JPS6011473A - Preparation of 5-(phenylmethylene)-2,4-imidazolidinedione - Google Patents

Preparation of 5-(phenylmethylene)-2,4-imidazolidinedione

Info

Publication number
JPS6011473A
JPS6011473A JP11939283A JP11939283A JPS6011473A JP S6011473 A JPS6011473 A JP S6011473A JP 11939283 A JP11939283 A JP 11939283A JP 11939283 A JP11939283 A JP 11939283A JP S6011473 A JPS6011473 A JP S6011473A
Authority
JP
Japan
Prior art keywords
ammonia
water
imidazolidinedione
bza
benzaldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11939283A
Other languages
Japanese (ja)
Inventor
Shigeo Wake
和気 繁夫
Hidenori Dandan
段々 英則
Tadashi Mizuno
正 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP11939283A priority Critical patent/JPS6011473A/en
Publication of JPS6011473A publication Critical patent/JPS6011473A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled compound useful as an intermediate for preparing phenylalanine economically advantageously, by reacting 2,4-imidazolidinedione with benzaldehyde by the use of inexpensive ammonia as a condensation agent. CONSTITUTION:2,4-Imidazolidinedione is reacted with benzaldehyde by the use of ammonia as a condensation agent at 50-150 deg.C, preferably at 80-110 deg.C, to give the titled compound. Water is preferable as a solvent, but a mixed solvent of water and a water-soluble organic solvent such as an alcohol, nitrile, etc. may be used. Ammonia gas, ammonia water, ammonium carbonate, etc. may be used as ammonia, and an amount of it used is 0.01-10 times, preferably 0.01- 2.0 times as much ammonia as one of the raw materials used in a smaller amount by molar quantity. A molar ratio of the raw materials of the former/the latter used is 0.7-1.4.

Description

【発明の詳細な説明】 本発明は、5−(フェニルメチレン)−2゜4−イミダ
ゾリジンジオン(以下PLDNと略示する)を工業的に
製造する方法に関するものである。さらに詳しくいえば
、本発明は、フェニルアラニンの製造中間体として有用
なPLDNを2.4−イミダゾリジンジオン(以下ID
Nと略示する)とペンズアルテ゛ヒト(以下BzAと略
示する)の縮合により製造する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for industrially producing 5-(phenylmethylene)-2°4-imidazolidinedione (hereinafter abbreviated as PLDN). More specifically, the present invention provides 2,4-imidazolidinedione (hereinafter referred to as ID
The present invention relates to a method for producing BzA by condensation of BzA (abbreviated as BzA hereinafter) and Penzalert (abbreviated as BzA hereinafter).

従来、PLDNの製造方法としては、等モルのIDNと
BZAを水溶液中1.5倍モルのモノエタノールアミン
の存在下に、80〜90°Cで縮合させる方法(米国特
許第2,861.079号)オヨびIDN、!:BZA
を無水酢酸中、! D N ニ対して等モル以上の酢酸
ナトリウムの存在下に、125〜185°Cで縮合させ
た後、水を添加してPLDNを取り出す方法(特開昭4
9−54869号公報)が知られている。
Conventionally, PLDN has been produced by condensing equimolar amounts of IDN and BZA at 80 to 90°C in the presence of 1.5 times the mole of monoethanolamine in an aqueous solution (U.S. Pat. No. 2,861.079). No.) Oyobi IDN,! :BZA
in acetic anhydride! A method of condensing at 125 to 185°C in the presence of at least equimolar sodium acetate to DN and then adding water to take out PLDN (Japanese Patent Application Laid-open No. 4
9-54869) is known.

しかしながら、上記方法においては、いずれも90%以
上の好収率を得ているが、前者では縮合剤として、高価
なモノエタノールアミンを大量に使用しなければならな
いので回収工程が必要となり、しかも、希薄水溶液から
の回収であるため、エネルギーコストが高くつく上に、
排水中へのモノエタノールアミンのロス及び排水処理等
、工業的には極めて不利である。又、後者では、無水酢
酸のような高価な溶媒を使用しなければならないので、
やはり回収工程が必要であり、しかも、給金時に生成す
る水によって無水酢酸が消費されるために経済的に著し
く不利となる上に、この際生成する酢酸の処理の問題が
生じる等、工業的製法としては極めて不利である。
However, although all of the above methods achieve a good yield of 90% or more, the former requires the use of a large amount of expensive monoethanolamine as a condensing agent, which requires a recovery step. Since recovery is from a dilute aqueous solution, energy costs are high, and
This is extremely disadvantageous from an industrial perspective, such as loss of monoethanolamine into wastewater and wastewater treatment. In addition, the latter requires the use of expensive solvents such as acetic anhydride.
A recovery process is still necessary, and the water produced during dispensing consumes acetic anhydride, which is economically disadvantageous.In addition, there are problems with the treatment of the acetic acid produced at this time, making it difficult for industrial use. This is extremely disadvantageous as a manufacturing method.

そこで本発明者らは、IDNとBZAの縮合を高収率で
かつ工業的に有利に実施しうる方法について鋭意研究を
重ねた結果、アンモニアが優れた縮合剤になりうろこと
を見い出し、本発明を完成するに至った。即ち、本発明
はIDNとBZAを、アンモニアの存在下に縮合させる
ことからなるPLDNの改良された製造方法である。
Therefore, the present inventors have conducted extensive research on a method that can carry out the condensation of IDN and BZA in a high yield and industrially advantageously, and have discovered that ammonia can be an excellent condensing agent. I was able to complete it. That is, the present invention is an improved method for producing PLDN, which comprises condensing IDN and BZA in the presence of ammonia.

本発明方法において一方の原料として用いられるIDN
は、公知の方法、例えば特公昭89−24807号公報
あるいは有機合成化学、第29巻12号、1142ペー
ジに記載されている如く、通常ノBucherer −
Bergs法によって容易ニ合成される。又、もう−万
の原料として用いられるBZAは、通常の市販品でよい
。IDNとBZAの比率については等モル用いる。いず
れか一方が過剰でもさしつかえないが、通常、I D 
N / B Z A モル比として、0.7〜1.4が
用いられる。この範囲を越えても、実施できるがその場
合過剰用いた方の原料が未反応で残るため、回収、再使
用を行なうか、あるいはPLDN分離後のF液を再使用
する必要がある。
IDN used as one raw material in the method of the present invention
is usually carried out using known methods such as those described in Japanese Patent Publication No. 89-24807 or Organic Synthetic Chemistry, Vol. 29, No. 12, page 1142.
It is easily synthesized by the Bergs method. Further, BZA used as a raw material for Mo-man may be a common commercially available product. Equimolar ratios of IDN and BZA are used. It is okay to have an excess of either one, but usually I.D.
As the N/BZA molar ratio, 0.7 to 1.4 is used. Even if the reaction exceeds this range, it can be carried out, but in that case, the excess raw material will remain unreacted, and it will be necessary to recover and reuse it, or to reuse the F solution after PLDN separation.

本発明方法の実施に当って使用されるアンモニアとして
は、例えば、アンモニアガス、液体アンモニア、アンモ
ニア水あるいは簡単に分解してアンモニアを生成するア
ンモニウム塩、例、iば、炭酸アンモニウム、重炭酸ア
ンモニウム、酢酸アンモニウム、カルバミン酸アンモニ
ウム、シアン化アンモニウム等が用いられ、使用量はI
DNとBZAのうち少里用いる方に対して、アンモニア
として0.01〜10倍モル、好マシくは0.1〜2.
0倍モルが使用される。
The ammonia used in carrying out the method of the present invention includes, for example, ammonia gas, liquid ammonia, aqueous ammonia, or ammonium salts that easily decompose to produce ammonia, such as ammonium carbonate, ammonium bicarbonate, Ammonium acetate, ammonium carbamate, ammonium cyanide, etc. are used, and the amount used is I
0.01 to 10 times the mole of ammonia, preferably 0.1 to 2.
0x molar is used.

アンモニアが0.01Poモル以下の場合は、反応速度
が遅くなり、又、10倍モル以上ではBZAの副反応が
生じるため不利である。
If the amount of ammonia is less than 0.01 Po mole, the reaction rate will be slow, and if it is more than 10 times the amount, side reactions of BZA will occur, which is disadvantageous.

本発明の方法における反応温度は、50〜150℃、好
ましくは80〜110℃の温度で実施され、反応時間は
反応温度によって異なるが、約8〜10時間で反応は完
結する。
The reaction temperature in the method of the present invention is 50 to 150°C, preferably 80 to 110°C, and the reaction time varies depending on the reaction temperature, but the reaction is completed in about 8 to 10 hours.

本発明の方法で使用される溶媒としては、水が好ましい
が、水に可溶の有機溶媒、例えば、アルコール類、ニト
リル類、エーテル類等との混合溶媒でも何ら支障はない
。使用する溶媒量には、特に制限はなく、反応系は均一
であっても、不均一であってもよい。
The solvent used in the method of the present invention is preferably water, but there is no problem in using a mixed solvent with a water-soluble organic solvent such as alcohols, nitriles, ethers, etc. There is no particular restriction on the amount of solvent used, and the reaction system may be homogeneous or heterogeneous.

本発明における実施操作の大要は、iDN。The summary of the operations in the present invention is iDN.

BZA及びアンモニアを溶媒とともに、反応容器に仕込
み、所定の反応温度及び反応時間により、加熱縮合を行
なうというものである。反応終了後、そのままあるいは
中和後、反応混合物を冷却し、析出した結晶を口過する
ことにより容易にほぼ定量的な収率でPLDNを得るこ
とができる。
BZA and ammonia are charged into a reaction vessel together with a solvent, and heat condensation is carried out at a predetermined reaction temperature and reaction time. After completion of the reaction, PLDN can be easily obtained in a substantially quantitative yield by cooling the reaction mixture as it is or after neutralization, and passing the precipitated crystals through the mouth.

本発明の方法を実施する際の操作圧力には、特に制限は
なく、常圧でも加圧下でも実施可能である。操作はバッ
チ方式で行なうこともできるし、又、連続操作による実
施も可能である。
There is no particular restriction on the operating pressure when carrying out the method of the present invention, and the process can be carried out either at normal pressure or under increased pressure. The operation can be carried out batchwise or continuously.

次に実施例により、本発明をさらに詳しく説明するが、
本発明はこれらの実施例により制限をうけるものではな
い。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited by these Examples.

実施例1 攪拌機及び還流冷却器を備えた1tのフラスコに、2.
4−イミダゾリジンジオン120yとベンズアルデヒド
106yを、水850ゴとともに加える。25重量%の
アンモニア水7flを加えた後、加熱し、90℃で5時
間反応させた。反応混合物を室温まで冷却し、析出した
結晶を口過、水洗することにより、5−(フェニルメチ
レン)−2,4−イミダゾリジンジオンの白色結晶が1
87y得られた。液体クロマトグラフィーで分析したと
ころ、純度は99.0重量%であり、ベンズアルデヒド
基準の収率は98.5%であった。
Example 1 In a 1 ton flask equipped with a stirrer and a reflux condenser, 2.
Add 120 y of 4-imidazolidinedione and 10 6 y of benzaldehyde along with 850 y of water. After adding 7 fl of 25% by weight aqueous ammonia, the mixture was heated and reacted at 90° C. for 5 hours. The reaction mixture was cooled to room temperature, and the precipitated crystals were filtered through the mouth and washed with water to obtain 1 white crystal of 5-(phenylmethylene)-2,4-imidazolidinedione.
87y was obtained. When analyzed by liquid chromatography, the purity was 99.0% by weight, and the yield based on benzaldehyde was 98.5%.

実施例2.3 原料仕込み量及び反応条件を表1のように変更する以外
は、実施例1と同様な操作を行なったところ、表1に示
すような結果を得た。
Example 2.3 The same operation as in Example 1 was performed except that the amount of raw materials charged and the reaction conditions were changed as shown in Table 1, and the results shown in Table 1 were obtained.

実施例4 内容量I Lのステンレス製オートクレーブに2,4−
イミダゾリジンジオン95y1ベンズアルデヒド106
y、25重量%アンモニア水34f1水150 mlお
よびメタノール150rntを仕込み、密封後、加熱し
、攪拌、加圧下に105°Cで3時間反応させた。開封
後、反応混合物を減圧濃縮した後、室温まで冷却し、析
出した結晶を口過、水洗したとこ口純度98.5重量%
の5−(フェニルメチレン)−2、4−イミダゾリジン
ジオンの白色結晶が119f得られ、2.4−イミダゾ
リジンジオン基準の収率は、98.7%であった。
Example 4 2,4-
imidazolidinedione 95y1 benzaldehyde 106
y, 25% by weight ammonia water (34f), 150 ml of water, and 150 rnt of methanol were charged, and after sealing, the reactor was heated, stirred, and reacted under pressure at 105°C for 3 hours. After opening, the reaction mixture was concentrated under reduced pressure, cooled to room temperature, and the precipitated crystals were filtered and washed with water, resulting in a purity of 98.5% by weight.
119f of white crystals of 5-(phenylmethylene)-2,4-imidazolidinedione were obtained, and the yield based on 2,4-imidazolidinedione was 98.7%.

Claims (1)

【特許請求の範囲】[Claims] 2.4−イミダゾリジンジオンとベンズアルデヒドを、
アンモニアの存在下に縮合させることを特徴とする5−
(フェニルメチレン)−2゜4−イミダゾリジンジオン
の製造方法。
2.4-imidazolidinedione and benzaldehyde,
5- characterized by condensation in the presence of ammonia
A method for producing (phenylmethylene)-2°4-imidazolidinedione.
JP11939283A 1983-06-29 1983-06-29 Preparation of 5-(phenylmethylene)-2,4-imidazolidinedione Pending JPS6011473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11939283A JPS6011473A (en) 1983-06-29 1983-06-29 Preparation of 5-(phenylmethylene)-2,4-imidazolidinedione

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11939283A JPS6011473A (en) 1983-06-29 1983-06-29 Preparation of 5-(phenylmethylene)-2,4-imidazolidinedione

Publications (1)

Publication Number Publication Date
JPS6011473A true JPS6011473A (en) 1985-01-21

Family

ID=14760362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11939283A Pending JPS6011473A (en) 1983-06-29 1983-06-29 Preparation of 5-(phenylmethylene)-2,4-imidazolidinedione

Country Status (1)

Country Link
JP (1) JPS6011473A (en)

Similar Documents

Publication Publication Date Title
US3061628A (en) Process and preparation of amino nitriles and acetic acids
KR870001899B1 (en) Preparation method of 1,3-dimethyl-2-imidazolidinone
JPS638937B2 (en)
JPS6011473A (en) Preparation of 5-(phenylmethylene)-2,4-imidazolidinedione
JP2952712B2 (en) New production method of semicarbazide
US5155264A (en) Process for preparing glycine in high yield
US3864378A (en) Process for preparing 2-hydroxyethyliminodiacetonitrile
JPS6357574A (en) Production of imidazoles
JPS61289071A (en) Manufacture of 2-(n-formylanino)-propinonitrile
WO1999054281A1 (en) Process for producing dimethylacetamide
JPS6056961A (en) Production of imidazole
JPH01139559A (en) Production of 4-chloro-3-hydroxybutyronitrile
JP2915516B2 (en) Production method of O-methylisourea sulfate
JPH07179415A (en) Production of 2-aminoethylsulfonic acid
JPS5928546B2 (en) Production method of hydrazodicarbonamide
JP4571740B2 (en) Method for producing 1,6-dicyanohexane
JPS60197646A (en) Preparation of dl-asparagine
JPS62267253A (en) Production of alpha-amino acid
JPS62288102A (en) Production of dicyanamide metal salt
JP3160321B2 (en) Method for producing amino acid aminoalkyl ester
JPH1072419A (en) Production of tertiary-leucine
JPS6357573A (en) Production of imidazoles
KR930009040B1 (en) Process for preparation of glycin
JPS6327465A (en) Production of glycinamide
JPH0412265B2 (en)