type bulky nonwoven fabric was obtained.
×300% square using a mold heated to 200℃
5/C7I'L, 20% of the peripheral part was compression molded to 2% thickness, and the other sound absorption iτ was compression molded to 6 thicknesses.

比較例3 溶融ガラスを高速度で引いて紡糸し、綿状にしfcクラ
、xウールl 00重−組部に水溶性フェノール樹脂液
15重量部を噴霧、マット状になし、面密度980ii
’/m2のグラスウールマットを得た。得られたグラス
ウールマツ)e300x300%の正方形に200℃に
加熱した金型を用いて15に97c71にて周辺部2o
′Xを2%厚に、他の吸音部分を6%厚に圧縮成形した
Comparative Example 3 Molten glass was spun at high speed, made into a cotton-like fiber, and 15 parts by weight of water-soluble phenol resin liquid was sprayed on the FC Kura,
A glass wool mat of '/m2 was obtained. The obtained glass wool pine) e300x300% square was made using a mold heated to 200℃, and the peripheral part 2o was made at 97c71 in 15 minutes.
'

比較例4 軟化点が70℃の合成樹脂性繊維(ポリオレフヘン系繊
維)40Mt部、グラスウール6oM量蔀を開繊混合し
、融点150℃で反応温度180℃のフェノール樹脂粉
末20i量部を散布混合し、フリース形成機でフリース
となした後160 ’Cの加熱炉を通して厚さ24%、
面密tK 925 F /iのセミキュアータイプの嵩
高性不織布′(i−得た。得られた嵩高性不織布’15
300X300%の正方形に200℃に加熱した金型を
用いて15 Kq / crlにて周辺部20%を2%
厚に、他の吸音部分を6%厚に圧縮成形した。
Comparative Example 4 40 Mt parts of synthetic resin fiber (polyolefin fiber) with a softening point of 70°C and 6 oM glass wool were spread and mixed, and 20 parts of phenolic resin powder with a melting point of 150°C and a reaction temperature of 180°C was sprinkled and mixed. , made into fleece with a fleece forming machine and then passed through a heating oven at 160'C to a thickness of 24%,
Semi-cure type bulky nonwoven fabric with surface density tK 925 F /i (i-obtained. Obtained bulky nonwoven fabric '15
Using a mold heated to 200℃ in a 300x300% square, 20% of the peripheral area is 2% at 15 Kq/crl.
The other sound absorbing parts were compression molded to a thickness of 6%.

試験方法 1、高温劣化性 あらかじめJISK7203による最大曲げ応力を測定
した試験片全温度60℃、湿度95%の状態で100時
間保持したのち取り出し、再び最大曲げ応力を測定し、
外観を観察した。
Test method 1, high temperature deterioration The maximum bending stress of the test piece was previously measured according to JIS K7203. After holding the test piece at a total temperature of 60°C and 95% humidity for 100 hours, it was taken out and the maximum bending stress was measured again.
I observed the appearance.

:?水浸漬劣化性 あらかじめJISK7203による最大曲げ応力を測定
した試、験片全水浸漬した状態で100時間保持したの
ち取り出し、再び最大曲げ応力を測定し、外観を観察し
た。
:? Water immersion deterioration test In a test in which the maximum bending stress was measured in advance according to JIS K7203, the test piece was immersed in water and held for 100 hours, then taken out, the maximum bending stress was measured again, and the appearance was observed.

3、サイクル劣化性 あらかじめJISK7203による最大曲げ応力を測定
した試験片を(水浸漬、1時間)=(−40℃、4時間
)→(150℃、4時間)のサイクルテストを6サイク
ル経過後、杓び最大曲げ応力を測定し、外観全観察した
3. Cycle deterioration After 6 cycles of a test piece whose maximum bending stress was previously measured according to JIS K7203 (water immersion, 1 hour) = (-40°C, 4 hours) → (150°C, 4 hours), The maximum bending stress during ladle was measured, and the entire appearance was observed.

4、熱劣化性 あらかじめJ I SK7203による最大曲げ応力を
測定した試験片を温度200℃内に100時間保持した
のち取り出し、再び最大曲げ応力を測定し、外観を観察
した。
4. Thermal deterioration A test piece whose maximum bending stress was previously measured according to J I SK7203 was kept at a temperature of 200°C for 100 hours, then taken out, the maximum bending stress was again measured, and the appearance was observed.

以上の1〜4の試験方法による評価は、試験前の結果を
100とする相対評何とし、外観、については形状、寸
法、破損状態等を観察する。
The evaluation by the above test methods 1 to 4 is a relative evaluation with the result before the test as 100, and the appearance is observed by observing the shape, size, state of damage, etc.

5、耐衝撃性 実施例及び比較例になる試験片を飛び石試験機にセット
し、30cm離れた所から4 Kg/ azlの圧力で
6号砕石500 ft=15回あてた後の成形品の表面
状態を評価する。
5. Impact Resistance The test pieces of Examples and Comparative Examples were set in a stepping stone tester, and a No. 6 crushed stone was applied 500 ft = 15 times from a distance of 30 cm at a pressure of 4 Kg/azl to the surface of the molded product. Assess the condition.

耐衝撃性評価としては、 ◎: 変化なし △ : 傷あり × : 原型破損 とする。For impact resistance evaluation, ◎: No change △: There are scratches ×: The original model is damaged.

6、吸音率 残響室法により熱劣化性試験後の250〜40000…
の吸音率全測定した。
6. Sound absorption coefficient 250-40000 after thermal deterioration test using reverberation chamber method...
All sound absorption coefficients were measured.

この様に本願発明になる成形防音材は、従来のものに増
して耐水性、耐熱性、耐衝撃性、強度に優れ、史には成
形品の形状保コ、1性に優れた良好なるものであること
が明らかになった。
As described above, the molded soundproofing material of the present invention has superior water resistance, heat resistance, impact resistance, and strength compared to conventional materials, and has been known to have excellent shape retention and properties of molded products. It became clear that.

特許出願人 日本特殊塗料株式会社 手続補正書(方式ン 昭和59年3月13日 特許庁長官 殿 1、事件の表示 昭和58年特許願第223079号 2、発明の名称 3、補正をする者 事件との関係 特許出願人 住所 東京都北区王子5丁目16番7号郵便番号 11
4 昭和59年2月8日 (発送口:昭和59年2月28日) 5、補正により増加する発明の数 0 6補正の対象 明細書全文 7、補正の内容 明細書の浄書(内容に変更なし)
Patent Applicant Nippon Tokushu Toyo Co., Ltd. Procedural Amendment (formula) March 13, 1980 Director General of the Patent Office 1, Indication of the case 1982 Patent Application No. 223079 2, Title of the invention 3, Person making the amendment Case Relationship with Patent applicant address: 5-16-7 Oji, Kita-ku, Tokyo Postal code: 11
4 February 8, 1980 (Delivery port: February 28, 1980) 5. Number of inventions increased by the amendment 0 6. Full text of the specification subject to the amendment 7. Engraving of the description of the contents of the amendment (changes to the contents) none)

Claims (1)

【特許請求の範囲】[Claims] 軟化点が80〜250℃である1種もしくは2種以上の
合成樹脂性繊維材料とガラス繊維材料とが9=1〜1:
9の割合で混合、解繊された不連続繊維材料100重量
部に、熱硬化性合成樹脂5〜40重量部を加えて成る嵩
高性不織布を加熱状態において任意の凹凸形状に圧縮成
形して成る成形防音材
One or more synthetic resin fiber materials having a softening point of 80 to 250°C and a glass fiber material are 9=1 to 1:
A bulky nonwoven fabric made by adding 5 to 40 parts by weight of a thermosetting synthetic resin to 100 parts by weight of a discontinuous fiber material mixed and defibrated at a ratio of 9 to 100 parts by weight is compression-molded into an arbitrary uneven shape under heating. molded soundproofing material
JP58223079A 1983-11-29 1983-11-29 Molded soundproof material Pending JPS60115991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58223079A JPS60115991A (en) 1983-11-29 1983-11-29 Molded soundproof material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58223079A JPS60115991A (en) 1983-11-29 1983-11-29 Molded soundproof material

Publications (1)

Publication Number Publication Date
JPS60115991A true JPS60115991A (en) 1985-06-22

Family

ID=16792505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58223079A Pending JPS60115991A (en) 1983-11-29 1983-11-29 Molded soundproof material

Country Status (1)

Country Link
JP (1) JPS60115991A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249753A (en) * 1987-03-31 1988-10-17 積水化学工業株式会社 Production of ceiling material for car
JPH01139854A (en) * 1987-11-26 1989-06-01 Nippon Steel Chem Co Ltd Production of molded felt
JPH01148860A (en) * 1987-12-01 1989-06-12 Chisso Corp Sound absorbing material and its production
JPH0675579A (en) * 1991-01-31 1994-03-18 Nippon Tokushu Toryo Co Ltd Corrugaged sound absorbing material
JP2006063460A (en) * 2004-08-25 2006-03-09 Noda Corp Method for producing building board
JP2019191345A (en) * 2018-04-24 2019-10-31 株式会社ヒロタニ Heat-resistant soundproof material for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249753A (en) * 1987-03-31 1988-10-17 積水化学工業株式会社 Production of ceiling material for car
JPH01139854A (en) * 1987-11-26 1989-06-01 Nippon Steel Chem Co Ltd Production of molded felt
JPH01148860A (en) * 1987-12-01 1989-06-12 Chisso Corp Sound absorbing material and its production
JPH0791763B2 (en) * 1987-12-01 1995-10-04 チッソ株式会社 Sound absorbing material and method for manufacturing the same
JPH0675579A (en) * 1991-01-31 1994-03-18 Nippon Tokushu Toryo Co Ltd Corrugaged sound absorbing material
JP2006063460A (en) * 2004-08-25 2006-03-09 Noda Corp Method for producing building board
JP2019191345A (en) * 2018-04-24 2019-10-31 株式会社ヒロタニ Heat-resistant soundproof material for vehicle

Similar Documents

Publication Publication Date Title
JP5510756B2 (en) Ceiling tile
CN107107099A (en) Prepreg, core and composite product including expansible graphite material
EP0272815A2 (en) Moldable fibrous composite and methods
KR102143447B1 (en) Mineral Fiber Ceiling Tile
JPS61163846A (en) Porous composite material for soundproofing and manufacture thereof
CN101189380A (en) Sound retardant nonwoven material and process for manufacture
KR20030025840A (en) Thermo formable acoustical panel
CN105479888B (en) It is a kind of to be used to prepare long glass fiber reinforced lightweight thermoplastic composite of passenger car total length vehicle body bottom backplate and preparation method thereof
RU2006102359A (en) GYpsum panel lined with a mat of nonwoven fiberglass material, and a method of manufacturing
JPS60115991A (en) Molded soundproof material
MXPA05010933A (en) Porous sound absorber formed from cork particles and thermally reactive binding agent, and method for the production thereof.
RU2296838C2 (en) Ecologically appropriative isolation material and production method
EP1180182A1 (en) Mineral fibre insulating board comprising a rigid surface layer, a process for the preparation thereof and a use of the insulating product for roofing and facade covering
JPS58118244A (en) Manufacture of flame-retarded molded sound insulating material
JP5170512B2 (en) Biodegradable heat insulating material, molded body thereof, production method thereof, plant growth material and fertilizer material using the production method
JPS59186750A (en) Sound absorption panel for automobile hood
JP2002268647A (en) Sound absorbing body
JP2013504461A5 (en)
US5820975A (en) Sound absorbing material and method of production therefor
JPS583854A (en) Light molding sound insulating material for car and its manufacture
JPH05318639A (en) Adiabatic acoustic material
JPH0913260A (en) Soundproof material
JP2696337B2 (en) Soundproof flooring
JPS6335862A (en) Fiber molded body
JPS5831154A (en) Production of heat resistant molded sound-proof material