JPS60115369A - Build-up welding method - Google Patents

Build-up welding method

Info

Publication number
JPS60115369A
JPS60115369A JP22221383A JP22221383A JPS60115369A JP S60115369 A JPS60115369 A JP S60115369A JP 22221383 A JP22221383 A JP 22221383A JP 22221383 A JP22221383 A JP 22221383A JP S60115369 A JPS60115369 A JP S60115369A
Authority
JP
Japan
Prior art keywords
weld metal
metal
welding
weld
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22221383A
Other languages
Japanese (ja)
Inventor
Koichi Yasuda
功一 安田
Shozaburo Nakano
中野 昭三郎
Takuichi Imanaka
拓一 今中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22221383A priority Critical patent/JPS60115369A/en
Publication of JPS60115369A publication Critical patent/JPS60115369A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To improve remarkably resistace to detaching and cracking by adjusting the compsn. of the build-up weld metal of root pass in association with a base metal. CONSTITUTION:The following conditions are satisfied with respect to the contents, by weight per cent, of the respective components elements occupying in the compsn. of a base metal and the weld metal of root pass: The weld metal contg. C, Si, Mn, Ni, Cr, Mo, Nb and N satisfying the relation (NieqD-NieqB)/ (CreqD-CreqB)<=(9.84-NieqB)/(16.66-CreqB) when the Cr equiv. of the base metal and weld metal expressed by (%Cr)+(Mo)+1.5X(%Si)+0.5X(%Nb) are respectively designated as CreqB, CreqD and the Ni equiv. of the base metal and weld metal expressed by (%Ni)+30X[(%C)+(%N)]+0.5X(%Mn) are designated respectively as NieqB, NieqD.

Description

【発明の詳細な説明】 本発明は肉盛溶接方法に係り、特に高温高圧水素を取扱
う反応容器などのステンレス鋼内面肉盛溶接部において
、耐使用中剥離性の優れた溶接金属を得ることができる
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a build-up welding method, and particularly to a build-up welding part of a stainless steel inner surface such as a reaction vessel that handles high-temperature, high-pressure hydrogen, it is possible to obtain a weld metal with excellent peeling resistance during use. Regarding how it can be done.

石油精製装置或いは石炭液化装置などに用いら1.。Used in oil refining equipment or coal liquefaction equipment, etc. 1. .

れる反応容器の内面にはオーステナイト系ステンレス鋼
が肉盛溶接される場合が多い。
In many cases, austenitic stainless steel is overlay welded onto the inner surface of the reaction vessel.

これらの容器は高温高圧水素環境下で操業されるため、
肉盛溶接金属及び容器母材部は操業中には水素を吸蔵し
ており、更に操業停止時の冷却過。
These vessels operate under high temperature and high pressure hydrogen environments, so
The overlay weld metal and the base material of the container absorb hydrogen during operation, and they also absorb hydrogen when the operation is stopped.

程においては、多量の水素が母材と溶接金属との1境界
部に集積し、境界部近傍の溶接金属側のオーステナイト
粒界において剥離割れが生じる場合があり、大きな問題
となっている。
In this process, a large amount of hydrogen accumulates at one boundary between the base metal and the weld metal, and exfoliation cracks may occur at the austenite grain boundaries on the weld metal side near the boundary, which is a major problem.

このような剥離割れ対策として、特開昭54−5107
458号、特開昭54−71746号、特開昭55−1
4171号各公報では、母材上に共金に近い組成の溶接
金属或いはフェライト系ステンレス鋼溶接金属で下盛り
した後に所足成分のオーステナイト系ステンレス鋼を肉
盛溶接する方法が提案1゜されているが、これらの方法
では下盛り一層分を余分に溶接する必要があり、溶接能
率の低下を招く欠点がある。また特開昭55−1175
11号公報では、マルテンサイト相な含有するオーステ
ナイト系ステンレス鋼を肉盛溶接する方法が提案さ、5
れているが、耐剥離割れ性は向上してもマルテンサイト
相の水素脆化が問題となるなどの欠点が伴う。更に剥離
割れ対策として、溶接方法或いは溶接条件の選択による
方法が提案されているが、これらの方法によっても剥離
割れは完全には防ぎ得、。
As a countermeasure against such peeling cracks, Japanese Patent Application Laid-Open No. 54-5107
No. 458, JP-A-54-71746, JP-A-55-1
No. 4171 each proposes a method in which a weld metal with a composition close to that of the same metal or a ferritic stainless steel weld metal is underlaid on the base metal, and then austenitic stainless steel with the required components is overlaid by overlay welding. However, these methods require welding an extra layer of underlay, which has the disadvantage of reducing welding efficiency. Also, JP-A-55-1175
Publication No. 11 proposes a method of overlay welding austenitic stainless steel containing a martensitic phase,
However, even though the resistance to exfoliation cracking is improved, there are drawbacks such as hydrogen embrittlement of the martensitic phase. Further, as a countermeasure against peeling cracks, a method of selecting a welding method or welding conditions has been proposed, but peeling cracks cannot be completely prevented even with these methods.

ないのが実情である。The reality is that there is not.

そこで、本発明者等は、このような問題を解消すべく鋭
意研究を重ねた結果、以下に示す諸実験に基づく知見を
得るに至り、ここに剥離割れに関与する初層肉盛溶接金
属の組成を母材との関連の、。
The inventors of the present invention have conducted extensive research to solve these problems, and as a result have obtained the knowledge based on the experiments shown below. Composition in relation to the base material.

下に調整することによって耐剥離割れ性を顕著に向上で
きる肉盛溶接方法を見出した。
We have discovered a build-up welding method that can significantly improve peel cracking resistance by adjusting it downward.

高温高圧水素曝露後に発生する剥離割れは溶接金属と母
材との境界近傍の溶接金属側に、境界に沿ってはy平行
に生成したオーステナイト粗粒界1.。
Peeling cracks that occur after exposure to high-temperature, high-pressure hydrogen occur on the weld metal side near the boundary between the weld metal and the base metal, and along the boundary, austenite coarse grain boundaries are formed in y-parallel. .

で発生する。また、剥離割れ感受性は上記オーステナイ
ト粗粒の発達の程度に依存し、オーステナイト粗粒を消
滅させれば耐剥離割れ性は著しく向上する。したがって
、上記オーステナイト粗粒を消滅させる方法について検
討した。 □オーステナイト粗粒は母材の旧オーステナ
イト粒からエピタキシャルに溶接金属側に成長した粒で
あり、オーステナイト粗粒が発達する溶接部では母材か
らマルテンサイ) (M)→オーステナイト(A)→A
+デルタ・フェライト(F)の如く組織が(111 遷移しており、オーステナイト粗粒はMからAの1みの
領域にかけて発達していて、デルタ・フェライト相の存
在によってその粒界が留められている。
Occurs in Furthermore, the susceptibility to peel cracking depends on the degree of development of the coarse austenite grains, and if the coarse austenite grains are eliminated, the peel cracking resistance is significantly improved. Therefore, a method for eliminating the austenite coarse particles was investigated. □ Austenite coarse grains are grains that have grown epitaxially from old austenite grains in the base metal toward the weld metal, and in the weld where austenite coarse grains develop, martensite (M) → austenite (A) → A
+ The structure has a (111 transition) like delta ferrite (F), and coarse austenite grains are developed from M to A, and the grain boundaries are held in place by the presence of the delta ferrite phase. There is.

しかるに、デルタ・フェライトの析出域を従来よりも更
に母材側に移行させ、遷移相の組織変化を5母材→M+
F−+A十Fの如くにすると、オーステナイト粗粒を消
滅させることが可能である。即ち、マルテンサイトとオ
ーステナイト相との境界部に粒界の成長を留めるに十分
なデルタ・フェライトが存在するならば耐剥離性は向上
する。しかし、I。
However, the precipitation region of delta ferrite was moved further to the base metal side than before, and the structure change of the transition phase was changed from 5 base metal to M+
When F-+A10F is used, it is possible to eliminate coarse austenite grains. That is, if sufficient delta ferrite exists at the boundary between the martensite and austenite phases to prevent grain boundary growth, the peeling resistance will be improved. However, I.

マルテンサイトとオーステナイト相との境界部における
デルタ・フェライト(FA−M)量を測定することは実
質的に不可能である。
It is virtually impossible to measure the amount of delta ferrite (FA-M) at the interface between martensite and austenite phases.

しかるに、本発明では、溶接金属中のデルタ・フェライ
ト量を、溶接金属の組成から推定するデ150ング線図
と本発明者等が実験的にめたマルテンサイト析出線とを
組合わせてFA−や量を推定した。
However, in the present invention, the amount of delta ferrite in the weld metal is calculated by combining the de150ng diagram estimated from the composition of the weld metal and the martensite precipitation line experimentally determined by the inventors. and the amount was estimated.

第1図はプロング線図と実験的にめたマルテンサイト析
出線を示したものであり、同図中、母、。
Figure 1 shows a prong diagram and an experimentally determined martensite precipitation line.

(4) 材から溶接金属への組成変化はプロング線図上で)はy
直線的に図中破線の如く遷移する。しかるにFA−M量
は上記破線とマルテンサイ士析出線との交点で示される
組成から推定されるデルタ・フェライト量となる。
(4) The composition change from material to weld metal is shown on the prong diagram) as y
The transition occurs linearly as shown by the broken line in the figure. However, the FA-M amount is the delta ferrite amount estimated from the composition indicated by the intersection of the broken line and the Martensitic precipitation line.

このマルテンサイト析出線は、(%Cr ) +(%M
O) + 、1.5X(%Si ) +〇、5X(%N
b)で表わされるクロム当量をCreqとし、(%N1
)+aoxB%C)+(%N))+〇、5X(%Mn 
)で表わされるニッケル当量をNi eqとすると、次
式、。
This martensite precipitation line is (%Cr) + (%M
O) +, 1.5X (%Si) +〇, 5X (%N
The chromium equivalent represented by b) is Creq, and (%N1
)+aoxB%C)+(%N))+○,5X(%Mn
) is the nickel equivalent expressed by Ni eq, then the following formula.

の如く数式化される。It is expressed mathematically as follows.

N1eq −−b (Creq−28,8)但し、b 
−19,8/28.8 また、母材かも溶接金属にかけての組成の遷移線1、は N1eqD−NieqB −a (CreqD−Cre
qB )NieqD :溶接金属のニッケル当量 、。
N1eq --b (Creq-28,8) However, b
-19,8/28.8 Also, the transition line 1 of the composition from the base metal to the weld metal is N1eqD-NieqB -a (CreqD-Cre
qB)NieqD: Nickel equivalent of weld metal.

N1eqB :母 材のニッケル当量 CreqD :溶接金属のクロム当量 CreqB :母材 〃 となり、これらの交点組成は次式で示される。N1eqB: Nickel equivalent of base material CreqD: Chromium equivalent of weld metal CreqB: Base material The composition of these intersection points is expressed by the following equation.

a十す しかるに、FA−7は上記交点組成をプロング線図によ
って示されるデルタ・フェライト量を数式化した次式 デルタフェライト量= 8.2Creq −2,5Ni
eq −24,7に代入することによってまる。
However, in FA-7, the above intersection point composition is expressed by the following formula, which is the delta ferrite amount shown by the prong diagram: delta ferrite amount = 8.2Creq -2,5Ni
It is rounded by substituting eq -24,7.

次に耐剥離割れ性を向上させるための限界FA、−M量
について検討を行った。
Next, the limit amount of FA and -M for improving peel cracking resistance was investigated.

肉盛溶接に際しては、表−1に示す5A887Gr。For overlay welding, use 5A887Gr shown in Table-1.

22鋼板を使用し、これにニッケル当量及びクロ、。22 steel plate is used, and nickel equivalent and chromium are added to it.

(7) 融型フラックスとを組合わせて水平エレクトロスラグ肉
盛溶接を行った。溶接条件は2500A。
(7) Horizontal electroslag overlay welding was performed in combination with fusion flux. Welding conditions were 2500A.

28V、14cm7m1nであり、溶接後に690℃、
28時間の熱処理を施し、母材と溶接金属の境界5近傍
の組織を光学顕微鏡にて観察し、粗粒率(母材と溶接金
属の境界部の長さに対するこれと平行に走る溶接金属側
のオーステナイト粒界の長さの割合)を測定した。
28V, 14cm7m1n, 690℃ after welding,
After 28 hours of heat treatment, the structure near the boundary 5 between the base metal and weld metal was observed using an optical microscope. The length ratio of austenite grain boundaries) was measured.

また、高温高圧水素による剥離割れ抵抗性を調査するた
めに、厚さ45 mm (ステンレスクラッド厚5 m
m ) 、幅55 mm %長さ100 inの試験片
を作成し、オートクレーブによって455℃、150に
%−の高温高圧水素環境下に80時間曝露23゜(8) した後空冷した。冷却後1週間経過した時点で試1験片
の母材側から超音波探傷試験を実施し、剥離割れの有無
或いは程度を調べた。
In addition, in order to investigate the resistance to exfoliation cracking caused by high temperature and high pressure hydrogen,
A test piece with a width of 55 mm and a length of 100 inches was prepared and exposed in an autoclave at 455° C. under a high temperature and high pressure hydrogen environment of 150% for 80 hours at 23° (8) and then air cooled. One week after cooling, an ultrasonic flaw detection test was carried out from the base metal side of the test piece 1 to examine the presence or absence of peeling cracks and the extent of them.

以上の実験の結果、FA−M量と粗粒率及び剥離割れと
の関係を第2図に示す・。同図より、粗粒率5が0〜5
%のものには全く剥離割れが発生しておらず、またFA
−7量が4%以上であれば粗粒率は殆ど零に抑えること
が可能であることを知見した。
As a result of the above experiments, the relationship between the amount of FA-M, coarse grain ratio, and peeling cracks is shown in Figure 2. From the same figure, the coarse grain ratio 5 is 0 to 5.
% had no peeling cracks at all, and FA
It has been found that if the -7 amount is 4% or more, the coarse grain ratio can be suppressed to almost zero.

飄−ヮ量が4%以上となる初層溶接金属とは、第1図に
おいて、母材と溶接金属の組成を示す点1゜を結ぶ直線
の勾配が、母材の組成を示す点とデルタ・フェライト量
が4%となるマルテンサイト析出線上の点を結ぶ直線の
勾配より小さくせしめる組成を有する溶接金属と換言で
きる。
The initial layer weld metal with a weight of 4% or more is defined as, in Fig. 1, the slope of the straight line connecting the point 1° indicating the composition of the base metal and the weld metal is the point indicating the composition of the base metal and the delta. - In other words, it can be said to be a weld metal having a composition that makes the slope of the straight line connecting points on the martensite precipitation line where the ferrite content is 4% smaller than the slope.

デルタ・フェライト量が4%となるマルテンサ15イト
析出線上の点は、 N1eq =−19・8/2B、B (Creq 28
.8)4−8J Creq −2,5N1eq −24
,7を満たす点(N1eq % creq )であり、
(N1eqs Creq)= (9,84、16,66
)となる。
The point on the martensitite precipitation line where the amount of delta ferrite is 4% is N1eq = -19・8/2B, B (Creq 28
.. 8) 4-8J Creq -2,5N1eq -24
, 7 (N1eq% creq),
(N1eqs Creq) = (9,84,16,66
).

したがって、FA−M量が4%以上となる溶接金属は、 (NieqD−NieqB)/(CreqD−Creq
B)≦(9,84N1eqB)/(16,66−Cre
qB)なる関係式を満たす量のC,Si、Mn、Ni、
Cr NMo、Nb、Nを含有する溶接金属となる。
Therefore, the weld metal with an FA-M amount of 4% or more is (NieqD-NieqB)/(CreqD-Creq
B)≦(9,84N1eqB)/(16,66-Cre
C, Si, Mn, Ni, in amounts that satisfy the relational expression qB),
The weld metal contains Cr, NMo, Nb, and N.

また、本発明者等は先に特開昭57−66861号に【
低Si、B添加ステンレス鋼からなる初層Ill肉盛溶
接金属が耐剥離割れ性に優れていることを示したので、
次に、前−の竪、量が4%以上の溶接金属と低Si、B
添加溶接金属とFA−ヮ量が4%以上で、かつ、低Si
、B添加の溶接金属との各々について、更に苛酷な条件
、即ち456℃、1゜水素圧a o o kJ−の高温
高圧水素環境に80時間曝露して剥離割れを調査した。
In addition, the present inventors previously published Japanese Patent Application Laid-Open No. 57-66861 [
We have shown that the initial layer Ill overlay weld metal made of low-Si and B-added stainless steel has excellent peel cracking resistance.
Next, in the previous vertical, weld metal with an amount of 4% or more and low Si, B
The amount of added weld metal and FA-W is 4% or more and low Si
, B-added weld metal were exposed to even more severe conditions, ie, a high temperature, high pressure hydrogen environment of 456° C. and 1° hydrogen pressure ao o kJ− for 80 hours to investigate peeling cracks.

その結果を表−2に示す。The results are shown in Table-2.

表−2 これより、FA−や量を4%以上にし、かつ、低81、
B添加の溶接金属は前記の如く苛酷な条件下においても
剥離割れは全く発生せず、更に有効な剥離割れ防止対策
になることがわかった。
Table 2 From this, FA- and amount should be 4% or more, and low 81,
It was found that the B-added weld metal did not cause any peeling cracks even under the severe conditions mentioned above, and was a more effective measure to prevent peeling cracks.

次に、FA−M量が4%以上である溶接金属中の81及
びBの各量の適正範囲について調査した。
Next, the appropriate range of each amount of 81 and B in a weld metal with an FA-M amount of 4% or more was investigated.

その結果、455℃、水素圧a o o ’117.−
なる苛酷な高温高圧水素に対しては、溶接金属中の81
が0.4%を超えると、或いは溶接金属中のBが 、0
0 、0010%未満になると、軽度の剥離割れが発生
 1し、Sl及びBによる耐剥離割れ効果が薄れること
がわかった。また溶接金属中の81が0.1%未満の場
合には、溶接中の脱酸が十分性われず、溶接金属の清浄
度が劣化するとともに、溶接作業性・が悪化する。また
溶接金属中のBが0.0200%を超えると、溶接中に
高温割れが発生して健全な肉盛溶接金属が得られない。
As a result, the temperature was 455°C and the hydrogen pressure was 117. −
81 in the weld metal against the harsh high temperature and high pressure hydrogen
exceeds 0.4%, or B in the weld metal becomes 0.
It was found that when the content is less than 10%, slight peeling cracks occur, and the anti-peeling cracking effect of Sl and B weakens. Furthermore, if the content of 81 in the weld metal is less than 0.1%, deoxidation during welding will not be achieved sufficiently, and the cleanliness of the weld metal will deteriorate, as well as welding workability. Moreover, if B in the weld metal exceeds 0.0200%, hot cracking will occur during welding, making it impossible to obtain a sound overlay weld metal.

このため、本発明では溶接金属中のSi量を0.1〜0
.4%、B量を0.0010〜0.0200%とした。
Therefore, in the present invention, the amount of Si in the weld metal is set to 0.1 to 0.
.. 4%, and the amount of B was 0.0010 to 0.0200%.

更に、デルタ・フェライトの含有葉の適正範囲について
も調査した。オーステナイト系ステンレス鋼肉盛溶接金
属に含有されているデルタ・フェライト相は溶接時の高
温割れを防止するとともにクロム炭化物の粒界析出を軽
減する作用を有して15いるものの、500〜900℃
に長時間加熱されるとσ相に変化し、これの析出にとも
なって溶接金属の性能は著しく害されるとともに、デル
タ・フェライト相及びσ相は水素によって脆化する。し
かるに455℃、水素圧300kg/、L2高温高圧水
素2.。
Furthermore, we also investigated the appropriate range of leaves containing delta ferrite. The delta ferrite phase contained in austenitic stainless steel overlay weld metal has the effect of preventing high-temperature cracking during welding and reducing grain boundary precipitation of chromium carbide15;
When heated for a long time, it changes to the σ phase, and the performance of the weld metal is significantly impaired by the precipitation of this phase, and the delta ferrite phase and the σ phase are embrittled by hydrogen. However, 455℃, hydrogen pressure 300kg/, L2 high temperature high pressure hydrogen 2. .

に80時間曝露した溶接金属から2 mm厚、201m
m幅、507F17W長さの表曲げ試験片を採取し試験
した結果、20%を超えるデルタ・フェライトを含有す
る溶接金属は曲げ延性が劣化することが判明した。この
ため、本発明では20%以下のデル5り・フェライトを
含有するオーステナイト系ステンレス鋼とした。
2 mm thick, 201 m from weld metal exposed for 80 hours to
As a result of taking and testing a surface bending test piece with a width of m and a length of 507F17W, it was found that the bending ductility of weld metal containing more than 20% delta ferrite deteriorates. Therefore, in the present invention, an austenitic stainless steel containing 20% or less of delta-ferrite is used.

(実施例) 次に、本発明によるステンレス鋼の肉盛溶接部の剥離割
れ防止を、実施例にて説明する。表−8Inに示す5A
887 Gr、12 、同Gr、!22、同Gr、21
s同()r、5鋼板上に、比較例として表−4に示す市
販のタイプ309L電極と市販の溶融型フラックスとを
組合わせて、また実施例として表−5に示す電極とB添
加した溶融型フラックスとを組合わ、5せて、初層を水
平エレクトロ・スラグ肉盛溶接した。
(Example) Next, the prevention of peeling cracks in overlay welded parts of stainless steel according to the present invention will be explained using examples. 5A shown in Table-8In
887 Gr, 12, same Gr,! 22, same Gr, 21
s Same () r, 5 On a steel plate, a commercially available type 309L electrode shown in Table 4 was combined with a commercially available molten flux as a comparative example, and B was added to the electrode shown in Table 5 as an example. In combination with a molten type flux, the first layer was horizontally electro-slag overlay welded.

更に、これらの初層肉盛溶接ビード上にタイプ1347
電極を使用して同じく水平エレクトロスラグ肉盛溶接法
にて2層目を肉盛溶接した。使用した電極はいずれも厚
み0.47r1m1幅150mmで、溶接条件は250
0A、28V、14cIVTn1nである。溶。
Furthermore, type 1347 was applied on these initial layer weld beads.
The second layer was overlay welded using the same horizontal electroslag overlay welding method using an electrode. The electrodes used had a thickness of 0.47r1m and a width of 150mm, and the welding conditions were 250mm.
0A, 28V, 14cIVTn1n. Melt.

液抜、690℃、28時間の熱処理を施し、厚さ40 
mm%幅55 m@ s長さ100mmの試験片を採取
し、オートクレーブにて455℃、水素圧800kV、
n2の環境に80時間曝露後、空冷し、冷却後1週間経
過して超音波探傷試験によって剥離割れ、3゜の発生程
度を調べた。また超音波探傷試験の後、初層溶接金属か
ら化学組成分析試料及び表曲げ試験片を採取し、化学組
成及び曲げ延性を調査した。
After draining liquid and heat treating at 690℃ for 28 hours, the thickness is 40mm.
A test piece with a width of 55 m@s and a length of 100 mm was taken in an autoclave at 455°C and a hydrogen pressure of 800 kV.
After being exposed to an environment of n2 for 80 hours, it was air cooled, and one week after cooling, it was examined by ultrasonic flaw detection to determine the degree of peel cracking at 3°. After the ultrasonic flaw detection test, a chemical composition analysis sample and a surface bending test piece were taken from the first layer weld metal, and the chemical composition and bending ductility were investigated.

表−6に上記試験結果を示す。Table 6 shows the above test results.

0 (15) 399− 同表が示すように、本発明による肉盛溶接部は]苛酷な
高温高圧水素条件下においても全く剥離割れは発生せず
、極めて良好な耐剥離割れ性を有しており、また、曲げ
延性も良好であることが実証された。
0 (15) 399- As shown in the same table, the overlay welded part according to the present invention does not generate any peeling cracks even under severe high temperature and high pressure hydrogen conditions, and has extremely good peel cracking resistance. It was also demonstrated that the bending ductility was good.

以上詳述したところからも明らかなように、本発明は剥
離割れに関与する初層肉盛溶接金属の組成を母材との関
連の下に調整することによって耐剥離割れ性の向上を図
ったものであるから、溶接方法や溶接条件を問わず有効
であり、施工能率の1.。
As is clear from the detailed description above, the present invention aims to improve peel cracking resistance by adjusting the composition of the initial layer weld metal, which is involved in peel cracking, in relation to the base metal. It is effective regardless of the welding method or welding conditions, and is the first in terms of construction efficiency. .

低下もなく、また溶接金属としては従来のものと同じく
デルタ・フェライト相を含有するオーステナイト系ステ
ンレス鋼であるために耐水素脆化性も従来の溶接金属と
全く同等である等々、顕著な効果を奏するものである。
There is no deterioration, and since the weld metal is austenitic stainless steel containing the delta ferrite phase like conventional weld metals, its hydrogen embrittlement resistance is exactly the same as conventional weld metals. It is something to play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は母材と初層溶接金属との遷移層におけるマルテ
ンサイト相とオーステナイト相との境界部でのデルタ・
フェライト量の推定図、第2図は第1図におけるデルタ
・フェライト推、。 定量(FA−ヮ量)とオーステナイト粗粒率及び剥 l
離削れ程度との関係を示す図である。 特許出願人 川崎製鉄株式会社
Figure 1 shows the delta phase at the boundary between the martensite phase and the austenite phase in the transition layer between the base metal and the first weld metal.
Fig. 2 is an estimation of the amount of ferrite, and Fig. 2 is the delta ferrite estimation in Fig. 1. Quantitative determination (FA-weight), austenite coarse grain ratio and exfoliation
FIG. 3 is a diagram showing the relationship with the degree of abrasion. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 1 炭素鋼又は低合金鋼母材上にステンレス鋼の表層肉
盛溶接を施すに際して、母材上に予5め初層として、母
材又は該初層の溶接金属組成中に占める各成分元素の重
量百分率による含有量に関して下記(a)及び(1))
の条件を満足l−1かつ、デルタ・フェライト相を20
%以下で含有するオーステナイトステンレス鋼の溶接l
O金金属肉盛溶接することを4!徴とする肉盛溶、接方
法。 記 (a): (%cr)+(%MO)+1.6X(%si
)+o、bx(%Nb)で表わされる母材及び前記溶接
部15属のCr当量を各々Creq B s Creq
 Dとし、(%Ni)+80X((%C)+(%N))
+0.58(%Mn )で表わされる母材及び前記溶接
金属のN1当量を各々N1eq B 5Nieq Dと
した場合において、 2ぽ( (N1eqD−NieqB )/ (CreqD −C
reqB )≦□(9,84−N1eq B ) /(
16,66−CreqB )なる関係式を満たす量のC
,81、Mn5N1、Cr、Mo、Nb及びNを含有す
る溶接。 金属。 (b) : 0 、1%以上0.4%以下の81及び0
.0010%以上0.0200%以下のBを含有する溶
接金属。
[Scope of Claims] 1. When performing surface overlay welding of stainless steel on a base material of carbon steel or low alloy steel, the composition of the weld metal of the base material or the first layer is preliminarily applied to the base material as an initial layer. (a) and (1) below regarding the weight percentage content of each component element in
satisfies the conditions l-1 and the delta ferrite phase is 20
Welding of austenitic stainless steel containing less than %
O gold metal overlay welding 4! Characteristic overlay welding and welding methods. Note (a): (%cr)+(%MO)+1.6X(%si
) + o, bx (%Nb) Cr equivalents of the base metal and the 15 welded parts are respectively Creq B s Creq
D, (%Ni) + 80X ((%C) + (%N))
When the N1 equivalents of the base metal and the weld metal expressed as +0.58 (%Mn) are each N1eq B 5Nieq D, 2po((N1eqD-NieqB)/(CreqD-C)
reqB )≦□(9,84-N1eqB ) /(
16,66-CreqB) is the quantity C that satisfies the relational expression
, 81, welding containing Mn5N1, Cr, Mo, Nb and N. metal. (b): 0, 81 and 0 between 1% and 0.4%
.. A weld metal containing 0.010% or more and 0.0200% or less of B.
JP22221383A 1983-11-28 1983-11-28 Build-up welding method Pending JPS60115369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22221383A JPS60115369A (en) 1983-11-28 1983-11-28 Build-up welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22221383A JPS60115369A (en) 1983-11-28 1983-11-28 Build-up welding method

Publications (1)

Publication Number Publication Date
JPS60115369A true JPS60115369A (en) 1985-06-21

Family

ID=16778900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22221383A Pending JPS60115369A (en) 1983-11-28 1983-11-28 Build-up welding method

Country Status (1)

Country Link
JP (1) JPS60115369A (en)

Similar Documents

Publication Publication Date Title
Woo et al. Weldability of high nitrogen stainless steel
KR100473039B1 (en) Ni-base heat resistant alloy excellent in weldability and strength at elavated temperature, weld joint using the same, and tube for ethylene cracking furnace or reformer furnace using the same
JP5793283B2 (en) Ferritic stainless steel with few black spots
Gittos et al. The interface below stainless steel and nickel-alloy claddings
Kourdani et al. Evaluating the properties of dissimilar metal welding between Inconel 625 and 316L stainless steel by applying different welding methods and consumables
EP0757112B1 (en) Two-phase stainless steel
EP0870573B1 (en) A welding material for low chromium (Cr) ferritic steel having high toughness
US4363952A (en) Welding method for stainless steel weld overlay
Ghasemi et al. Effect of delta ferrite on the mechanical properties of dissimilar ferritic-austenitic stainless steel welds
US4624406A (en) Overlay welding method
EP0393522B1 (en) Steel pipe and a method for welding thereof and pipeline resistant to carbon dioxide corrosion
Debold Duplex stainless steel—microstructure and properties
Singh et al. Investigation on aging-induced degradation of impact toughness and corrosion performance of duplex stainless steel weldment
EP0092621A2 (en) A method for surface-welding of austenitic stainless steel
JPS60115369A (en) Build-up welding method
JPS58100661A (en) High ni alloy with superior weldability and corrosion resistance
JP2000102891A (en) Austenitic stainless steel welding material
Işcan et al. Investigation of the mechanical properties of AISI 304 austenitic stainless steel joints produced by TIG and MIG welding methods using 308L filler wire
JPH06256905A (en) Clad steel plate excellent in corrosion resistance and toughness at low temperature
Amuda et al. Assessing susceptibility to chromium carbide precipitation in Cr-Mn austenitic stainless steel welds
JPS61115674A (en) Single layer build up welding of austenitic stainless steel excellent in peeling crack resistance
JPH0630831B2 (en) Pressure vessel with excellent corrosion resistance and hydrogen delamination cracking resistance
JPH07144294A (en) Austenitic stainless steel welding material having excellent hydrogen brittleness resistance
JPS59223197A (en) Build-up weld metal of nickel-base alloy containing chromium
Chornamoryan et al. Hot cracking when welding high‐nitrogen austenitic steels