JPS60115153A - Can bottom welding of enclosed ni-cd battery - Google Patents

Can bottom welding of enclosed ni-cd battery

Info

Publication number
JPS60115153A
JPS60115153A JP58221552A JP22155283A JPS60115153A JP S60115153 A JPS60115153 A JP S60115153A JP 58221552 A JP58221552 A JP 58221552A JP 22155283 A JP22155283 A JP 22155283A JP S60115153 A JPS60115153 A JP S60115153A
Authority
JP
Japan
Prior art keywords
welding
battery
separator
hollow part
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58221552A
Other languages
Japanese (ja)
Other versions
JPH0215985B2 (en
Inventor
Ryosuke Morinari
森成 良佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP58221552A priority Critical patent/JPS60115153A/en
Publication of JPS60115153A publication Critical patent/JPS60115153A/en
Publication of JPH0215985B2 publication Critical patent/JPH0215985B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PURPOSE:To obtain the highly reliable connection part excellent in productivity by burning off a separator existing in the hollow part with a laser beam, while welding a negative collector terminal of the pole plate group to the battery can bottom. CONSTITUTION:Laser light 14 emitted from a laser light oscillator 13 is guided to a welding position by means of a mirror 15 while stopping this down to the beam diameter suitable for welding by means of a lens 16 having the proper focus distance, for being radiated on the negative connector terminal 6. This part is heated up to the temperature proper for welding by means of radiation of laser light 14 having the high energy density, while the negative collector terminal 6 and a part of the battery bottom 9 is melted for being welded. The separator 3 existing in the hollow part 4 is burnt off by the laser light.

Description

【発明の詳細な説明】 本発明は密閉形Ni−Cd電池に係わり、極板の集電端
子と電池缶底部との溶接方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sealed Ni--Cd battery, and relates to a method for welding a collector terminal of an electrode plate to a bottom of a battery can.

衆知の如く電子機器、非常灯等の電源として使用される
密閉形Ni−Cd電池は薄板状のe。
As is well known, the sealed Ni-Cd battery used as a power source for electronic equipment, emergency lights, etc. is a thin plate-shaped battery.

02枚の極板をセパレータを介して捲回して一1本化し
たもの(以下仁れを極板群と記す)を円筒状の電池缶に
収納した構造を有する。通常この種の電池は電池缶がe
極、電池缶に絶縁体を介して取付けられている蓋がe極
となっており、従ってe、0両極板はあらかじめ各々に
溶接されている集電端子を介してそれぞれ電池缶、蓋に
接続されている。
It has a structure in which two electrode plates are wound together with a separator in between (hereinafter referred to as an electrode group) and housed in a cylindrical battery can. Usually, this type of battery has a battery can of e.
The electrode and the lid attached to the battery can via an insulator are the e electrodes, so the e and 0 polar plates are connected to the battery can and lid, respectively, via current collector terminals that are welded to each in advance. has been done.

第1図〜第4図は上述した極板群および電池の構造を示
したものである。第1図は極板群を示したもので、lは
e極板、2はe極板、3はセパレータである。第2図は
極板群の中心部を真上から見た図で、中心部すなわち■
、0両極板の捲回し始めの部分に於てセパレータ3がど
の様な形で存在しているかを示したものである。
1 to 4 show the structure of the above-mentioned electrode plate group and battery. FIG. 1 shows a group of electrode plates, where l is an e electrode plate, 2 is an e electrode plate, and 3 is a separator. Figure 2 is a view of the center of the electrode plate group viewed from directly above.
, 0 shows how the separator 3 is present at the beginning of winding of the bipolar plate.

図面に示す如く、極板群の中心部には直径5龍程度の中
空部4があり、セパレータ3がe極板2の先端からθ極
板1の先端に向って前記中空部4のほぼ中心すなわち極
板群の中心を横切る様な形で存在している。この様な状
態になるのは第3図)こ示す様な捲回方法をとっている
からである。すなわち極板を捲回する時には図の如く捲
回軸5の中央に設けられているスリットにセパレータ3
をはさみ、次に捲回軸5をイ回転。
As shown in the drawing, there is a hollow part 4 in the center of the electrode plate group with a diameter of approximately 5 mm, and the separator 3 extends from the tip of the e electrode plate 2 toward the tip of the theta electrode plate 1, approximately in the center of the hollow part 4. In other words, it exists in a shape that crosses the center of the electrode group. This situation arises because the winding method shown in Figure 3) is used. That is, when winding the electrode plate, insert the separator 3 into the slit provided in the center of the winding shaft 5 as shown in the figure.
, then turn the winding shaft 5.

した後輪中で示す如(丁度セパレータ3とセパレータ3
との間に極板1,2をそう人しなから捲回軸5を/7=
印方向に回転する。極板l、2の終端まで巻終ったら出
来上った極板群から前記捲回軸5を引抜く(実際には極
板群の方を移動する)わけであるが、この捲回軸5が取
除かれて出来た空間が前記中空部4であり、従ってこの
部分の大きさく直径)は捲回軸5の径口によって決るわ
けである。
As shown in the rear wheel (just separator 3 and separator 3)
Insert the pole plates 1 and 2 between them, then insert the winding shaft 5/7=
Rotate in the direction indicated. When winding is completed to the end of the electrode plates 1 and 2, the winding shaft 5 is pulled out from the completed electrode plate group (actually, the electrode plate group is moved). The space created by the removal of the winding shaft 5 is the hollow part 4, and therefore, the size and diameter of this part is determined by the diameter of the winding shaft 5.

第4図は前記極板群が電池缶に納められ電池として組立
てられた状態を電池のほぼ中心部を通る断面図で示した
ものである。前述した如くe極板1にはθ集電端子6が
溶接され、さらにこのe集電端子6は電池缶7の底部8
とその接続部9に於て溶接されている。一方e極板2に
は同様に■集電端子IOが溶接され、この■集電端子1
0は電池の蓋1蔦と潰続点12に於て溶接されている。
FIG. 4 is a sectional view taken through approximately the center of the battery, showing the state in which the electrode plate group is housed in a battery can and assembled as a battery. As mentioned above, the θ current collector terminal 6 is welded to the e-electrode plate 1, and the e-collector terminal 6 is also welded to the bottom 8 of the battery can 7.
and are welded at their connecting portions 9. On the other hand, the ■current collector terminal IO is similarly welded to the e-electrode plate 2, and this ■current collector terminal 1
0 is welded to the battery cover 1 at the collapse point 12.

さて、上述したθ集電端子すと電池缶7の底部8との溶
接(以下この溶接を「缶底溶接」と記す)には従来より
抵抗溶接が用いられてきた。
Now, resistance welding has conventionally been used to weld the above-mentioned θ current collector terminal to the bottom 8 of the battery can 7 (hereinafter, this welding will be referred to as "can bottom welding").

言うまでもなく抵抗溶接は極めて短時間で溶接が完了し
、また溶接装置自体も比較的安価であるため、量産品の
組立に於ては広く用いられている方法であるが、本文で
対象としている缶底溶接の場合には下記の如き問題があ
り、自動組立ラインに於ける大きなネックになっていた
Needless to say, resistance welding completes welding in an extremely short time, and the welding equipment itself is relatively inexpensive, so it is a widely used method for assembling mass-produced products. In the case of bottom welding, there are the following problems, which have become a major bottleneck in automatic assembly lines.

第5図は従来から行なわれてきた抵抗溶接にょる缶底溶
接方法を示したものであるが、図面に示す如(、抵抗溶
接電源Aに接続せる一方の溶接用電極11を前記接続部
9直下の電池缶外部に当接し、同じく他方の電極12を
極板群上部から前記中空部4内にそう人、e策電端子6
に当接して溶接する。前述した問題とは次の様なもので
ある。
FIG. 5 shows a conventional can bottom welding method using resistance welding. Contact the outside of the battery can directly below, and insert the other electrode 12 into the hollow part 4 from the top of the electrode plate group.
Weld by contacting with. The problems mentioned above are as follows.

(1) 一方の溶接用電極12を中空部4内にそう人す
る際、ここには第2図に示す如(、丁度その中央にセパ
レータ3が位置しているため(はん雑になるため第5図
の中空部4内にはセパレータ3課示していない)、容易
に電極12をそう人することが出来ない。セパレータ3
に電極12がひっかかり、これが破壊されることが頻繁
に起る。
(1) When inserting one of the welding electrodes 12 into the hollow part 4, as shown in FIG. (The separator 3 is not shown in the hollow part 4 in FIG. 5), so the electrode 12 cannot be easily inserted into the hollow part 4.
It frequently happens that the electrode 12 gets caught and is destroyed.

(2) 中空部4の直径が511II+程度でかつ内部
にセパレータ3が存在しているため、ここにそう人する
電極12は高々3闘程度の細いものとならざるを得ない
。それ故通常行なわれている電極の水冷等は不可能とな
り、溶接回数の増加とともに電極先端部の温度が上昇し
、電極12を中空部4にそう人した際前記セパレータ3
と接触すると、これが溶融、電極12に接着してしまう
。この様な状態を呈すると、電極12をそれ以上そう人
することが不可能となるし、またそう人出来ても電極先
端がセパレータ3の材質であるナイロンでコーティング
された様な状態になってしまうため、溶接電流の通電が
不可能、あるいは困難になる。
(2) Since the diameter of the hollow portion 4 is approximately 511II+ and the separator 3 is present inside, the electrode 12 placed here must be as thin as 3 mm at most. Therefore, water cooling of the electrode, which is normally performed, becomes impossible, and as the number of welding increases, the temperature at the tip of the electrode rises.
When it comes into contact with the electrode 12, it melts and adheres to the electrode 12. If such a state occurs, it will be impossible to insert the electrode 12 any further, and even if it is possible, the tip of the electrode will be coated with nylon, which is the material of the separator 3. This makes it impossible or difficult to apply welding current.

以上の様な問題のために特に自動溶接装置の場合には連
続的な運転がほとんど不可能であり、効果的な解決が望
まれていた。
Due to the above-mentioned problems, continuous operation is almost impossible, especially in the case of automatic welding equipment, and an effective solution has been desired.

へ 本発明は従来の缶底溶接に於ける上述した問題点を解決
し、生産性に優れ、信頼性の高い接続部が得られる溶接
方法を提供せんとするものである。
The present invention aims to solve the above-mentioned problems in conventional can bottom welding, and to provide a welding method that provides excellent productivity and a highly reliable connection.

次に本発明の詳細について述べる。その骨子とするとこ
ろは、溶接用熱源としてレーザ光、電子ビームの様な高
いエネルギ密度を得ることが可能な光線あるいは荷電粒
子線を使用し、従来の如く中空部に溶接用電極をそう人
することなしに溶接する点にある。
Next, details of the present invention will be described. The basic idea is to use a laser beam, an electron beam, or a charged particle beam that can obtain a high energy density as a heat source for welding, and to insert a welding electrode into the hollow part as in the conventional method. The point is that you can weld without any problems.

第6図に本発明による溶接方法を示す。これはレーザ光
を溶接熱源として用いる、いわゆるレーザ溶接の場合で
あるが、レーザ光発振器13より放出されたレーザ光1
4をミラー15を用いて溶接位置まで導き、次にこれを
適当な焦点距離を有するレンズ16で溶接1こ適したビ
雄 一ム径例えば直径0.5器まテ絞ってe集q々−6上に
照射する。この部分では高いエネルギ密度を有するレー
ザ光14が照射されることにょって溶接に適した温度に
加熱され、e集電端子6および電池缶底9の一部が溶融
して目的とする溶接かなされるわけである。
FIG. 6 shows a welding method according to the present invention. This is a case of so-called laser welding in which a laser beam is used as a welding heat source, and the laser beam 1 emitted from the laser beam oscillator 13
4 to the welding position using a mirror 15, and then narrowed down to a suitable beam diameter for the welding 1 using a lens 16 having an appropriate focal length, for example, by 0.5 mm in diameter. irradiate on top. This part is heated to a temperature suitable for welding by being irradiated with a laser beam 14 having a high energy density, and a part of the e-collector terminal 6 and the battery can bottom 9 melts, resulting in the desired welding. That is why it is done.

この様な溶接方法を採用する利点は下記の点にある。ま
ず第1に抵抗溶接の場合には中空部4に苦労して電極を
そう入せねばならなかったがレーザ溶接はいわゆる非接
触式の溶接てあり、揉続部9にエネルギを供給するため
の電極等を接触させる必要はない。電池缶7の外からレ
ーザ光14を中空部4に導入すれば良いわけである。
The advantages of adopting such a welding method are as follows. First of all, in the case of resistance welding, the electrode had to be inserted into the hollow part 4 with great difficulty, but laser welding is a so-called non-contact type of welding, and it is necessary to insert the electrode into the hollow part 4. There is no need to make contact with electrodes, etc. It is sufficient to introduce the laser beam 14 into the hollow part 4 from outside the battery can 7.

もちろん缶底8の接続部9にレーザ光が到達するまでの
間にこれを遮断するものがあれば溶接が不可能になる。
Of course, if there is something blocking the laser beam before it reaches the connecting portion 9 of the can bottom 8, welding will be impossible.

缶底溶接の場合にはレーザ+l:; I 4を遮断する
ものとして中空部4に存在しているセパレータ3が問題
となるわけであるが、コノ部分に存在しているセパレー
タ3は■、0両極板2.1間を絶縁するという目的には
寄与していないものであり、本来なくても良いものであ
る。それ故レーザ光で焼切ってしまっても何ら問題はな
い。抵抗溶接用電極ではこの様なことは不可能であるが
、レーザ光14は適当(絞ることによって連続的に種々
のエネルギ状態を得る仁とが可能であるため、セパレー
タ3を焼切ることは容易なことである。光学系の選び方
1こよってはe集電端子6と電池缶底8との接続部9に
於て最も好ましいエネルギ密度が得られる様にレンズ1
6の位置を固定しておいても、中空部4に於けるビーム
径がセパレータ3を焼切るに十分なエネルギ密度を有す
るに足るものであれば、レーザ光がセパレータ3に当る
と同時にこの部分が焼切られるので、本来の月的とする
缶底溶接には何ら支障はない。もしその様な光学系の選
び方が出来ず、セパレータ3てレーザ光14がさえ切ら
れる様であれば、例えばセパレータ3の存在している中
空部4をその上カラーF tc 向って焦点が移動する
様にレンズ16を移動させ、最終的に接続部9に於て適
度な溶接エネルギが得られる様にレンズ16を位置決め
すればよい。焦点は最もエネルギ密度が高い部分である
ので二この様にすればセパレータ3を焼切ることは可能
である。
In the case of can bottom welding, the separator 3 present in the hollow part 4 is a problem as it blocks the laser +l:;I 4, but the separator 3 present in the bottom part is It does not contribute to the purpose of insulating between the bipolar plates 2.1, and is essentially unnecessary. Therefore, there is no problem even if the laser beam burns it out. This is not possible with resistance welding electrodes, but since the laser beam 14 can be used in an appropriate manner (by narrowing it down, it is possible to continuously obtain various energy states), it is easy to burn out the separator 3. How to choose an optical system 1 Therefore, the lens 1 should be selected so as to obtain the most preferable energy density at the connection part 9 between the e-collector terminal 6 and the battery can bottom 8.
Even if the position of the laser beam 6 is fixed, if the beam diameter in the hollow part 4 is sufficient to have sufficient energy density to burn out the separator 3, the laser beam hits this part at the same time as it hits the separator 3. is burned off, so there is no problem with the original can bottom welding. If such an optical system cannot be selected and the laser beam 14 is cut off by the separator 3, the focal point will move, for example, toward the hollow part 4 where the separator 3 is located and towards the color F tc. It is sufficient to move the lens 16 in a similar manner, and finally position the lens 16 so that appropriate welding energy can be obtained at the connecting portion 9. Since the focal point is the part with the highest energy density, it is possible to burn out the separator 3 in two ways.

なおレーザ溶接に於ては溶接される材料同士の接触が十
分になされていることが重要である。
In laser welding, it is important that the materials to be welded are in sufficient contact with each other.

特に本溶接の様に被溶接材料の厚さが02〜03關程度
のものては、レーザ光14のエネルギ密度が高いが故に
熱影響を限定し極めて短時間で溶接が可能である反面、
被溶接材料間に間隙があると単ζこレーザ光14が当っ
た所に穴があくたけて溶融金属は飛散してしまい溶接は
なされない。抵抗溶接の場合には2本の電極に加えられ
る加圧力によって被溶接材料は十分緊密な接触状態にお
かれたが、レーザ溶接の場合にはこの様なことが期待で
きない。前記間隙は02〜、、)1) 03間程度φ顆ずかなものでも問題視しなければならな
いので、たとえば第6図に示す如く、電池缶底8にマグ
ネット17を配置し、磁力によってθ集電端子6の接続
部9を電池缶底内面に引付けて両者の緊密な接触状態を
得る様な配慮をすることにより溶接はより完全なものと
なる。
In particular, when the thickness of the material to be welded is approximately 0.2 to 0.3 mm, as in the case of actual welding, the energy density of the laser beam 14 is high, so the thermal effect is limited and welding can be carried out in an extremely short time.
If there is a gap between the materials to be welded, a hole will be created where the single ζ laser beam 14 hits, and the molten metal will scatter, and no welding will occur. In the case of resistance welding, the materials to be welded were brought into sufficiently close contact by the pressure applied to the two electrodes, but this cannot be expected in the case of laser welding. Even if the gap is as small as 02 to 1) 03, it must be considered a problem. For example, as shown in FIG. By drawing the connecting portion 9 of the electric terminal 6 to the inner surface of the bottom of the battery can to obtain close contact between the two, welding becomes more complete.

実施例 本発明の詳細については上述した通りであるが次に実際
に密閉形N 1−Cd電池の缶底溶接に本発明を適用し
、その効果を検討した結果1こついて述べる。
EXAMPLE The details of the present invention have been described above, but next we will describe one result of actually applying the present invention to can bottom welding of a sealed N1-Cd battery and examining its effects.

検討対象とした電池はSCサイズ、+ 200 mAh
の容量のものである。捲回された極板に溶接されている
θ集電端子6は厚さ0.2 mmの5pccて表面に8
〜lOμmのN1メッキを有している。
The battery considered was SC size, +200 mAh.
It has a capacity of . The θ current collector terminal 6 welded to the wound electrode plate has a thickness of 5 pcc with a thickness of 8 mm on the surface.
It has an N1 plating of ~10 μm.

e集電端子6の中央に設けられている接続部9の大きさ
は直径が約3朋である。一方相手方の電池缶7であるが
材質は5PCBて缶底8の厚さは041Rて同じ(Ni
メッキ8〜lOμmを有している。
e The connecting portion 9 provided at the center of the current collecting terminal 6 has a diameter of approximately 3 mm. On the other hand, the battery can 7 of the other party is made of 5PCB and the thickness of the can bottom 8 is 041R (Ni
The plating has a thickness of 8 to 10 μm.

溶接装置の方であるが、発振器13はC02ガスレーザ
タイプのものを使用、第6図に示す如き基本構成を有す
るものを自動組立ラインの中に組込んだ。溶接はビーム
の焦点を前記中空部4の上部から下部に向って移動させ
最終的に缶底8り接して1ζるe集電端子6の接続部2
中央上に位置させるような方法で行なったが、当初の期
待通りセパレータ3を焼切った形で接続部9上にビーム
が到達しe集電端子6と缶底8とはうまく溶接された。
Regarding the welding device, a C02 gas laser type oscillator 13 was used, and the device having the basic configuration as shown in FIG. 6 was installed in an automatic assembly line. Welding is performed by moving the focus of the beam from the upper part of the hollow part 4 to the lower part, and finally contacting the can bottom 8 and connecting part 2 of the current collecting terminal 6.
Although this was done in such a way as to position it above the center, the beam reached the connecting part 9 with the separator 3 burnt out as originally expected, and the e-collecting terminal 6 and the can bottom 8 were successfully welded.

なおこの時の溶接条件を記しておくと、溶接エネルギ1
10Joule 照射時間06秒である。溶接部はNi
メッキが溶融してe集電端子6と缶底8との間をうめた
形となっており、抜取で破壊試験を行ない溶接強度を調
べたが約9〜13Kpの引張強度を示しeタブ接続部の
一部が缶底側に残る様な形で破断した。
Note that the welding conditions at this time are: welding energy 1
10 Joule irradiation time is 06 seconds. Welded part is Ni
The plating melted and filled the space between the e-collector terminal 6 and the can bottom 8, and a sample was subjected to a destructive test to examine the welding strength, and the tensile strength was approximately 9 to 13 Kp, indicating that the e-tab connection The container broke in such a way that part of it remained on the bottom of the can.

また本検討を行なった時にはワークは8秒タクトで流れ
たが、約2時間の運転中溶接に起因するトラブルてライ
ンが停止したことは一度もな(、本発明が自動組立ライ
ンの中に採用できる方法であることが実証された。
In addition, when this study was conducted, the work flowed at a tact of 8 seconds, but the line never stopped due to problems caused by welding during the approximately 2 hours of operation (this invention was adopted in an automatic assembly line). It has been proven that this method is possible.

なお本文Cとおいては、レーザ溶接の場合について記し
てきたが、同様の効果は同じ非接触式の溶接である電子
ビーム溶接の場合に於ても得られることは言うまでもな
い。
Although text C has described the case of laser welding, it goes without saying that similar effects can be obtained also in the case of electron beam welding, which is the same non-contact type of welding.

以上のよう化、本発明化よればe集電端子と電池缶底と
の溶接が従来のようにセパレータ等の防害もなく確実で
短時間に行なうことができて、電池性能のバラツキもな
く電池の自動組立ラインに採用できる等工業的価値大で
ある。
As described above, according to the present invention, welding between the e-collector terminal and the bottom of the battery can can be performed reliably and in a short time without using a separator or other hazards as in conventional methods, and there is no variation in battery performance. It has great industrial value as it can be used in automatic battery assembly lines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は捲回された極板群を示す斜視説明図、第2図は
極板群の中心部を真上から見たもので、特にセパレータ
の位IIを示す説明図、第3図は極板を捲回する時の状
況を示す説明図、第4図は電池の中心部1こ於ける断面
図、第5図は従来−の抵抗溶接による缶底溶接時の状況
を示す説明図、第6図は本発明の一実施例による密閉形
Ni−Cd電池の缶底溶接方法を示す説明図である。 1はe極板、2はe極板、3はセパレータ、4は中空部
、6はe集電端子、7は電池缶、8は缶底、9はe集電
端子の接続部、13はレーザ発振器、14はレーザ光、
15はミラー、16はレンズ 特許出願人
Fig. 1 is a perspective explanatory view showing the wound electrode plate group, Fig. 2 is an explanatory view of the central part of the electrode plate group viewed from directly above, especially showing the separator position II, and Fig. 3 is an explanatory view showing the separator position II. An explanatory diagram showing the situation when winding the electrode plate, Fig. 4 is a cross-sectional view of the central part of the battery, Fig. 5 is an explanatory diagram showing the situation when welding the can bottom by conventional resistance welding, FIG. 6 is an explanatory diagram showing a method for welding the can bottom of a sealed Ni-Cd battery according to an embodiment of the present invention. 1 is an e-electrode plate, 2 is an e-electrode plate, 3 is a separator, 4 is a hollow part, 6 is an e-collection terminal, 7 is a battery can, 8 is a can bottom, 9 is a connection part of an e-collection terminal, 13 is a a laser oscillator, 14 a laser beam;
15 is a mirror, 16 is a lens patent applicant

Claims (1)

【特許請求の範囲】[Claims] 捲回された極板群の中央に存在する中空部Iこレーザビ
ームあるいは電子ビームを導入し、これにより中空部に
存在しているセ/sllレータを焼切るとともに、前記
極板群のe集電端子と電池缶底とを溶接することを特徴
とする密閉形N1−Ccl電池の缶底溶接方法。
A laser beam or an electron beam is introduced into the hollow part I in the center of the wound electrode group, thereby burning out the cell/sllator existing in the hollow part and cutting out the center of the electrode plate group. A method for welding the bottom of a sealed N1-Ccl battery, characterized by welding an electrical terminal and the bottom of the battery can.
JP58221552A 1983-11-25 1983-11-25 Can bottom welding of enclosed ni-cd battery Granted JPS60115153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58221552A JPS60115153A (en) 1983-11-25 1983-11-25 Can bottom welding of enclosed ni-cd battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58221552A JPS60115153A (en) 1983-11-25 1983-11-25 Can bottom welding of enclosed ni-cd battery

Publications (2)

Publication Number Publication Date
JPS60115153A true JPS60115153A (en) 1985-06-21
JPH0215985B2 JPH0215985B2 (en) 1990-04-13

Family

ID=16768504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58221552A Granted JPS60115153A (en) 1983-11-25 1983-11-25 Can bottom welding of enclosed ni-cd battery

Country Status (1)

Country Link
JP (1) JPS60115153A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368767B1 (en) 1997-10-22 2002-04-09 Konica Corporation Image forming material and production method of the same, and an image forming apparatus
FR2824667A1 (en) * 2001-05-14 2002-11-15 Cit Alcatel INTERNAL CONNECTION FOR HIGH POWER ELECTROCHEMICAL GENERATOR

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298937A (en) * 1976-02-13 1977-08-19 Yuasa Battery Co Ltd Enclosed alkaline storage battery
JPS5493126U (en) * 1977-12-14 1979-07-02
JPS577166U (en) * 1980-06-13 1982-01-14
JPS5712654U (en) * 1980-06-19 1982-01-22
JPS5714968U (en) * 1980-06-20 1982-01-26

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714968B2 (en) * 1973-10-25 1982-03-27
JPS52120983A (en) * 1976-04-05 1977-10-11 Asahi Chem Ind Co Ltd Improved cation exchange membrane
JPS52135482A (en) * 1976-05-07 1977-11-12 Sankyo Seiki Seisakusho Kk Turning table

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298937A (en) * 1976-02-13 1977-08-19 Yuasa Battery Co Ltd Enclosed alkaline storage battery
JPS5493126U (en) * 1977-12-14 1979-07-02
JPS577166U (en) * 1980-06-13 1982-01-14
JPS5712654U (en) * 1980-06-19 1982-01-22
JPS5714968U (en) * 1980-06-20 1982-01-26

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368767B1 (en) 1997-10-22 2002-04-09 Konica Corporation Image forming material and production method of the same, and an image forming apparatus
FR2824667A1 (en) * 2001-05-14 2002-11-15 Cit Alcatel INTERNAL CONNECTION FOR HIGH POWER ELECTROCHEMICAL GENERATOR
EP1258932A1 (en) * 2001-05-14 2002-11-20 Alcatel Internal connection for a high power electrochemical generator
US6723468B2 (en) 2001-05-14 2004-04-20 Alcatel Internal connection system for high power electrochemical cell

Also Published As

Publication number Publication date
JPH0215985B2 (en) 1990-04-13

Similar Documents

Publication Publication Date Title
US8105712B2 (en) Sealed secondary battery, and method for manufacturing the battery
JP4184663B2 (en) Manufacturing method of lead-acid battery and jig for manufacturing the same
JP4396787B2 (en) Thin temperature fuse and method of manufacturing thin temperature fuse
JP4297367B2 (en) Secondary battery and manufacturing method thereof
WO1999025035A1 (en) Method of manufacturing enclosed battery and enclosed battery
JP2004119330A (en) Secondary battery and its manufacturing method
JP2008084803A (en) Manufacturing method of gastight battery
JP2004158318A (en) Cylindrical battery and its manufacturing method
JPH10202380A (en) Laser beam welding method and production of secondary battery case
JPS60115153A (en) Can bottom welding of enclosed ni-cd battery
KR101272178B1 (en) Secondary battery and method for manufacturing the same
JPH024102B2 (en)
JP2001093507A (en) Method of manufacturing battery
JP2000048795A (en) Battery
KR100508947B1 (en) Secondary battery and methode for sealing thereof
JPH04230953A (en) Manufacture of battery
JP2017084725A (en) Welding method
CN105960722B (en) Electrical storage device and electrical storage device manufacturing method
JP2015109140A (en) Manufacturing method of sealed battery
JP4954806B2 (en) Capacitor and capacitor manufacturing method
CA1155920A (en) Battery strap with bosses for weldable connection along strap
US4295029A (en) Battery strap connection welding method
WO2024127897A1 (en) Power storage device manufacturing method and power storage device
JPH05290646A (en) Composite superconductor
JP2018041542A (en) Method for manufacturing secondary battery