JPS60115132A - Ultrahigh frequency electron tube - Google Patents

Ultrahigh frequency electron tube

Info

Publication number
JPS60115132A
JPS60115132A JP22162883A JP22162883A JPS60115132A JP S60115132 A JPS60115132 A JP S60115132A JP 22162883 A JP22162883 A JP 22162883A JP 22162883 A JP22162883 A JP 22162883A JP S60115132 A JPS60115132 A JP S60115132A
Authority
JP
Japan
Prior art keywords
electron beam
electromagnetic wave
mode
electric field
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22162883A
Other languages
Japanese (ja)
Other versions
JPH031770B2 (en
Inventor
Takao Kageyama
影山 隆雄
Kunio Tsutaki
蔦木 邦夫
Shoichi Ono
昭一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP22162883A priority Critical patent/JPS60115132A/en
Publication of JPS60115132A publication Critical patent/JPS60115132A/en
Publication of JPH031770B2 publication Critical patent/JPH031770B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/025Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators with an electron stream following a helical path

Landscapes

  • Microwave Tubes (AREA)

Abstract

PURPOSE:To obtain a high efficiency and high power electron tube in milliwave and submilliwave bands that succeeds in the features of Peniotron and Gyrotron by specifying the cyclotron angular frequency of the spiral movement of an electron beam and the Doppler-shifted angular frequency of a TE mode electromagnetic wave. CONSTITUTION:A high frequency circuit 4 contains a cylindrical cavity resonator 5 that resonates in TE021 mode at the operating frequency of a tube, at its center. An electron gun 2 side has a small diameter section so that the TE02 mode can be cut off and a connector 6 side has a large diameter so that the TE02 mode can be propagated. In addition, by adjusting a solenoid 9 so that the cyclotron angular frequency omegac of the spiral movement of an electron beam 3 for the Doppler-shifted angular frequency omega of the TE021 mode electromagnetic wave of the circular cylindrical cavity resonator 5 can satisfy a formula omega= (2n-1)omegac, an intense interaction occurs between the electron beam 3 and the TE021 mode electromagnetic wave of the cylindrical cavity resonator 5 and the kinetic energy of the electron beam 3 is converted into electric energy and then a high power electromagnetic wave is generated.

Description

【発明の詳細な説明】 本発明は直流磁界中をら線運動する電子ビームと空胴共
振器または導波管中のTEモードの電磁波との相互作用
によって該電磁波の発振ないし増幅を行うミリ波及びサ
ブミリ波帯の大電力管子管に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a millimeter wave system that oscillates or amplifies electromagnetic waves by the interaction between an electron beam moving in a helical direction in a DC magnetic field and a TE mode electromagnetic wave in a cavity resonator or waveguide. and high-power tube tubes in the submillimeter wave band.

近年、該融合研究や烏分解能レーダ研究の分野において
ミリ波からツ゛プミリ波帯での効率の高い大電力源がめ
られている。このような周波数帯の大電力源としては、
これまでにベニオドロンやジャイロトロンなどが知られ
ている。
In recent years, highly efficient large power sources in the millimeter to submillimeter wave bands have been sought in the fields of fusion research and radar-resolution radar research. As a large power source in such a frequency band,
So far, Beniodron and Gyrotron are known.

ベニオドロンは、特公昭45−35334に開示されて
いる通)、直流磁界中をら線運動するべ/シル状の電子
ビームとダブルリッジ対導波管の高周波回路を伝搬する
電磁波との相互作用による位相分離効果に基づき電磁波
の増幅ないし発振を行う電子管でおる。ベニオドロンで
は、位相分離効果によシミ子ビームがすべて電磁波の減
速゛電界に捕捉されるので、電子ビームから亀出誠・\
のエネルギ、の変換効率としてCま、原理的に100%
近い値が期待できることと、電子ビームのら轟ζ運動の
サイクロトン周波数ωCの高調波と電磁波との相互作用
を利用することによシ、直流磁界の強辰を下けられると
いう特長がある。しかし、ペンシル状の電子ビームを用
いているだめ電子ビームの直流入力電力がjliij限
さ托でおシ、さらに高周波回路としてダブルリッジ対導
波管を採用しているため、リッジ部分の高周波電界強匿
の点からも電力的に制約されるので、これまでに実現さ
れている管の出力電力としては数kWレベルどtbであ
る。
Beniodron is produced by the interaction between a bell-shaped electron beam moving in a spiral direction in a DC magnetic field and an electromagnetic wave propagating in a high-frequency circuit of a double-ridge pair waveguide. It is an electron tube that amplifies or oscillates electromagnetic waves based on the phase separation effect. In Beniodron, the phase separation effect causes all of the simulator beams to be captured by the electromagnetic wave deceleration electric field, so the electron beam can be separated from the electron beam by Makoto Kamede.
As the conversion efficiency of energy, C is 100% in principle.
It has the advantage that a similar value can be expected, and that the intensity of the DC magnetic field can be lowered by utilizing the interaction between the harmonics of the cycloton frequency ωC of the ripple ζ motion of the electron beam and electromagnetic waves. However, since a pencil-shaped electron beam is used, the DC input power of the electron beam is limited, and furthermore, since a double ridge pair waveguide is used as the high frequency circuit, the high frequency electric field strength at the ridge part is limited. Since the power is limited from the viewpoint of safety, the output power of the tubes realized so far is at the level of several kW or tb.

一方、ジャイロトロンは、1977年7月発行「 の米国著名雑、zxbgg 丁ransactions
 onTheory ancl Tecbuiq)ue
SIVOILLIl18 MTT−25の第514員か
ら第527頁の論文r ’I’he Gyrotron
Jに開示されている通シ、直流磁界中をらoj運動する
円筒状の電子ビームと円筒空胴共振器または円形導波管
などの筒周波回路とから構成され、電子ビームの相対論
効果に基づ@電磁波の増幅ないし発振を行う電子管であ
る。ジャイロトロンでは、電子ビームのら線運動の中心
を円環状に配置しているので、゛電子ビームの直流入力
電力を増大することが可能でお9、しかも高周波回路が
構造的に単純である上に電力容量を大きくできる特長が
ある。しかし、相対論効果による電子ビームの集群作用
では、電子ビームの一部分′が電磁波の加速電界に捕捉
されるので、ベニオドロンのような高効率動作を期待す
ることができない。また、サイクロトロン周波数ωCの
高調波と電磁波との相互作用も理論的には可能でおるが
、前記の論文に記載の如く高調波動作での効率の低下が
太きいという問題がある。
On the other hand, the gyrotron was published in July 1977 in a famous American miscellaneous book, ZXBGG Dingransactions.
onTheory ancl Tecbuiq)ue
SIVOILLIl18 MTT-25 member 514 to page 527 paper r 'I'he Gyrotron
The system disclosed in J. J. is composed of a cylindrical electron beam moving in a DC magnetic field and a cylindrical frequency circuit such as a cylindrical cavity resonator or a circular waveguide, and is based on the relativistic effect of the electron beam. It is an electron tube that amplifies or oscillates electromagnetic waves. In the gyrotron, the center of the helical motion of the electron beam is arranged in an annular shape, so it is possible to increase the DC input power of the electron beam9, and the high-frequency circuit is structurally simple. has the advantage of increasing power capacity. However, in the collective action of the electron beam due to the relativistic effect, a portion of the electron beam is captured by the accelerating electric field of the electromagnetic wave, so high efficiency operation like that of Beniodron cannot be expected. Further, although it is theoretically possible for harmonics of the cyclotron frequency ωC to interact with electromagnetic waves, there is a problem in that the efficiency decreases significantly in harmonic operation, as described in the above-mentioned paper.

本発明の目的は、ベニオドロンとジャイロトロンの特長
だけを継承するようなミリ波及びサブミリ波帯の高効率
大電力電子管を提供することにある。
An object of the present invention is to provide a high-efficiency, high-power electron tube in the millimeter wave and submillimeter wave bands that inherits only the features of the beniodoron and gyrotron.

第1図は本発明を実施した超高周波電子管1の全体図で
あシ、同図には円筒状の電子ビーム3を形成射出する電
子銃組立体2と、高周波回路4と、コレクタ電極6と、
出力窓7及び出力導波管8が管軸10上に配列された構
造が示されている。
FIG. 1 is an overall view of an ultra-high frequency electron tube 1 embodying the present invention. The figure shows an electron gun assembly 2 for forming and emitting a cylindrical electron beam 3, a high frequency circuit 4, a collector electrode 6, ,
A structure is shown in which the output window 7 and the output waveguide 8 are arranged on the tube axis 10.

ソレノイド9は高周波回路4に泊った部分に高強度の直
流磁界を発生するものである。
The solenoid 9 generates a high-intensity DC magnetic field in a portion connected to the high frequency circuit 4.

高周波回路4はその中央部に管の動作周波数ω0におい
てTEo□モードで共振する円管空胴共振器5を含み、
電子銃側はTE、!モードがカットオフになるような径
の小さい部分があシ、コレクタ側はT E。、モードが
伝搬できるよう径を大きくしている。円筒空胴共振器5
内の’I’Eonモードの電磁波のドツプラーシフトし
た角周波数ωに対して電子ビーム3のら線運動のサイク
ロトロン角周波数ωCが(1)式を満足するようソレノ
イド9を調整することによって、電子ビーム3と円筒空
胴共振器5のT EO21モードの電磁波との間に強い
相互作用が生じ、電子ビーム3の運動エネルギが電気エ
ネルギに変換されて大電力の電磁波が発生する。
The high frequency circuit 4 includes a circular tube cavity resonator 5 in its center that resonates in the TEo□ mode at the tube operating frequency ω0,
TE on the electron gun side! There is a small diameter part where the mode is cut off, and the collector side is TE. , the diameter is increased to allow mode propagation. Cylindrical cavity resonator 5
By adjusting the solenoid 9, the electron A strong interaction occurs between the beam 3 and the TEO21 mode electromagnetic wave of the cylindrical cavity resonator 5, and the kinetic energy of the electron beam 3 is converted into electrical energy, generating a high-power electromagnetic wave.

ω−(2n 1)ωC(1) ただし、■は正の整数でめシ、電磁波の位相速度をυp
とし、゛成子ビーム3の管軸11方向の速度成分をυ、
とするとω−(1±υ#/υp)ω0である。
ω-(2n 1)ωC(1) However, ■ is a positive integer, and the phase velocity of the electromagnetic wave is υp.
Then, the velocity component of the Naruko beam 3 in the direction of the tube axis 11 is υ,
Then, ω-(1±υ#/υp)ω0.

円筒空胴共振器5の内部で発生した大電力の電磁波はコ
レクタ6、出力窓7を通じて出力導波管8から外部の負
荷へ導びかれる。
A high-power electromagnetic wave generated inside the cylindrical cavity resonator 5 is guided through the collector 6 and the output window 7 from the output waveguide 8 to an external load.

第2図は空胴共振器5内のT EO21モードの電界分
布と電子ビーム3の配置を示す断面図である。
FIG. 2 is a cross-sectional view showing the electric field distribution of the TEO21 mode in the cavity resonator 5 and the arrangement of the electron beam 3.

T EOI11モードは第1電界リング21と第2電界
リング22がそれぞれ空間的に逆方向を向いておシ、電
子ビーム3のら線運動の中心を第1リング21と第2リ
ング22の中間に円環状に配置している。
In the T EOI11 mode, the first electric field ring 21 and the second electric field ring 22 are spatially oriented in opposite directions, and the center of the helical motion of the electron beam 3 is set between the first ring 21 and the second ring 22. They are arranged in a circular pattern.

第3図は空胴共振器5内のT Eoz+モードの電界強
度Eθの半径γ方向の変化を示す曲線31と電子ビーム
のγ方向の配置領域32を示す線図である。第1電界リ
ング21と第2電界リング22の電界強度のピーク位置
をそれぞれγ1.γ、とし、電子ビーム3のら1運動の
中心位置をγ。、ら線運動の直径をDとすればこれらの
関係は次式のようになる。
FIG. 3 is a diagram showing a curve 31 showing a change in the electric field strength Eθ of the T Eoz+ mode in the cavity resonator 5 in the radial γ direction and an arrangement region 32 of the electron beam in the γ direction. The peak positions of the electric field strengths of the first electric field ring 21 and the second electric field ring 22 are set to γ1. γ, and the center position of the r1 motion of the electron beam 3 is γ. , and the diameter of the spiral motion is D, the relationship between these is as follows.

γ東<ro< r、 12) Dくγ2−γl(3) 電子ビーム3のら線運動部分における′邂界強就分布は
、第3図に示すようにら線の中心γ0よりも左右に遠ざ
かるに従い極性が逆転してその絶対値が大きくなってい
ることである。
γ east < ro < r, 12) D γ 2 − γ l (3) As shown in FIG. As the distance increases, the polarity reverses and its absolute value increases.

第4図はこのような強度分布をもつ電界中を円環状に配
置された電子ビーム3のら線を1つ取シ出したものと電
界強度Eθのr方向の変化曲線31を示している。
FIG. 4 shows one helical line of the electron beam 3 arranged annularly in an electric field having such an intensity distribution and a change curve 31 of the electric field intensity Eθ in the r direction.

まず最初に図の右側すなわち第2を界リング22におい
て減速位相を経験するような電子を考えは、その回転半
径を減じ、且つその回転中心を第2電界リング側に移動
して圧側すなわち第1電界リング21に流入することに
なる。いま、式(1)の条件が成立していれば、第1電
界リング側においてこの電子が経験するのは、加速位相
であるが、先の回転半径の減少と回転中心の移動のため
、第2電界リング側よシは電界@贋の弱い部分で加速位
相を見ることになシ、1回転当たシについて見れば、こ
の電子は電磁波にその運動エネルギを与えていることに
なる。しかも、第1電界リング側における加速によって
もその回転中心は第2亀界り/グ側に移動するので、以
降の回転では−ますます第2電界リング側における減速
の効果が優勢になシ、遂には第1遊界り/グ側に流入す
ることなく、第2電界リング側でその運動エネルギを電
磁波へ与えて行くようになる。
First, consider an electron that experiences a deceleration phase in the second electric field ring 22 on the right side of the figure, by reducing its radius of rotation and moving its center of rotation to the second electric field ring side, that is, on the pressure side, that is, in the first field ring. This will flow into the electric field ring 21. Now, if the condition of equation (1) holds true, what these electrons experience on the first electric field ring side is an acceleration phase, but due to the previous decrease in the radius of rotation and movement of the center of rotation, the 2 On the electric field ring side, the acceleration phase should be seen in the weak part of the electric field, and if you look at it per revolution, this electron is giving its kinetic energy to the electromagnetic wave. Moreover, the acceleration on the first electric field ring side also causes the center of rotation to move to the second turtle ring side, so in subsequent rotations - the effect of deceleration on the second electric field ring side becomes more and more dominant. Eventually, the kinetic energy comes to be imparted to the electromagnetic waves on the second electric field ring side without flowing into the first free field ring side.

一方、最初の′電界空間への入射時に第2電界リング側
で加速位相を経験するような電子についても、前述の過
程が逆転するのみで第1電界リング側に2ける減速の効
果が第2電界リング側のそれより大きくな#)1回転当
たシでは同様に運動エネルギを電磁波に与え最終的には
第1リング側にまつわシつくようになる。したがって、
入射電子ビーム3は個々の電子の電界空間への入射位相
に応じ2つのグループに分離され、共にその運動エネル
ギを電磁波に与え’tiijB波の層幅に寄与すること
になる。このだめ、このような機構では、通常の進行波
管やジャイロトロンの動作機構のように電磁波からエネ
ルギを受取るような好ましくない電子は全く存在しない
ことになシ高い変換効率が期待できる。
On the other hand, even for electrons that experience an acceleration phase on the second electric field ring side when first entering the electric field space, the above process is simply reversed, and the deceleration effect of 2 on the first electric field ring side is When the electric field is larger than that on the ring side (#) per rotation, kinetic energy is similarly imparted to the electromagnetic wave and it eventually becomes attached to the first ring side. therefore,
The incident electron beam 3 is separated into two groups according to the incident phase of each electron into the electric field space, and both of them impart their kinetic energy to the electromagnetic wave and contribute to the layer width of the 'tiijB wave. However, in such a mechanism, high conversion efficiency can be expected because there are no undesirable electrons that receive energy from electromagnetic waves as in the operating mechanism of a normal traveling wave tube or gyrotron.

しかも従来のベニオドロンに比べでリッジ間隙による高
周波電界強度の制約がないことと、入射できる電子ビー
ムの電力を増大できることによシ本発明の超高周波電子
管では大電力動作が可能である。
Furthermore, compared to conventional beniodorons, the ultrahigh-frequency electron tube of the present invention is capable of high-power operation because there is no restriction on the high-frequency electric field strength due to the ridge gap and the power of the incident electron beam can be increased.

また、サイクロトロン高調波においても高効率動作を維
持できることから、ミリ波及びサブミリ波帯でも磁界強
度の低い大′亀力超高尚波電子管を実現できる。
Furthermore, since high efficiency operation can be maintained even at cyclotron harmonics, a high-power ultrahigh-frequency electron tube with low magnetic field strength can be realized even in the millimeter wave and submillimeter wave bands.

ここに示した空胴共振器TEoytモードは一つの例で
あシ他の′邂Wモードを利用することも可能である。ま
た、高周波回路として導波管を用いることによυ増1@
管を実現することができる。
The cavity resonator TEoyt mode shown here is just one example; other 'W modes can also be used. In addition, by using a waveguide as a high-frequency circuit, υ can be increased by 1@
tube can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した超高周波電子管の全体図であ
る。第2図は円筒空胴共振器内の1Eo21モードの電
界分布と電子ビームの配置を示す断面図である。第3図
は円筒空胴共振器内のTEo*tモードの電界強度Eθ
の半径r方向の変化と電子ビームのr方向の配置を示す
線図でめる。第4図は電子ビームのら融を1つ取シ出し
たものと磁界強[Eθのr方向の変化曲線を示している
。 1・・・・・・超高周波電子管、2・・・・・・を子銃
組立体、3・・・・・・電子ビーム、4・・・・・・尚
周波回路、5・・・・・・円筒空胴共振器、6・・・・
・・コレクタ電極、7・・・・・・出力窓、8・・・・
・・出力導波管、9・・・・・・ソレノ1ド、10・・
・・・・管軸、21・・・・・・第1′屯界リング、2
2・・・・・・帛2電界リング、31・・・・・・電界
強度の半径方向の変化曲線、32・・・・・・′電子ビ
ームの半径方向の配置領域を示す@線。 l/ 図面の浄書(内容に変更なし) @/図 8Z図 第3図 手続補正書(方式) 特許庁長官 殿 1、事件の表示 昭和58年特 許 願第221628
号2、発明の名称 超高周波電子管 3、補正をする者 事件との関係 出 願 人 東京都港区芝五丁目33番1号 (423) 日本電気株式会社 代表者 関本忠弘 4、代理人 (連絡先 日本電気株式会社特許部) 5、補正命令の日付 昭オ059年2表28日 (発送
日)明細書及び図面 7、拘止の内容
FIG. 1 is an overall view of an ultra-high frequency electron tube embodying the present invention. FIG. 2 is a cross-sectional view showing the electric field distribution of the 1Eo21 mode in the cylindrical cavity resonator and the arrangement of the electron beam. Figure 3 shows the electric field strength Eθ of the TEo*t mode in the cylindrical cavity resonator.
A diagram showing the change in the radius r direction and the arrangement of the electron beam in the r direction. FIG. 4 shows a single fusion of the electron beam and a change curve of the magnetic field strength [Eθ in the r direction. 1... Super high frequency electron tube, 2... Sub gun assembly, 3... Electron beam, 4... Frequency circuit, 5... ...Cylindrical cavity resonator, 6...
...Collector electrode, 7...Output window, 8...
...Output waveguide, 9...Soleno 1, 10...
...Tube axis, 21...1st division ring, 2
2... Plate 2 electric field ring, 31... Radial change curve of electric field intensity, 32...' @ line showing the radial arrangement area of the electron beam. l/ Engraving of drawings (no change in content) @/ Figure 8Z Figure 3 Procedural amendment (method) Commissioner of the Patent Office 1, Indication of case 1988 Patent Application No. 221628
No. 2, Title of the invention Ultra-high frequency electron tube 3, Relationship with the amended person case Applicant 5-33-1 Shiba, Minato-ku, Tokyo (423) NEC Corporation Representative Tadahiro Sekimoto 4, Agent (liaison) Patent Department of NEC Corporation) 5. Date of amendment order: 28th Table of 2, 1989 (Shipping date) Specification and drawings 7, Contents of detention

Claims (1)

【特許請求の範囲】[Claims] 直流磁界中をら線運動しそのら線運動の中心を円環状に
配置した円筒状電子ビームと導波管または空胴共振器の
TEモード電磁波との相互作用に基づく超高周波電子管
において、前記TEモード電磁技は電界の方向が壁間的
に逆向きの2つ以上の電界成分を有し、前記電子ビーム
のら線運動の中心は、TEモード電磁波の逆方向電界成
分の中間に位置し、′1子ビームのら線運動のサイクロ
トロン角周波数ωCとTEモード電磁波のドツプラーシ
フトした角周波数ωとの間にnを正の整数としてω=(
2n−1)ωCなる関係を有することを特徴とする超高
周波電子管。
In an ultra-high frequency electron tube based on the interaction between a cylindrical electron beam that moves linearly in a DC magnetic field and the center of the linear movement is arranged in an annular manner and a TE mode electromagnetic wave of a waveguide or cavity resonator, the TE The mode electromagnetic technique has two or more electric field components in which the direction of the electric field is opposite between walls, and the center of the helical motion of the electron beam is located in the middle of the opposite direction electric field components of the TE mode electromagnetic wave, '1 Between the cyclotron angular frequency ωC of the spiral motion of the child beam and the Doppler-shifted angular frequency ω of the TE mode electromagnetic wave, let n be a positive integer and ω=(
2n-1) An ultra-high frequency electron tube characterized by having the relationship ωC.
JP22162883A 1983-11-25 1983-11-25 Ultrahigh frequency electron tube Granted JPS60115132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22162883A JPS60115132A (en) 1983-11-25 1983-11-25 Ultrahigh frequency electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22162883A JPS60115132A (en) 1983-11-25 1983-11-25 Ultrahigh frequency electron tube

Publications (2)

Publication Number Publication Date
JPS60115132A true JPS60115132A (en) 1985-06-21
JPH031770B2 JPH031770B2 (en) 1991-01-11

Family

ID=16769741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22162883A Granted JPS60115132A (en) 1983-11-25 1983-11-25 Ultrahigh frequency electron tube

Country Status (1)

Country Link
JP (1) JPS60115132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367155A2 (en) * 1988-10-31 1990-05-09 Kabushiki Kaisha Toshiba Extremely high frequency oscillator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364161B (en) * 2011-11-29 2013-08-28 何东 Gear-shifting device for outputting power unremittingly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367155A2 (en) * 1988-10-31 1990-05-09 Kabushiki Kaisha Toshiba Extremely high frequency oscillator

Also Published As

Publication number Publication date
JPH031770B2 (en) 1991-01-11

Similar Documents

Publication Publication Date Title
US2232050A (en) Electron tube and circuits employing them
US2409224A (en) Oscillator
JPS5826771B2 (en) Magnetron type microwave device
US4571524A (en) Electron accelerator and a millimeter-wave and submillimeter-wave generator equipped with said accelerator
JPS60115132A (en) Ultrahigh frequency electron tube
US3462636A (en) System for the conversion of microwave energy into electric direct current energy utilizing an electron beam tube
US2266411A (en) Electron tube
EP0594832B1 (en) Klystron comprising a tm01x mode (x 0) output resonant cavity
US4491765A (en) Quasioptical gyroklystron
JPH02265146A (en) Super high frequency oscillation tube
US3631315A (en) Broadband traveling wave device having a logarithmically varying bidimensional interaction space
JPS58116807A (en) Frequency multiplier
JPS61273833A (en) Ultra high-frequency electron tube
US3254261A (en) Fast wave tubes using periodic focusing fields
US2590612A (en) High-frequency electron discharge device and circuits therefor
CN114783850B (en) C-band full-cavity extraction relativistic magnetron
SU1110335A1 (en) Electronic mw-magnicon device
Solntsev Mode selection in pseudoperiodical waveguides and slow-save structures
RU2761460C1 (en) Collector with multi-stage recovery for an electronic gyrotron-type uhf apparatus
Oda High-Power Beam Source and Beam Transmission
SU893117A1 (en) Electron accelerator
RU2059346C1 (en) Heavy-current linear ion accelerator
RU2263376C1 (en) Slow-wave structure of traveling-wave tube
Tallerico Advances in high-power RF amplifiers
JPH03152831A (en) Quasi-optical gyrotron