JPH0913260A - Soundproof material - Google Patents

Soundproof material

Info

Publication number
JPH0913260A
JPH0913260A JP7162705A JP16270595A JPH0913260A JP H0913260 A JPH0913260 A JP H0913260A JP 7162705 A JP7162705 A JP 7162705A JP 16270595 A JP16270595 A JP 16270595A JP H0913260 A JPH0913260 A JP H0913260A
Authority
JP
Japan
Prior art keywords
fiber
density
material according
soundproofing material
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7162705A
Other languages
Japanese (ja)
Inventor
Atsuhide Nakamoto
篤秀 中本
Masami Aoki
正己 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP7162705A priority Critical patent/JPH0913260A/en
Publication of JPH0913260A publication Critical patent/JPH0913260A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a readily formable fibrous soundproof material, good in sound absorbing properties and hardly causing permanent set in fatigue. CONSTITUTION: This soundproof material is obtained by forming staple fibers having >=23μm center of fiber diameter distribution as a material, arranging staple fibers containing at least >=10 pts.wt. low-melting single fibers (core-sheath fibers) as a binder therein, blowing in the resultant mixture together with air into a mold according to a blowing in method, further blowing hot air or steam, compressing and forming the mixture. The formed fiber assembly has 0.01-0.15g/cm<3> final average apparent density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用防音インシュ
レーター等の他、防音壁、吸音材、防音カバーなど各業
界に使用される防音材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soundproof material used in various industries such as soundproof insulators for automobiles, soundproof walls, sound absorbing materials and soundproof covers.

【0002】[0002]

【従来の技術】従来は、例えばPET繊維径が6デニー
ル(平均繊維径25μm)以上で、見かけ密度が0.0
6g/cm3 以下の繊維からなり、カーディング、ニー
ドルパンチによる層状としたものが主流である。一般
に、繊維径が大きい程その成形性は容易であるが、それ
だけ吸音性が劣る。繊維径を小さくすれば吸音性はアッ
プするが、成形性が困難となり、またへたりも大きくな
る。またカーディング或はニードルパンチによることに
より、繊維の配向性が著しく縦横で異なる為に縦横の吸
音性に大きな差が発生する。
2. Description of the Related Art Conventionally, for example, a PET fiber diameter is 6 denier (average fiber diameter 25 μm) or more and an apparent density is 0.0
The mainstream is composed of fibers of 6 g / cm 3 or less and layered by carding or needle punching. Generally, the larger the fiber diameter is, the easier the moldability is, but the less the sound absorbing property is. If the fiber diameter is made smaller, the sound absorbing property is improved, but the moldability becomes difficult and the settling becomes large. Also, due to carding or needle punching, the orientation of the fibers is remarkably different in the vertical and horizontal directions, so that a large difference occurs in the sound absorbing properties in the vertical and horizontal directions.

【0003】[0003]

【発明が解決しようとする課題】上記のように、従来の
繊維体では防音性能が必ずしも満足するものが得られな
い場合が多く、また層状の成形体による配向方向の防音
性能の低下或はへたりを生じてしまうことも多い。本発
明は、このような問題点を向上、解決を図ることを目的
として鋭意検討を行った結果、これらの問題点をクリヤ
ーするに至ったものである。
As described above, it is often the case that the conventional fiber bodies do not always have satisfactory soundproofing performance, and the soundproofing performance in the orientation direction is reduced or reduced due to the layered molding. It often happens that the The present invention has made clear these problems as a result of intensive studies aimed at improving and solving such problems.

【0004】[0004]

【課題を解決するための手段】本発明は、先ず請求項1
に記載のように、繊維径分布の中心が23μm以下、よ
り好ましくは20μm以下の短繊維を素材とし、これを
平均見かけ密度0.01〜0.15g/cm3 の繊維集
合体に成形したことを特徴とする防音材であって、請求
項2に記載の通り、前記繊維集合体が、前記短繊維素材
中に、表面が低融点の短繊維結合材を10重量%以上混
合したものを素材として用いたことを特徴とする防音材
である。
According to the present invention, the first aspect of the present invention is as follows.
As described in (1), a short fiber having a center of fiber diameter distribution of 23 μm or less, more preferably 20 μm or less is used as a raw material, and this is molded into a fiber aggregate having an average apparent density of 0.01 to 0.15 g / cm 3. A soundproofing material, characterized in that, as described in claim 2, the fiber assembly is a material in which 10 wt% or more of a short-fiber binder having a low melting surface is mixed in the short-fiber material. It is a soundproof material characterized by being used as.

【0005】そして、請求項3に記載の如く、前記繊維
集合体が、上記短繊維素材を空気と共にモールド内に吹
き込む充填法により、適宜の量の短繊維をモールド内に
充填し、必要に応じて圧縮成形し、更にモールド内へ熱
風又は蒸気を吹き込むことにより成形・固化されて、最
終的に見かけ密度を0.01〜0.15g/cm3 の繊
維集合体としたことを特徴とする防音材であり、更に請
求項4に記載のように、前記繊維集合体を空気と共にモ
ールド内に吹き込む充填法によって成形され、見かけ密
度として0.01g/cm3 以上に充填された短繊維
を、更に15倍以下に圧縮・成形することにより得られ
る防音材である。
Then, as described in claim 3, the fiber assembly is filled with an appropriate amount of short fibers into the mold by a filling method in which the short fiber material is blown into the mold together with air. Compression molding, and then blown into the mold with hot air or steam to be solidified and solidified to finally form a fiber aggregate having an apparent density of 0.01 to 0.15 g / cm 3 A short fiber, which is a material and is formed by a filling method in which the fiber assembly is blown into a mold together with air as described in claim 4 and is filled to an apparent density of 0.01 g / cm 3 or more, It is a soundproof material obtained by compressing and molding 15 times or less.

【0006】更に、請求項4記載のように、前記繊維集
合体が、上記短繊維素材を見かけ密度0.01g/cm
3 以上0.15g/cm3 以下の比較的軽密度、例えば
0.01〜0.03程度の繊維集合体の平面板に予備成
形し、更に該予備成形品を、その見かけ密度が0.01
〜0.15g/cm3 になるよう圧縮成形し、熱風又は
蒸気により固化した繊維集合体であることを特徴とする
防音材である。
Further, according to claim 4, the fiber assembly has an apparent density of 0.01 g / cm 2 of the short fiber material.
3 to 0.15 g / cm 3 or less of relatively light density, for example, preformed flat plate of 0.01 to 0.03 approximately fiber aggregate, a further said preform, the apparent density 0.01
A soundproof material, characterized in that it is a fiber assembly that is compression molded to 0.15 g / cm 3 and solidified by hot air or steam.

【0007】そして、請求項5記載の如く、上記繊維集
合体が圧縮方向に垂直な方向の配向状態がランダムであ
ることを特徴とした防音材である。また、請求項6の如
く、前記繊維集合体の成形にあたり、熱風または蒸気を
圧縮方向と同一方向に流すことによって得られる防音材
である。また、該防音材は、更に請求項7に記載の如
く、少なくとも低密度層と高密度層の2層以上より構成
され低密度層が0.01〜0.06g/cm3 、高密度
層が0.06〜0.15g/cm3 からなる防音材であ
り、さらには、請求項8に記載のように、密度が連続的
変化することを特徴とする防音材である。
According to a fifth aspect of the present invention, there is provided a soundproof material characterized in that the fiber assembly has a random orientation state in a direction perpendicular to the compression direction. A soundproof material obtained by flowing hot air or steam in the same direction as the compression direction when molding the fiber assembly. Further, the soundproofing material further comprises at least two layers of a low-density layer and a high-density layer as described in claim 7, wherein the low-density layer is 0.01 to 0.06 g / cm 3 , and the high-density layer is It is a soundproof material composed of 0.06 to 0.15 g / cm 3 , and further, as described in claim 8, the soundproof material is characterized in that the density continuously changes.

【0008】すなわち、本発明の骨子は、前記の如く繊
維径が23μm以下、好ましくは20μm以下、(例え
ばポリエステル短繊維の場合5デニール以下、好ましく
は3デニール以下)で、しかも見かけ密度が0.06g
/cm3 以上とすることによって、その防音性能が著し
く向上することを見い出した。。更に、本発明は、いわ
ゆる吹き込み成形を採用することにより、配向方向を容
易に縦横方向とも均一化出来、縦横の吸音性の差を解消
コントロールできるため、従来に比し吸音性能をトータ
ルとして向上させることが出来ると共に、へたりの向上
に対しても効果を得ることが判明した。
That is, the skeleton of the present invention has a fiber diameter of 23 μm or less, preferably 20 μm or less (for example, in the case of polyester short fibers, 5 denier or less, preferably 3 denier or less) and an apparent density of 0. 06 g
It has been found that the soundproofing performance is remarkably improved by setting it to be / cm 3 or more. . Further, in the present invention, by adopting so-called blow molding, the orientation direction can be easily made uniform in both the vertical and horizontal directions, and the difference in vertical and horizontal sound absorbing properties can be eliminated and controlled, so that the sound absorbing performance is improved as a whole compared to the conventional one. It turned out that it is possible to obtain the effect as well as to improve the fatigue.

【0009】本発明に用いられる短繊維材としては、ポ
リエステル、ポリプロピレン、ポリスチレン、ナイロ
ン、アクリル、ビニロン、羊毛、麻、絹、綿等の合成繊
維或いは天然繊維が好ましく用いられる。
As the short fiber material used in the present invention, synthetic fibers such as polyester, polypropylene, polystyrene, nylon, acrylic, vinylon, wool, hemp, silk and cotton or natural fibers are preferably used.

【0010】さらに、先に請求項2に記載した、本発明
に使用する上記繊維径23μm以下の維集合体を成形固
化させるために使用される芯鞘構造の低融点複合短繊維
の結合材は、全短繊維の10重量%以上が好ましい。1
0重量%未満では結合材としての働きが不十分となり、
成形性も劣る。
Furthermore, the binder of the low melting point composite short fiber having a core-sheath structure used for molding and solidifying the fiber aggregate having a fiber diameter of 23 μm or less used in the present invention described in claim 2 is The total short fiber content is preferably 10% by weight or more. 1
If it is less than 0% by weight, the function as a binder becomes insufficient,
Moldability is also poor.

【0011】[0011]

【実施例】以下、実施例により本発明の具体的な説明を
示すが、勿論本発明はこれらの実施例に限定されるもの
ではない。本実施例を行った装置は、図1にその概略図
として示した。なお、本実施例はポリエステル繊維を用
いた場合について示す。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. The apparatus used in this example is shown in the schematic diagram of FIG. This example shows the case where polyester fiber is used.

【0012】[実施例1]平均繊維径が20μmで、長
さが51mmのポリエステル短繊維に、芯鞘構造の低融
点ポリエステル短繊維を20重量%混合し、これを15
00×800mmの通気性の孔(φ1.5mm、ピッチ
7mm)を有する平板形状をしたモールド内に、空気と
共に充填した後、今度は圧縮方向(上下に設けた通気孔
を通じて)と同方向から約200℃の熱風を吹き込ん
で、見かけ密度0.07g/cm3 、厚さ20mmの平
面状に熱風成形された防音材を得た。
[Example 1] 20% by weight of a low melting point polyester short fiber having a core-sheath structure was mixed with a polyester short fiber having an average fiber diameter of 20 μm and a length of 51 mm,
After filling it with air into a flat plate-shaped mold with 00 x 800 mm air-permeable holes (φ1.5 mm, pitch 7 mm), this time, from the same direction as the compression direction (through the air holes provided above and below) A hot blast of 200 ° C. was blown in to obtain a soundproof material formed by hot blasting into a flat surface having an apparent density of 0.07 g / cm 3 and a thickness of 20 mm.

【0013】[実施例2]実施例1と同様の材料をカー
ド機等で積層状態にして、見かけ密度0.01から0.
03g/cm3 の平板状の予備成形品を作製し、これを
モールド内に敷設し熱風を送りながら圧縮成形して見か
け密度0.07g/cm3 の防音材を得た。
[Embodiment 2] A material similar to that of Embodiment 1 is laminated in a card machine or the like, and an apparent density of 0.01 to 0.
A flat plate-shaped preform having a weight of 03 g / cm 3 was prepared, and the soundproof material having an apparent density of 0.07 g / cm 3 was obtained by laying this in a mold and performing compression molding while sending hot air.

【0014】[比較例1]実施例1に於て、平均繊維径
が25μm(6デニール)の短繊維に替えた以外は、全
く実施例1と同様にして、見かけ密度が0.07g/c
3 の防音材を得た。
COMPARATIVE EXAMPLE 1 An apparent density of 0.07 g / c was obtained in the same manner as in Example 1 except that the short fibers having an average fiber diameter of 25 μm (6 denier) were used.
A soundproofing material of m 3 was obtained.

【0015】[比較例2]実施例2に於て、平均繊維径
が25μmの短繊維に替えた以外は、全く実施例2と同
様にして防音材を得た。見かけ密度は0.07g/cm
3 であった。
[Comparative Example 2] A soundproof material was obtained in the same manner as in Example 2, except that the short fibers having an average fiber diameter of 25 µm were used in Example 2. Apparent density is 0.07g / cm
Was 3 .

【0016】上記各実施例及び比較例の組成・結果を表
1に示す。
Table 1 shows the compositions and results of each of the above Examples and Comparative Examples.

【0017】[0017]

【表1】 [Table 1]

【0018】更に上記実施例及び比較例の性能評価につ
いては、吸音率、バネ評価、固体音評価を行い、それぞ
れの結果及び比較を、図6〜9に示す。なお、各評価方
法はそれぞれ次の通りの方法にて実施した。 (1)吸音率 図2、3に示すような、2マイクロホン法にて垂直入射
吸音率を測定。ただし、吸音材の背後の空気層はゼロに
して測定した。サンプルサイズ:直径90mm、厚さ:
20mm. (2)バネ評価 図4のように、加振器に固定した治具の上にサンプルを
のせて、ベース治具と表皮上に加速度ピックアップを取
りつけて振動を測定しその伝達関数で評価した。 (3)固体音評価(電磁加振法) 図5に示す通り、電磁石によりベースパネル(鉄板0.
8mm)を加振することによって、固体音を発生させ、
その上に各サンプルを置き、更にPVCと不織布系カー
ペットとを張り合せた表皮を積層し、その上方のマイク
ロフォンにて発生音圧レベルを測定し、その差より固体
音に対する遮音性能を評価する。
Further, for the performance evaluation of the above-mentioned examples and comparative examples, sound absorption coefficient, spring evaluation and solid sound evaluation were carried out, and respective results and comparisons are shown in FIGS. The evaluation methods were carried out as follows. (1) Sound absorption coefficient Normal incidence sound absorption coefficient was measured by the two-microphone method as shown in FIGS. However, the air layer behind the sound absorbing material was measured as zero. Sample size: diameter 90mm, thickness:
20 mm. (2) Spring Evaluation As shown in FIG. 4, a sample was placed on a jig fixed to a vibration exciter, and an accelerometer was mounted on the base jig and the epidermis to measure vibration and evaluate the transfer function. (3) Solid sound evaluation (electromagnetic excitation method) As shown in FIG. 5, a base panel (iron plate 0.
8mm) to generate a solid sound,
Each sample is placed on top of this, and a skin made by laminating PVC and non-woven carpet together is laminated, and the sound pressure level generated by the microphone above is measured, and the sound insulation performance against solid sound is evaluated from the difference.

【0019】[0019]

【発明の効果】これまでの繊維系防音材は、前述の如
く、従来は例えば、PET繊維径が6デニール(平均繊
維径25μm)以上で、見かけ密度が0.06g/cm
3 以下の繊維からなり、カーディング、ニードルパンチ
による層状としたものが主流である。一般に、繊維径が
大きい程その成形性は容易であるが、それだけ吸音性が
劣る。繊維径を小さくすれば吸音性はアップするが、成
形性が困難となり、またへたりも大きくなる。またカー
ディング或はニードルパンチによることにより、繊維の
配向性が著しく縦横で異なる為に縦横の吸音性に大きな
差が発生する。その結果、防音材端部或は孔がある場合
には孔回りの防音性能が低下し、音漏れなどの問題があ
った。
As described above, the conventional fiber-type soundproofing material has a PET fiber diameter of 6 denier (average fiber diameter 25 μm) or more and an apparent density of 0.06 g / cm 2.
The mainstream is composed of fibers of 3 or less and layered by carding or needle punching. Generally, the larger the fiber diameter is, the easier the moldability is, but the less the sound absorbing property is. If the fiber diameter is made smaller, the sound absorbing property is improved, but the moldability becomes difficult and the settling becomes large. Also, due to carding or needle punching, the orientation of the fibers is remarkably different in the vertical and horizontal directions, so that a large difference occurs in the sound absorbing properties in the vertical and horizontal directions. As a result, when there is an end of the soundproof material or a hole, the soundproof performance around the hole is deteriorated and there is a problem such as sound leakage.

【0020】本発明は、上記のように、従来よりも短繊
維径がより小さいものを、吹き込み成形したことによ
り、成形性、ヘタリ性も良好であり、特に本発明の成形
品である防音材が、縦横の配向性においてその差が従来
のものに比べて、非常に少ない防音材を得ることができ
る。
As described above, the present invention is excellent in moldability and settling property by blow molding a fiber having a smaller short fiber diameter than the conventional one, and in particular, a soundproof material which is a molded product of the present invention. However, it is possible to obtain a soundproofing material in which the difference in the orientation in the vertical and horizontal directions is very small compared to the conventional one.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で使用された吹き込み・圧縮成形型の概
略を示す図である。
FIG. 1 is a diagram showing an outline of a blowing / compression molding die used in the present invention.

【図2】吸音率を測定する測定器のシステム図である。FIG. 2 is a system diagram of a measuring device that measures a sound absorption coefficient.

【図3】図2における音響管の詳細図である。FIG. 3 is a detailed view of the acoustic tube in FIG.

【図4】バネ特性を評価する為の装置の該略図である。FIG. 4 is a schematic representation of an apparatus for evaluating spring properties.

【図5】固体音に対する遮音性能を評価する為の電磁加
振装置の概略の断面構成図である。
FIG. 5 is a schematic sectional configuration diagram of an electromagnetic vibration device for evaluating sound insulation performance with respect to solid sound.

【図6】実施例2と比較例2において、配向に対して垂
直方向或は圧縮方向(通常考えられる音の入射方向)の
吸音率の測定結果を示すグラフである。
FIG. 6 is a graph showing the measurement results of the sound absorption coefficient in the direction perpendicular to the orientation or in the compression direction (normally considered incident direction of sound) in Example 2 and Comparative Example 2.

【図7】実施例1と実施例2を用いて配向に対して平行
方向或は圧縮に対して垂直方向の吸音率を測定・比較し
たグラフである。
FIG. 7 is a graph in which the sound absorption coefficient in the direction parallel to the orientation or in the direction perpendicular to the compression is measured and compared using Example 1 and Example 2.

【図8】実施例1と比較例1についてのバネ特性を測定
・比較したグラフを示す。
FIG. 8 is a graph showing the measured and compared spring characteristics of Example 1 and Comparative Example 1.

【図9】実施例1と比較例1についての固体音特性を測
定・比較したグラフを示す。
FIG. 9 is a graph showing measured and compared solid sound characteristics of Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

A 繊維吹き込み口 B 成形面(通気孔あり) C 熱風・冷風入口 D 熱風・冷風出口 A Fiber injection port B Molded surface (with ventilation holes) C Hot / cold air inlet D Hot / cold air outlet

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 繊維径分布の中心が23μm以下の細い
短繊維を素材とし、これを平均見かけ密度0.01〜
0.15g/cm3 の繊維集合体に成形したことを特徴
とする防音材。
1. A fine short fiber having a center of fiber diameter distribution of 23 μm or less is used as a raw material, and an average apparent density of 0.01 to
A soundproof material characterized by being molded into a fiber aggregate of 0.15 g / cm 3 .
【請求項2】 前記繊維集合体が、前記短繊維素材中
に、表面が低融点の短繊維結合材を10重量%以上混合
したものを素材として用いたことを特徴とする請求項1
項に記載の防音材。
2. The fiber assembly is prepared by using, as a material, a mixture of the short fiber material and a short fiber binder having a low melting point on the surface in an amount of 10% by weight or more.
Soundproofing material according to item.
【請求項3】 前記繊維集合体が、上記短繊維素材を空
気と共にモールド内に吹き込む充填法により、適宜の量
の短繊維をモールド内に充填し、必要に応じて圧縮成形
し、更にモールド内へ熱風又は蒸気を吹き込むことによ
り成形・固化されて、最終的に見かけ密度を0.01〜
0.15g/cm3 の繊維集合体としたことを特徴とす
る請求項1又は2記載の防音材。
3. The fiber aggregate is filled with an appropriate amount of short fibers into the mold by a filling method in which the short fiber material is blown into the mold together with air, and compression-molded if necessary, and further in the mold. It is molded and solidified by blowing hot air or steam into it, and finally it has an apparent density of 0.01-
The soundproofing material according to claim 1 or 2, wherein the soundproofing material is a fiber aggregate of 0.15 g / cm 3 .
【請求項4】 前記繊維集合体が、上記短繊維素材を見
かけ密度0.01g/cm3 以上〜0.06g/cm3
以下の比較的軽量の繊維集合体の平面板に予備成形し、
更に該予備成形品を、その見かけ密度が0.01〜0.
15g/cm3 になるよう圧縮成形し、固化した繊維集
合体であることを特徴とする請求項1乃至3のいずれか
に記載の防音材。
Wherein said fiber aggregate is, density 0.01 g / cm 3 or more ~0.06g / cm 3 apparent the short fiber material
Pre-formed into the following relatively lightweight fiber aggregate flat plate,
Further, the preformed product has an apparent density of 0.01 to 0.
The soundproofing material according to any one of claims 1 to 3, which is a fiber assembly that is compression molded and solidified to have a weight of 15 g / cm 3 .
【請求項5】 前記繊維集合体が、圧縮方向に垂直な方
向の配向状態がランダムであることを特徴とする請求項
1乃至4のいずれか1項に記載の防音材。
5. The soundproof material according to claim 1, wherein the fiber assembly has a random orientation state in a direction perpendicular to the compression direction.
【請求項6】 前記繊維集合体の成形にあたり、熱風ま
たは蒸気を圧縮方向と同一方向に流すことによって得ら
れることを特徴とする請求項1乃至5項のいずれかに記
載の防音材。
6. The soundproofing material according to claim 1, which is obtained by flowing hot air or steam in the same direction as the compression direction when forming the fiber assembly.
【請求項7】 前記集合体が、低密度層と高密度層の2
層以上より構成され低密度層が0.01〜0.06g/
cm3 、高密度層が0.06〜0.15g/cm3 から
なる繊維集合体であることを特徴とする1乃至6項のい
ずれかに記載の防音材。
7. The assembly comprises a low density layer and a high density layer.
0.01 to 0.06 g / low-density layer composed of more than one layer
The soundproofing material according to any one of 1 to 6, wherein the soundproofing material is a fiber assembly having a cm 3 density and a high-density layer of 0.06 to 0.15 g / cm 3 .
【請求項8】 請求項7において、前記集合体の密度が
連続的変化することを特徴とする防音材。
8. The soundproofing material according to claim 7, wherein the density of the aggregate changes continuously.
JP7162705A 1995-06-28 1995-06-28 Soundproof material Pending JPH0913260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7162705A JPH0913260A (en) 1995-06-28 1995-06-28 Soundproof material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7162705A JPH0913260A (en) 1995-06-28 1995-06-28 Soundproof material

Publications (1)

Publication Number Publication Date
JPH0913260A true JPH0913260A (en) 1997-01-14

Family

ID=15759737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7162705A Pending JPH0913260A (en) 1995-06-28 1995-06-28 Soundproof material

Country Status (1)

Country Link
JP (1) JPH0913260A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302981A (en) * 1998-04-17 1999-11-02 Toray Ind Inc Fiber molded article for absorbing sound and sound-proof wall
JP2001222286A (en) * 1999-12-03 2001-08-17 Hour Seishi Kk Sound absorbing board
JP2004239936A (en) * 2003-02-03 2004-08-26 Teijin Fibers Ltd Multilayer sound-absorbing structure
JP2005064886A (en) * 2003-08-13 2005-03-10 Sekiguchi Kikai Hanbai Kk Acoustic characteristic regulator, and speaker system
JP2005215021A (en) * 2004-01-27 2005-08-11 Teijin Fibers Ltd Sound-absorbing/insulating multilayer fiber structure and sound-absorbing/insulating product
CN102794853A (en) * 2012-08-23 2012-11-28 无锡吉兴汽车部件有限公司 Method for manufacturing thermoplastic reconstituted-cotton sound-insulation pad by high-temperature steam
KR20140047209A (en) * 2012-10-08 2014-04-22 도레이케미칼 주식회사 Fiber aggregate having excellent sound absorption performance and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302981A (en) * 1998-04-17 1999-11-02 Toray Ind Inc Fiber molded article for absorbing sound and sound-proof wall
JP2001222286A (en) * 1999-12-03 2001-08-17 Hour Seishi Kk Sound absorbing board
JP2004239936A (en) * 2003-02-03 2004-08-26 Teijin Fibers Ltd Multilayer sound-absorbing structure
JP2005064886A (en) * 2003-08-13 2005-03-10 Sekiguchi Kikai Hanbai Kk Acoustic characteristic regulator, and speaker system
JP2005215021A (en) * 2004-01-27 2005-08-11 Teijin Fibers Ltd Sound-absorbing/insulating multilayer fiber structure and sound-absorbing/insulating product
CN102794853A (en) * 2012-08-23 2012-11-28 无锡吉兴汽车部件有限公司 Method for manufacturing thermoplastic reconstituted-cotton sound-insulation pad by high-temperature steam
KR20140047209A (en) * 2012-10-08 2014-04-22 도레이케미칼 주식회사 Fiber aggregate having excellent sound absorption performance and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4851274A (en) Moldable fibrous composite and methods
Yilmaz et al. Effects of porosity, fiber size, and layering sequence on sound absorption performance of needle‐punched nonwovens
EP1968789B1 (en) Porous membrane
US7928025B2 (en) Nonwoven multilayered fibrous batts and multi-density molded articles made with same and processes of making thereof
Narang Material parameter selection in polyester fibre insulation for sound transmission and absorption
JP2022063271A (en) Fibrous automotive cladding
KR20180106976A (en) Sound-absorbing textile composite
JPH11152670A (en) Carpet material and its production
Islam et al. Investigation of the acoustic properties of needle punched nonwoven produced of blend with sustainable fibers
JPH0913260A (en) Soundproof material
JP6655376B2 (en) Dash isolation pad of multilayer structure with excellent moldability and sound absorption performance
EP3088581B1 (en) Felt, soundproofing material and method for producing soundproofing material
Lee et al. Characteristics of PP/PET bicomponent melt blown nonwovens as sound absorbing material
TW201915044A (en) Short-cut fiber for compression molded product, compression molded product using same, and manufacturing method therefor
JPH08132990A (en) Silencer pad for automobile floor
JP2934480B2 (en) Damping and soundproofing material
JP3264761B2 (en) Polypropylene silencer pad
Paknejad et al. Effective parameters, modeling, and materials in sound absorption: a review
Yilmaz et al. Biocomposite Structures as Sound Absorber Materials
Wyerman New frontiers for fiber-based noise control solutions
KR101958482B1 (en) Fiber aggregate having excellent sound absorption performance and manufacturing method thereof
WO2022009143A1 (en) Sound absorbing material and method of producing sound absorbing material
Khan The role and applications of fabrics and fibers in the absorption of noise
Belakova et al. Non-Wovens as Sound Reducers
KR100910881B1 (en) Manufacture method of automobile internal organs sound-absorbing