JPS60114890A - Optical printer - Google Patents

Optical printer

Info

Publication number
JPS60114890A
JPS60114890A JP58222635A JP22263583A JPS60114890A JP S60114890 A JPS60114890 A JP S60114890A JP 58222635 A JP58222635 A JP 58222635A JP 22263583 A JP22263583 A JP 22263583A JP S60114890 A JPS60114890 A JP S60114890A
Authority
JP
Japan
Prior art keywords
image
light
light emitting
lighting
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58222635A
Other languages
Japanese (ja)
Inventor
Tadashi Yamakawa
正 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58222635A priority Critical patent/JPS60114890A/en
Publication of JPS60114890A publication Critical patent/JPS60114890A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/12Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers
    • G06K15/1238Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point
    • G06K15/1242Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point on one main scanning line
    • G06K15/1247Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point on one main scanning line using an array of light sources, e.g. a linear array

Abstract

PURPOSE:To prevent generation of white or black stripes at a printing-out time to obtain a clear image by setting space frequency characteristics of a focusing system so that a photosensitive area of a photosensitive body due to lighting of each bright point coincides with the size corresponding to one bright point of a divided image. CONSTITUTION:When every other one out of LEDs adjacent to one another is lit, that is, light emitting faces 601-1 and 601-3 are allowed to emit light but a light emitting face 601-2 is not allowed to emit light, the optical energy distribution on a photosensitive drum 101 is as shown by 903 in figure. If the focusing system is defocused and MTF is degraded to make the optical energy distribution on the surface of the drum uneveness in this manner, coloring states for printing-out in case of full lighting and thinned-out lighting approximate an ideal coloring state though an image forming exposure device where the width of light non-emitting face is relatively larger than that of a light emitting face is used. That is, a photosensitive area (coloring area D) due to lighting of each bright point coincides with the size corresponding to one bright point of the divided image.

Description

【発明の詳細な説明】 本発明は、LEDアレイや液晶シャッタアレイ等を用い
て、選択的に1列分の輝点の点灯、消灯を制御できるよ
うな、画像形成用露光器を組み込んだ光プリンタに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an optical system incorporating an image forming exposure device that can selectively turn on and off one row of bright spots using an LED array, liquid crystal shutter array, etc. Regarding printers.

この種の光プリンタは、飼えば一般的な電子写真式複写
装置のスリット露光−原稿像結像光学系のかわりに、主
走査方向一部分の輝点列をドラム上に結像でき、任意に
輝点の点灯、消灯を可能にした画像形成用露光器を組み
込んだものであり、特に発光ダイオード(I、ight
 mnitting Diode以下LEDと称す)ア
レイプリンタは、輝点列発生の手段として、微小LED
を数十個−列もしくは複数列に並べ、これらの像をドラ
ム面上に結憧する結像光学系を一体にしたものを画像形
成用露光器として用いたものである。
This type of optical printer can image a row of bright spots on a drum in a portion of the main scanning direction, instead of the slit exposure and original image forming optical system of a general electrophotographic copying device, and can arbitrarily brighten. It incorporates an image forming exposure device that makes it possible to turn lights on and off, and in particular light emitting diodes (I, light).
mnitting diodes (hereinafter referred to as LEDs) array printers use minute LEDs as a means of generating bright spot arrays.
An image-forming exposure device is an image-forming exposure device in which several dozen or more of these are arranged in rows or in multiple rows, and an image-forming optical system that focuses these images on the drum surface is integrated.

第1図にLEDアレイプリンタの概略構成図を示す。1
01は感光ドラムで矢印aの向きに回転する。102は
1次帯電器で感光ドラム101の表面を均一に帯電する
。106は従来のLEDプリンタヘッドであり、ここで
感光ドラム1010表面において輝点が結像された部分
の電荷のみ移動し、その他の部分の電荷はそのままで残
る。すなわち、静電潜像が形成される。次に現像器10
4を通過すると、そのときの感光ドラム101の表面の
′電荷の有氷 無に従い、トナーの付着、家着がおこり、感光ドラム1
01上の画像が顕像化する。以上の過程において、LE
Dプリンタヘッド106により輝点を照に入れたトナー
の極性等の組合せ如何により任意に決定できるのは周知
のとおりである。
FIG. 1 shows a schematic configuration diagram of an LED array printer. 1
01 is a photosensitive drum that rotates in the direction of arrow a. A primary charger 102 charges the surface of the photosensitive drum 101 uniformly. Reference numeral 106 designates a conventional LED printer head, in which only the charge on the surface of the photosensitive drum 1010 where a bright spot is imaged moves, and the charge on other parts remains unchanged. That is, an electrostatic latent image is formed. Next, the developing device 10
4, depending on the presence or absence of charge on the surface of the photosensitive drum 101 at that time, toner adhesion and dusting occur, and the photosensitive drum 1
The image above 01 becomes visible. In the above process, LE
As is well known, it can be arbitrarily determined by the combination of the polarity of the toner, etc., with the bright spot illuminated by the D printer head 106.

現像器104を通過して顕像化したトナーによる画像は
転写帯電器105によりカセット106もしくはカセッ
ト107より供給される紙に転写される。
The toner image developed by the developing device 104 is transferred by a transfer charger 105 to paper supplied from a cassette 106 or a cassette 107.

この紙の定着器108の通過時に感光ドラム101より
転写したトナーが紙に定着する。109は感光ドラム1
01上に残ったトナーのクリーナであり、110は除電
ランプである。
When the paper passes through the fixing device 108, the toner transferred from the photosensitive drum 101 is fixed on the paper. 109 is photosensitive drum 1
01 is a cleaner for toner remaining on the surface, and 110 is a static elimination lamp.

第2図はLEDプリンタヘッド103を構成するLED
アレイ基板201の斜視図である。202は放熱板を兼
ねた基板であり、203.204.205はセラミック
基板等で構成される配線手段である。206゜207は
画像信号や電源との接続を行うためのケーブルである。
FIG. 2 shows the LEDs that make up the LED printer head 103.
2 is a perspective view of an array substrate 201. FIG. 202 is a substrate that also serves as a heat sink, and 203, 204, and 205 are wiring means made of a ceramic substrate or the like. Cables 206 and 207 are used to connect image signals and power sources.

20B−1−208−fiは中央にLEDを1列に並べ
たLEDアレイチップであり、209−1〜209−n
及び210−1”210−nは、LEDアレイチップ2
081”208−nを駆動するドライバ回路、即ちケー
ブル206.207より入力される画像信号のシリアル
パラレル変換回路等を内蔵したLEDドライブ集積回路
(Integrated 01cuit以下ICと称す
)である。
20B-1-208-fi is an LED array chip with LEDs arranged in a row in the center, and 209-1 to 209-n
and 210-1" 210-n is LED array chip 2
081" 208-n, that is, an LED drive integrated circuit (hereinafter referred to as an IC) that incorporates a serial-parallel conversion circuit for image signals inputted from cables 206 and 207.

このLEDアレイチップ203−mとLEDドライブI
 C209−m、 210−mの部分を拡大したものを
第6図に示す。301−1.301−2.301−3.
301−4・・・はLEDであり、LEDアレイチップ
20B−mのほぼ中央に一列に並べである。奇数番のL
 E D 301−1.301−3、・・・は上側に、
偶数番のL E D 301−2.301−4・0は下
側にそれぞれ配線によって引き出され、LEDドライブ
I C209−m、 210−mの各LED駆動用端子
302−1.3−02−2.・・・303−1.306
−2.・・・にそれぞれワイヤボンディングしである〇 以上の様にLEDアレイ基板201は構成されており、
ケーブル206.207より画像信号を1列分逐次5L
EDドライブI C2091−209−n、 210−
1”210−幼く入力し、1列分のデータをシフトした
後、これを並列にLED駆動端子302−1.502−
2. @・・、606−1.505−2.・・・に出力
し、これに従い各LEDが点灯、消灯し、一部分の画像
形成用の輝点が発生する。
This LED array chip 203-m and LED drive I
FIG. 6 shows an enlarged view of C209-m and 210-m. 301-1.301-2.301-3.
301-4... are LEDs, which are arranged in a line approximately in the center of the LED array chip 20B-m. Odd number L
E D 301-1.301-3, ... is on the upper side,
The even numbered LEDs 301-2, 301-4 and 0 are each pulled out by wiring to the lower side, and are connected to each LED drive terminal 302-1.3-02-2 of the LED drive ICs 209-m and 210-m. .. ...303-1.306
-2. The LED array board 201 is configured as shown above by wire bonding to...
Sequentially 5L of image signals for one column from cables 206 and 207
ED drive IC C2091-209-n, 210-
1" 210- input, shift one column of data, and then connect it in parallel to the LED drive terminal 302-1.502-
2. @..., 606-1.505-2. ..., each LED is turned on and off according to this, and a bright spot for image formation is generated in a part.

第4図にLED発光部とドラム面結像点の関係図を示す
。LEDアレイチップ20B−atは、セルフォックレ
ンズアレイ等の結像光学系401CJ:ツr感光ドラム
101上に結像される。ここでLED501−1からの
光束L1は角度θが小さいと、結像糸401により光束
L1−t となり入射するが、角度θが大きくなると、
光束の1部が入射しなくなる。
FIG. 4 shows a diagram of the relationship between the LED light emitting section and the imaging point on the drum surface. The LED array chip 20B-at forms an image on the photosensitive drum 101 using an imaging optical system 401CJ, such as a SELFOC lens array. Here, when the angle θ is small, the luminous flux L1 from the LED 501-1 enters the imaging thread 401 as a luminous flux L1-t, but when the angle θ becomes large,
A part of the luminous flux is no longer incident.

そして入射した光束L1−t のみが感光ドラム101
上に到達し、結像される。
Then, only the incident light beam L1-t reaches the photosensitive drum 101.
It reaches the top and is imaged.

第5−1図にLED発光部の形状を示す。図中501は
LEDチップであり、502が有効発光面、503が電
極であり、504が電極とLEDの接続面である。従っ
て1画素分のLEDのPN接合面の大きさは、有効発光
1fli 502と接続面504を加えたものになって
いる。
Figure 5-1 shows the shape of the LED light emitting section. In the figure, 501 is an LED chip, 502 is an effective light emitting surface, 503 is an electrode, and 504 is a connection surface between the electrode and the LED. Therefore, the size of the PN junction surface of the LED for one pixel is the sum of the effective light emission 1fli 502 and the connection surface 504.

一方、LEI)の発光は有効発光面502に走置方向を
0°として、第5−2図の配光特性の様になっている。
On the other hand, the light emission of LEI) has a light distribution characteristic as shown in FIG. 5-2, with the traveling direction set at 0° on the effective light emitting surface 502.

そして、光の出力は、有効発光面502下のPN接合面
の電流密度にほぼ比例する。一方、各画素に対応するL
ED発光面は一列に並べであるので、隣接する画素との
区切りを形成するために、LhiDの有効発光面502
の一辺の大きさは、11!lI素ピツチより小ざくなる
The light output is approximately proportional to the current density of the PN junction surface below the effective light emitting surface 502. On the other hand, L corresponding to each pixel
Since the ED light emitting surfaces are arranged in a line, the effective light emitting surface 502 of LhiD is used to form a separation between adjacent pixels.
The size of one side of is 11! It is smaller than the lI elementary pitch.

この傾向は、画素密度を高めるほど顕著になる。This tendency becomes more pronounced as the pixel density increases.

それ−は発光部分と隣接発光部との電気約分ルCの為に
有限の大きさの非発光部分が必要であり、この幅は使用
するLEDアレイの材質や構造によって最小値が定まっ
てしまい画素ピッチを小さくすればするはど画素ピッチ
に比較して電気的分離の為の非発光部分の幅が大きくな
ってしまう。たとえば、選1)< aAi 敗49’の
方法を用いt−W b b ill’ )R、)’t 
+’+141は20μm程度であり、機械的に切削した
場合40pm程度を必要とする。第6図のよ?に画素ピ
ツーチ/aに対し、発光面幅1bが半分程度になってし
まうまで画素密度を高めると、すべてのLEDを点灯し
たとき、すなわち発光面601−1.601−2.60
1−5を発分布は602の様になる。このとき、プリン
トアウト時の着色点、非着色点の境界点とする光エネル
ギρしきい値をWlと小さく設定しても、着色状態pa
lで示した様に、着色領域Dllll包着色領域lがで
きてしまう。この場合、光があたった領域を着色領域と
して説明しているが、電子写真プロセスをかえれば、着
色、非着色を逆にすることは周知のとおりである。
This is because a non-light-emitting part of a finite size is required due to the electric coefficient C between the light-emitting part and the adjacent light-emitting part, and the minimum value of this width is determined by the material and structure of the LED array used. If the pixel pitch is made smaller, the width of the non-light-emitting portion for electrical isolation becomes larger than the pixel pitch. For example, using the method of choice 1) < aAi defeat 49', t-W b b ill' ) R, )'
+'+141 is approximately 20 μm, and requires approximately 40 pm when mechanically cut. Is it from Figure 6? If the pixel density is increased until the light emitting surface width 1b becomes about half of the pixel Pituchi/a, when all LEDs are lit, that is, the light emitting surface 601-1.601-2.60
The distribution for 1-5 is as shown in 602. At this time, even if the light energy ρ threshold value used as the boundary point between the colored point and the non-colored point at the time of printout is set to a small value Wl, the colored state pa
As shown by l, a colored area Dllll surrounding colored area l is created. In this case, the area exposed to light is described as a colored area, but it is well known that if the electrophotographic process is changed, colored and non-colored areas can be reversed.

一方、隣接LEDを1個毎にまびいて点灯したとき、す
なわち発光面601−1.601−3を発光させ、発光
面601−2を非発光のままとしたときの感光ドラム1
01上の光エネルー分布は606の様になる。
On the other hand, the photosensitive drum 1 when the adjacent LEDs are turned on one by one, that is, when the light emitting surface 601-1, 601-3 is made to emit light and the light emitting surface 601-2 is left non-emitting.
The optical energy distribution on 01 is as shown in 606.

このときのプリントアウト時の着色状態はpalで示し
た様で、非着色領域xJ11が着色領域DIllより狭
くなっている。本来ならば、全LED点灯時は着色状態
pxoのように1行にわたって、着色領域Droが続く
べきであるし、1個毎にまびいてLEDを点灯したとき
は、非着色領域psoと着色領域proの幅が同じにな
るべきであるが、以上の様に、画素密度を高めると非発
光部分に対111j;するte光ドラム面には光があた
らず、その結果画面に黒すじや白すしが発生してしまい
、高則素蕾度のL IHJ)アレイプリンタの実用化の
さまたげになっていた。
The colored state at the time of printing out at this time is as shown by pal, and the non-colored area xJ11 is narrower than the colored area DIll. Normally, when all LEDs are lit, the colored area Dro should continue over one line like the colored state pxo, but when the LEDs are lit one by one, the non-colored area pso and the colored area The width of the pro should be the same, but as mentioned above, when the pixel density is increased, the light does not hit the light drum surface that is in the non-emitting part, and as a result, black streaks and white streaks appear on the screen. This has hindered the practical application of Takanori's (LIHJ) array printer.

本発明は、発光面幅に対し隣接発光面までの非発光面幅
が比較的大きな輝点発生器列を用いても、非発光面に起
因する黒すじゃ白すしを発生する小なく、鮮明な画像が
得られる光プリンタを提供することにある。
Even if a bright spot generator array is used, in which the width of the non-emissive surface to the adjacent emissive surface is relatively large compared to the width of the emissive surface, the present invention provides a clear image without causing black spots and white spots caused by the non-emissive surface. An object of the present invention is to provide an optical printer that can produce images of high quality.

以下、図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第7図に本発明の実施例の結像光を示す。本図は、従来
例の第4図とはぼ同じであるが、セル7オツクレンズア
レイ401と感光ドラム101までの距離J O/とセ
ルフォックレンズアレイ4o1とLED301−1まで
の距離1’1が第4図における距離1!o。
FIG. 7 shows imaging light according to an embodiment of the present invention. This figure is almost the same as FIG. 4 of the conventional example, but the distance JO/ between the cell 7 lens array 401 and the photosensitive drum 101 and the distance 1'1 between the selfoc lens array 4o1 and the LED 301-1 are shown. is the distance 1 in Figure 4! o.

11とそれぞれ異なっている。すなわち、あえて結像位
置をずらすことにより、感光ドラム101上の像701
をぼかし、LEIJ301−1の発光面より大きくさせ
る。これは、セルフォックレンズアレイの共役点から物
点をずらすとM ’1’ li’ (Modulati
onTra!1Later Function )が減
少することを利用したものである。第8図(a)に結像
位置をあわせた状態から、LED而もしくは感光ドラム
面をセルフォックレンズよりΔlxだけ遠ざけたり(+
)近づけたり←)したときのMTFの変化を示した。ま
た第8図(b)には、1、ED面からドラム面までの長
ざをTcとし、1o ’ −A”iの条件でI’cを変
化させたときのMTFの変化を示した。この様にセルフ
ォックレンズと発光面、感光ドラム面の距離をかえるこ
とによりMTFを減少させ、像の大きさを拡大すること
ができる。この様子を第9図に示した。
11 and each one is different. That is, by intentionally shifting the image formation position, the image 701 on the photosensitive drum 101
is blurred and made larger than the light emitting surface of LEIJ301-1. This means that if the object point is shifted from the conjugate point of the SELFOC lens array, M '1'li' (Modulati
onTra! This method takes advantage of the fact that 1Later Function) decreases. From the state where the image formation position is aligned as shown in Fig. 8(a), move the LED or photosensitive drum surface away from the SELFOC lens by Δlx (+
) and ←) shows the change in MTF. Further, FIG. 8(b) shows the change in MTF when I'c is changed under the condition of 1o' - A''i, where the length from the ED surface to the drum surface is Tc. By changing the distance between the SELFOC lens, the light emitting surface, and the photosensitive drum surface in this way, the MTF can be reduced and the image size can be enlarged.This situation is shown in FIG.

すべてのLEDを点灯したとき、すなわち発光面601
−1.601−2.601−3を発光させた時、感光ド
ラム101上の光エネルギρ分布は902の様になる。
When all LEDs are lit, that is, the light emitting surface 601
-1.601-2.601-3, the light energy ρ distribution on the photosensitive drum 101 becomes as shown in 902.

これは、結像光学系のMTFが低下したためにコントラ
ストが低下するため、第6図の光エネルヘ分布602に
対して、なまった形となっている。このとき、従来例と
同様に着色点、非着色点の境界点とする光エネルギ釈し
きい値をWlとすると、着色状態pH1はすべて着色領
域])111’となる。一方、隣接LEDを1個毎にま
びいて点灯したとき、すなわち発光面601−1.60
1−3を発光させ、発光面601−2を非発光のままと
したときの感光ドラム101上の光エネルうζ布は90
6の様になる。
This is because the contrast decreases due to the decrease in the MTF of the imaging optical system, so the shape is rounded compared to the light energy distribution 602 in FIG. 6. At this time, as in the conventional example, if the light energy interpretation threshold value which is the boundary point between the colored point and the non-colored point is Wl, the colored state pH1 is entirely in the colored region ]) 111'. On the other hand, when the adjacent LEDs are lit one by one, that is, the light emitting surface 601-1.60
1-3 emits light and the light-emitting surface 601-2 remains non-emissive, the light energy ζ cloth on the photosensitive drum 101 is 90
It will look like 6.

このときのプリントアウト時の着色状態はpzgで示し
た様に、非着色領域Legと着色領域D22がほぼ同幅
で交互になる。
At this time, the colored state at the time of printing out is such that the non-colored area Leg and the colored area D22 alternate with substantially the same width, as shown by pzg.

この様に、結像系をデフォーカスし、MTFを低下させ
ドラム面上の光エネルー分布をなまらせることにより発
光面幅に対し、非発光面幅が比較的大きな画像形成用露
光器を用いた場合にも、全点灯時、まびき点灯時の場合
のそれぞれのプリントアウト時の着色状態(第9図にお
けるFil、p13)が理想的な着色状態(第6図にお
けるPill、 pao )に近づけることができる。
In this way, by defocusing the imaging system, lowering the MTF, and blunting the light energy distribution on the drum surface, it is possible to use an image forming exposure device whose non-emissive surface width is relatively large compared to the emissive surface width. In this case, it is possible to bring the coloring state (Fil, p13 in Figure 9) closer to the ideal coloring state (Pill, pao in Figure 6) at the time of printout when fully lit and when the lights are dimly lit. can.

即ち、これは各11i11点の点灯による感光領域(実
施例では着色領域D)を、分割された画像の1輝点に対
応する大きさに一致させることを意味する。
That is, this means that the photosensitive area (coloring area D in the embodiment) caused by lighting each 11i11 points is made to match the size corresponding to one bright spot in the divided image.

本実施例の場合、しきい値エネルギWlを越える△ 越えないに従ってはっきりと包着・色、着色が実現する
様な電子写真プロセスを選ぶ必要があるのはいうまでも
ない。
In the case of the present embodiment, it goes without saying that it is necessary to select an electrophotographic process that clearly achieves wrapping, coloring, and coloring without exceeding the threshold energy Wl.

また、デフォーカスするのには距離11o、11のいず
れをかえても良いし、両方ともがえても良いが、片側デ
フォーカスすなわち第8図(a)においては、結像状態
からのずれΔ11に対しMTFの低下の)J1合が非常
に高< 、50pm程度の誤差でMTFは6〜7%も異
なってしまう。−万両側均等のデフォーカスすなわち第
8図(b)においては、比較的ゆるやかである。さらに
相方とも距雛を長くする方向がMTFの変化率がゆるや
がである。一方、画像形成用露光器と結像器は一般に一
体として組み込みこれを光書込みヘッドとして、Iδ光
ドラム近傍に固定するので、画像形成用露光器と結像光
学系との距離を調整する方が、結像光学系と感光ドラム
との距離を調整するより峙しい。従って望みのMTFに
なる様に、発光面一結像光学系間距離1’1分設定し、
その後このヘッドを忠光ドラム近傍に間隔を調整しなが
ら固定するのが・望ましい。更にA”iは11より長く
することが望ましい。
Furthermore, in order to defocus, either the distances 11o or 11 or both distances may be changed, but in one-sided defocus, that is, in FIG. 8(a), the deviation Δ11 from the imaging state On the other hand, if the J1 ratio (of the decrease in MTF) is very high, an error of about 50 pm will cause a difference in MTF of 6 to 7%. - The defocus that is equal on all sides, that is, the defocus shown in FIG. 8(b) is relatively gentle. Furthermore, the rate of change in MTF is more gradual in the direction of lengthening the distance. On the other hand, since the image-forming exposer and imager are generally integrated as an optical writing head and fixed near the Iδ optical drum, it is better to adjust the distance between the image-forming exposer and the image-forming optical system. , it is more difficult than adjusting the distance between the imaging optical system and the photosensitive drum. Therefore, to obtain the desired MTF, set the distance between the light emitting surface and the imaging optical system to 1'1 minute.
After that, it is desirable to fix this head near the Tadamitsu drum while adjusting the interval. Furthermore, it is desirable that A"i be longer than 11.

第10図はアモルファスシリコンドラムにおいて1成分
正転現像したときの電位−濃度特性である。横軸VSB
はドラム電位Vsより現像器バイアス電圧VBを引いた
電位差であり、縦軸民は現像後右通紙に転写、定着した
ときのC度である。VSBOはかぶりのない画像を得る
ための電位差であり、VSBl。
FIG. 10 shows potential-density characteristics when one-component forward development is performed on an amorphous silicon drum. Horizontal axis VSB
is the potential difference obtained by subtracting the developer bias voltage VB from the drum potential Vs, and the vertical axis represents the degree C when the image is transferred and fixed on the right-hand paper after development. VSBO is a potential difference to obtain a fog-free image, and VSBL is a potential difference for obtaining a fog-free image.

VSB2. VSB3はそnぞれ画像の濃度を0.2.
1.0.1.3にする為の電位差である。またVTHは
濃度を0.6にする為の電位差である。
VSB2. VSB3 each sets the image density to 0.2.
This is the potential difference to make it 1.0.1.3. Further, VTH is a potential difference for setting the concentration to 0.6.

第11図は光量−電位特性で、感光ドラムを最初、電位
Vsoに帯電したのち、光エネルギーWを照射したとき
の表面電位Vsの低下の関係を表している。
FIG. 11 shows the light amount-potential characteristic, which shows the relationship of decrease in surface potential Vs when the photosensitive drum is first charged to a potential Vso and then irradiated with light energy W.

したがって、かぶりのない画像を得るためにはVso 
−VB > VSBO が成立していればよい。
Therefore, in order to obtain a fog-free image, Vso
It is sufficient if -VB > VSBO holds true.

一方、黒画像をはっきり得るためには、光1!i、l 
’44したときの表面電位をVsxとしたとき、Vs、
z: −VB≦VSB3 を満足すればよい。この電位■Sxより表面電位を低く
するだけの光エネルーが黒をはっきりだすために必要と
なり、第11図がらwpxより強い光を必要とすること
がわかる。
On the other hand, to get a clear black image, light 1! i, l
When the surface potential at '44 is Vsx, Vs,
z: -VB≦VSB3 may be satisfied. Light energy sufficient to lower the surface potential below this potential (2)Sx is required to make black clearly, and it can be seen from FIG. 11 that light stronger than wpx is required.

ドラム表面電位VSI、 VS2. VTHをそt’L
ソnVs1−VB −VSBI、 VS2−VB −V
SB2. V3TH−VB −VTHトすると、第10
図の関係より、エネルーwplの光を照射したとき濃度
0.2の画像が得られ、エネル2pTHの光を照射した
とき濃度0.6の画像が得られ、エネルギ1.!Wp2
の光を照射したとき濃&1.0の画像が得られることが
わかる。
Drum surface potential VSI, VS2. VTH sot'L
VS1-VB-VSBI, VS2-VB-V
SB2. V3TH-VB-VTH, then the 10th
From the relationship in the figure, an image with a density of 0.2 is obtained when light with an energy of wpl is irradiated, an image with a density of 0.6 is obtained when light with an energy of 2 pTH is irradiated, and an image with a density of 0.6 is obtained when light with an energy of 1. ! Wp2
It can be seen that when irradiated with light of 1.0, a dark &1.0 image is obtained.

この場合光エネルギのしきい値はWpTHとなり、−八 これより光エネル−が強いと黒く、弱いと白くプリント
アウトされる。
In this case, the threshold value of the light energy is WpTH, and if the light energy is stronger than this, it will be printed out in black, and if it is weaker than this, it will be printed out in white.

そのとき、電位差VSBI、 VSB2の2つの値が小
さいほど黒白の変化の度合が大きくなる。
At this time, the smaller the two values of the potential differences VSBI and VSB2 are, the greater the degree of change in black and white becomes.

このしきい値wp’raは、バイアス電圧VBもしくは
初期帯電電位VSoを変化させることによって変えるこ
とができるが、安定に動作させるためには、電位Vso
の範囲は使用するドラムにより定まってしまうので、あ
とはがぶりかです黒がはっきりでる様な上述の条件を満
足する範囲で、バイアス電圧VBを上下に変化させるの
みであるので、WpTHの可変範囲は限られてしまう。
This threshold value wp'ra can be changed by changing the bias voltage VB or the initial charging potential VSo, but in order to operate stably, the potential Vso
The range of WpTH is determined by the drum used, so the only thing left to do is to vary the bias voltage VB up and down within the range that satisfies the above conditions such as clear black, so the variable range of WpTH is is limited.

従ってWpTHをあまり小さくすることはできない。Therefore, WpTH cannot be made very small.

以上のことから、最小のしきい値元エネルギを△ WpTH’とすると、一点毎のLEDの点灯時、点り、
JLEDの中心から一接するLEDの中心との中+tl
l地点における発光エネルギが、少くともWpTH’以
△ 上になるまで、結像光学系のMTFを低下させれば、白
すしの発生を除去することができる。
From the above, if the minimum threshold source energy is △ WpTH', when each LED is turned on,
Between the center of the LED that is in contact with the center of the JLED + tl
By lowering the MTF of the imaging optical system until the emission energy at point l becomes at least WpTH' or more, the occurrence of white smudge can be eliminated.

ただし、MTI”をあまり低下させると光照射バタ、ン
の分布の強弱の度合が小さくなり、6;速度0.2〜1
.0までのハーフトーン°の領域が増加する。また光照
射バ転ンの分布の強弱の度合が小さくゆるやかであると
、LED間の輝度のばらつきによりプリントアウト時の
黒、白の幅がb’4なりゃすくなる。
However, if the MTI is lowered too much, the intensity of the distribution of the light irradiation pattern will become smaller.
.. The area of halftone degrees up to 0 increases. Furthermore, if the intensity of the light irradiation deflection distribution is small and gradual, the width of black and white when printed out is likely to be b'4 due to variations in brightness between LEDs.

第12図は、Ll(D601−1のみ点灯し、M T 
li’を低下させた結像系で、ドラム上に結像させたと
きの光エネルギ■の分布を示したものである。長さlc
、ldはそれぞれla > la、 ga < 71!
aの関係にあり、1点LED点灯時に、プリントアウト
される黒部分の幅の最大、最小の許容値をあられしてい
る。この具体的な値は、写真ll!Il像を再生する様
な高級プリンタと単に文字を印字する普及型プリンタと
によって、異なるが、普及型ではLEDピッチ/2Lの
夫々1.2倍長、0.8倍長である。
In Figure 12, Ll (only D601-1 lights up, M T
This figure shows the distribution of light energy (2) when an image is formed on a drum using an imaging system with reduced li'. length lc
, ld are la > la and ga < 71!, respectively.
There is a relationship as shown in a, which determines the maximum and minimum allowable width of the black part printed out when one LED is lit. This specific value is shown in the photo! Although it differs depending on a high-end printer that reproduces Il images and a popular printer that simply prints characters, the length is 1.2 times the LED pitch/2L and 0.8 times the length of the LED pitch/2L for the popular type, respectively.

この長さec、ldの境界上の元エネル勺定それぞれW
3.W4とするとき、W3. W4の間に前述のWpl
 。
The original energies on the boundaries of lengths ec and ld are W, respectively.
3. When W4, W3. The aforementioned Wpl during W4
.

Wp2が含まれておれば、中間調領域はlCとldのか
さなりあわない部分のみになりかつ、黒、白のプリント
幅はAa以上、l0以内という仕様を満足する。
If Wp2 is included, the halftone area will be limited to the portion where lc and ld do not match, and the black and white print widths will satisfy the specifications of not less than Aa and not more than 10.

M T Fを低下させすぎると、分布906がなめらか
になり、la、laに対するW3. W4の差が縮まり
、W3. W4間にWpl、 Wp2がおさまらなくな
る。すなわちハーフトーン領域が増大するとともに、L
ED601−1の輝度の多少の皺化により、分布の程度
がわずかに変化しただけで、同じエネルギzeに対する
分布位置の差1eが大きく異なってしまい、プリントア
ウト時の白、黒のバタン幅の誤差の増大につながる。
If M T F is lowered too much, the distribution 906 becomes smooth and W3. The difference in W4 has narrowed, and W3. Wpl and Wp2 do not settle between W4. That is, as the halftone area increases, L
Due to some wrinkles in the brightness of ED601-1, even a slight change in the degree of distribution will cause a large difference in the distribution position 1e for the same energy ze, resulting in an error in the width of the white and black buttons when printing out. leading to an increase in

従って、MTFの低下の程度は、W3.W4の同にWp
l、 Wp2が位置する程度にとどめるのが望ましい。
Therefore, the degree of decrease in MTF is W3. Same as W4 and Wp
It is desirable to keep it at a level where Wp2 and Wp2 are located.

以上、結像器のΔ4 T l!”を低下させ結像するた
めに、デフォーカスする側をのべたが、上述のMr、’
の低下の程度を満足する様に、あらかじめ1〜ITjパ
の悪い結像系を用いても良い。
Above is the Δ4 T l! of the imager. In order to form an image by lowering the
An imaging system with a poor performance of 1 to ITj may be used in advance so as to satisfy the degree of decrease in .

また、結像器と発光面もしくは結像lI+iの間にJ+
Jiυf率の異なる物質を入れてデフォーカスしても良
い。
Also, between the imager and the light emitting surface or the imaging lI+i,
Defocusing may be performed by adding substances having different Jiυf ratios.

また、光をあてた部分がi&’< くなる様なt+f子
写真プロセスにおいて本発明を説明したが、この逆のプ
ロセスでも同様であり、本発明を適用できる。
Furthermore, although the present invention has been described in terms of a t+f photographic process in which the illuminated portion satisfies i&'<, the present invention is also applicable to the reverse process.

以上説明したように、本発明は従来の元プリンタにおい
て、結像糸の空間周波数特性をf’iJ察するだけで、
プリントアウト時の白すしや黒子じの発生を防ぎ、鮮明
な画像が得られるという効果がある0
As explained above, the present invention uses a conventional original printer to simply detect the spatial frequency characteristics of the imaging thread f'iJ.
It has the effect of preventing white sushi and black spots when printing out and producing clear images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的なLEDプリンタの構成の一例を示す概
略図、第2図、第6図゛は夫々1.El)プリンタヘッ
ドの構成を示す概略図、第4図は従来のLEDプリンタ
におけるLED発光部と感光ドラムとの結像関係を示す
図、第5−1図はLEDアレイの発光面形状を示す図、
第5−2図はLEDの配光特性を示す図、第6図は従来
のyCプリンタにおける発光パターンと感光体面上の光
エネルギーとの関係を説19ノする図、第7図は本発明
の一実施例にお4−Jるり、 E D発光部と感光ドラ
ムとの結像関係を示す図、第8図(a)、第8図(b)
は夫々発光面又は/および感光ドラム面と結像光学系と
の距離の変化に対するM T I”の変化を説明する図
、第9図は本発明の光プリンタにおける発光パターンと
感光体面上の光エネルギーとの関係を説明する図、第1
0図は元プリンタの電位−濃度特性を示す図、第11図
は光プリンタのツtr’kiL−電位特性を示す図、第
12図は不発りJにおける発光パターンと感yC体面上
の光エネルギーとの関係を説明する図である01o1−
−− te元ドラム、20B−1、208−2,−・・
20B−m、”@・。 20B−21・・・LEDアレイチップ、501−1・
・・IJD。 401 @健・セルフォックレンズアレイ、601−1
.601−2.601−3・・・発光面、602、60
3.902.903−−−光エネルギー分布、701・
・・−発光面の像、 PLO,pH,PI3. P2O,P21. P22・
・・着色状態、DIO,Dll、 D12. D20.
 D21. D22・・・着色領域、LIO,Lll、
 L12. L20. L21. L22・φ・非着色
領域。 ApI cm′In) Tc (臀?Il) 晃q図 乙or−+ 乙θ、−2t、tyl−3と FIZ ″ 二・ ・・′ ・ 、、、、、″ 、、、
、、、7. ″、・二r2
FIG. 1 is a schematic diagram showing an example of the configuration of a general LED printer, and FIGS. 2 and 6 are respectively 1. El) A schematic diagram showing the configuration of the printer head; FIG. 4 is a diagram showing the image formation relationship between the LED light emitting part and the photosensitive drum in a conventional LED printer; FIG. 5-1 is a diagram showing the shape of the light emitting surface of the LED array. ,
Figure 5-2 is a diagram showing the light distribution characteristics of the LED, Figure 6 is a diagram explaining the relationship between the light emitting pattern and the light energy on the photoreceptor surface in a conventional YC printer, and Figure 7 is a diagram showing the relationship between the light emission pattern and the light energy on the photoreceptor surface in a conventional YC printer. One example is 4-J Ruri. Diagrams showing the image formation relationship between the ED light emitting section and the photosensitive drum, FIGS. 8(a) and 8(b).
9 is a diagram illustrating changes in M T I with respect to changes in the distance between the light emitting surface and/or photosensitive drum surface and the imaging optical system, respectively, and FIG. Diagram explaining the relationship with energy, 1st
Figure 0 is a diagram showing the potential-density characteristics of the original printer, Figure 11 is a diagram showing the tr'kiL-potential characteristics of the optical printer, and Figure 12 is the light emission pattern in unfired J and the light energy on the yC conductor surface. 01o1- which is a diagram explaining the relationship between
--Te original drum, 20B-1, 208-2, --...
20B-m, "@. 20B-21... LED array chip, 501-1.
...IJD. 401 @Ken Selfoc Lens Array, 601-1
.. 601-2.601-3... Light emitting surface, 602, 60
3.902.903---Light energy distribution, 701・
...-Image of light emitting surface, PLO, pH, PI3. P2O, P21. P22・
...Colored state, DIO, Dll, D12. D20.
D21. D22... Colored area, LIO, Lll,
L12. L20. L21. L22・φ・Uncolored area. ApI cm'In) Tc (buttocks? Il) Akiraq figure Otsu or-+ Otsu θ, -2t, tyl-3 and FIZ ``2...' ・ ,,,,'' ,,,
,,,7. ″,・2r2

Claims (1)

【特許請求の範囲】[Claims] (1)画像信号に応じて選択的に点滅制御できる複数個
の輝点発生器を少くとも1列配置した画像形成用露光器
と、感光体と、前記画像形成用露光器の各輝点を前記感
光体上に結像する結像光学系とから成る結像系によって
前記輝点に対応して分割された画像を形成する光プリン
タにおいて、 前記各輝点の点灯による感光体の感光領域と、前記分割
された画像の1輝点に対応する大きさとが一致するよう
に前記結伝系の空間周波数特性を設定したことを特徴と
する光プリンタ。
(1) An image forming exposure device in which at least one row of a plurality of bright spot generators that can be selectively controlled to blink according to an image signal, a photoreceptor, and each bright point of the image forming exposure device are arranged. In an optical printer that forms an image divided corresponding to the bright spots by an imaging system comprising an imaging optical system that forms an image on the photoconductor, the photosensitive area of the photoconductor and . An optical printer characterized in that the spatial frequency characteristic of the coupling system is set so that the size corresponding to one bright spot of the divided image matches the size.
JP58222635A 1983-11-25 1983-11-25 Optical printer Pending JPS60114890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58222635A JPS60114890A (en) 1983-11-25 1983-11-25 Optical printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58222635A JPS60114890A (en) 1983-11-25 1983-11-25 Optical printer

Publications (1)

Publication Number Publication Date
JPS60114890A true JPS60114890A (en) 1985-06-21

Family

ID=16785539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58222635A Pending JPS60114890A (en) 1983-11-25 1983-11-25 Optical printer

Country Status (1)

Country Link
JP (1) JPS60114890A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007728A1 (en) * 1987-03-23 1988-10-06 Eastman Kodak Company Focusing for optical print heads
JPH0288751U (en) * 1988-12-28 1990-07-13
JPH03253361A (en) * 1990-03-02 1991-11-12 Tokyo Electric Co Ltd Edge surface light type emitting el printer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007728A1 (en) * 1987-03-23 1988-10-06 Eastman Kodak Company Focusing for optical print heads
US4893926A (en) * 1987-03-23 1990-01-16 Eastman Kodak Company Focusing for optical print heads
JPH0288751U (en) * 1988-12-28 1990-07-13
JPH0617550Y2 (en) * 1988-12-28 1994-05-11 沖電気工業株式会社 Light emitting diode print head
JPH03253361A (en) * 1990-03-02 1991-11-12 Tokyo Electric Co Ltd Edge surface light type emitting el printer

Similar Documents

Publication Publication Date Title
US4515462A (en) Method and apparatus for forming multicolor image
US20140023399A1 (en) Light-emitting device, driving method of light-emitting device, light-emitting chip, print head and image forming apparatus
JP7187282B2 (en) image forming device
US20020149663A1 (en) Optical scanning device and image forming apparatus using the optical scanning device
JPH1184764A (en) Digital image forming method and device therefor
US8786646B2 (en) Light-emitting chip, light-emitting device, print head and image forming apparatus
JPS60114890A (en) Optical printer
US5305069A (en) Two color image forming apparatus
JPS60116479A (en) Printer using light-emitting diode
JP7232086B2 (en) Semiconductor light emitting device, exposure head and image forming device
US5160965A (en) Image forming apparatus with small LED array
JPS6099672A (en) Printer using light emitting diode
US11962731B2 (en) Light emitting component, optical writing device using same, and image forming apparatus
JP2966705B2 (en) Image reading / writing device
JPS6357262A (en) Optical writing apparatus
JP2005070463A (en) Image reader
JP6884534B2 (en) Printhead and image forming device
US20130050386A1 (en) Light emitting unit and image forming apparatus
JPS6357265A (en) Optical writing method by led array head
EP0088553A1 (en) Method and apparatus for forming multicolour image
JPS60134660A (en) Led printer
JPH0691931A (en) Image recording device
JPS6099673A (en) Printer using light emitting diode
JPH0343761A (en) Line printer
JP4191892B2 (en) Color image forming apparatus