JPS60114537A - Production of alloy - Google Patents

Production of alloy

Info

Publication number
JPS60114537A
JPS60114537A JP22151783A JP22151783A JPS60114537A JP S60114537 A JPS60114537 A JP S60114537A JP 22151783 A JP22151783 A JP 22151783A JP 22151783 A JP22151783 A JP 22151783A JP S60114537 A JPS60114537 A JP S60114537A
Authority
JP
Japan
Prior art keywords
metal
mold
alloy
porous body
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22151783A
Other languages
Japanese (ja)
Inventor
Tadashi Donomoto
堂ノ本 忠
Atsuo Tanaka
淳夫 田中
Masahiro Kubo
雅洋 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22151783A priority Critical patent/JPS60114537A/en
Publication of JPS60114537A publication Critical patent/JPS60114537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To form an alloy having an optional compsn. in the prescribed region in a casting mold without generating fracture in a porous body of the 1st metal by disposing said porous body in the casting mold and pressing a perforated holding element thereon then pouring the 2nd metal into the mold. CONSTITUTION:A green compact molding 5 is formed of the 1st metal such as pure Ni powder or the like. The molding 5 is preheated and is disposed in a casting mold 7. A holding plate 8 such as a stainless steel screen or the like is disposed on the molding 6 and the circumferential edge part thereof is fixed by pressing-fitting thereof to the inside wall surface 9 of the mold 7 or the like. The melt 10 of the 2nd metal such as pure Al or the like is then poured to penetrate the melt 10 into the porous molding 5 thereby alloying the 1st and 2nd metals. The alloy such as Ni-Al or the like having the desired uniform structure is formed in the prescribed position under the plate 8 by the above-mentioned method without generating fracture, etc. of the molding 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、合金に係り、更に詳細にはその製造方法に係
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to alloys, and more particularly to methods of manufacturing the same.

従来技術 本願発明者智Gよ、合金元素の溶湯に他の合金元素の溶
湯又は粉末を添′加して混合する方法や焼結法による従
来の合金の製造方法に於ける独々の問題点に鑑み、本願
出願人と同一の出願人の出願に係る特願昭58−138
180号に於て、第一の金属と該第−の金属よりも低い
融点を有する第二の金属よりなる合金の製造方法にしく
、前記第一の金属よりなる多孔質体を形成し、該多孔質
体を鋳型内に配置し、該鋳型内に前記第二の金属の溶湯
を江湖し、前記溶湯を前記多孔質体内に浸透させること
により前記第一の金属と前記第二の金属とを合金化させ
、前記多孔質体の領域に前記第二の金属が単独では実質
的に存在しない合金を形成することを特徴とする合金の
製造方法を提案した。
PRIOR ART Inventor Satoshi G., unique problems in conventional methods of manufacturing alloys by adding and mixing molten metals or powders of other alloying elements to molten metals of alloying elements and sintering methods. In view of this, the patent application filed by the same applicant as the applicant in 1982-138
No. 180 discloses a method for producing an alloy comprising a first metal and a second metal having a lower melting point than the second metal, comprising forming a porous body comprising the first metal; A porous body is placed in a mold, a molten metal of the second metal is poured into the mold, and the molten metal permeates into the porous body, thereby allowing the first metal and the second metal to be mixed. A method for manufacturing an alloy has been proposed, characterized in that the second metal is alloyed to form an alloy in which the second metal is not substantially present alone in the region of the porous body.

この先の提案に係る合金の製造方法に於ては、多孔質体
のみかけの比重が第二の金属の溶湯の比■に比してはる
かに小さいため、鋳型内に多孔質体を配置ししかる後鋳
型内に第二の金属の溶湯を注湯づると、溶湯の流動作用
及び多孔質体と溶湯どの間の比fi差に起因して、多孔
71体が浮−[つljり傾いたりして鋳型内の所定の位
置にて合金を形成することかできなくな一ンたり、多孔
質体が鋳型の内壁面11)プランシトの表面に衝当して
欠損したりりる等の不具合が生じることがある。かかる
問題は、多孔質体の全周よりその内部に第二の金属の溶
湯が良好に浸透し1りるよう、多孔質体の体積よりもは
るかに大きい容積を41する鋳型内に多孔質体が配置さ
れる場合に特に顕茗である。またかかる111題の発生
を回避Jべく、第一の金属よりなる多孔質体を直接鋳型
の内壁面に圧入等によって係止ηるど、第一の金属の浸
透性が悪化するだ(プぐなく、多孔質体の鋳型に接触す
る部分が圧壊しIこり、多孔質体に割れが発生したりす
るという問題が生じる。
In the method for manufacturing the alloy according to the proposal, since the apparent specific gravity of the porous body is much smaller than the ratio of the molten metal of the second metal, it is necessary to place the porous body in the mold. When the molten metal of the second metal is poured into the post mold, the porous body 71 may float or tilt due to the fluidity of the molten metal and the difference in ratio between the porous body and the molten metal. Otherwise, the alloy may not be formed at a predetermined position in the mold, or the porous body may hit the inner wall surface of the mold and break off. There is. This problem is solved by placing the porous body in a mold that has a volume much larger than the volume of the porous body so that the molten metal of the second metal can penetrate well into the inside of the porous body from the entire circumference of the porous body. This is especially true when it is placed. In addition, in order to avoid the occurrence of such problem 111, the porous body made of the first metal is directly fixed to the inner wall surface of the mold by press-fitting, etc., but the permeability of the first metal is deteriorated. Otherwise, problems arise in that the portion of the porous body that comes into contact with the mold is crushed and stiff, and cracks occur in the porous body.

発明の目的 不発明番よ、先の11?案に係る合金の製造り法に於i
Jる上jボの如き問題に鑑み、かかる問題が生じること
がイ1いJ、う改占された合金の製造方η、を1;?供
することを目的としている。
Purpose of invention Non-invention number, 11? In the method for manufacturing the proposed alloy,
In view of the above-mentioned problems, it is impossible for such problems to occur. The purpose is to provide

発明の椙成 かかる目的は、木ブL明にJ、れば、第一のa屈ど該第
−の金属よりも低い融点を4+りる第一の金属とよりな
る合金の製造方法にして、前記第一の金属よりなる多孔
質体を形成し、前記多孔質体を前記鋳型内に配置し、前
記多孔質体上にこれに当接して有孔保持要素を配置し、
前記イjl保持要素をその周縁部にて前記鋳型の内壁面
に係止し、前記鋳型内に前記第二の金属の溶湯を江渇し
、前記溶湯を前記多孔質体内に浸透させることにより前
記第一の金属と前記第二の金属とを合金化さける合金の
製造方法にJ、って達成される。
The object of the invention is to provide a method for producing an alloy consisting of a first metal having a melting point lower than that of the first metal. , forming a porous body made of the first metal, arranging the porous body in the mold, and arranging a perforated holding element on and in contact with the porous body;
By locking the holding element at its peripheral edge to the inner wall surface of the mold, draining the molten metal of the second metal into the mold, and allowing the molten metal to permeate into the porous body. A method for producing an alloy that avoids alloying one metal and the second metal is achieved.

発明の作用及び効果 本発明によれば、鋳型内に配置された多孔質体はそれに
当接し周縁部にて鋳型の内壁面に係止された有孔保持要
素によりfr型に対し相対的に変位することが防止され
るので、多孔質体のみかりの比重と第二の金属の溶湯の
比重どが人さり4]目tりる場合にも、鋳型内に第二の
金属の溶湯がン1潟される段階に於て多孔質体が鋳を内
に−C)゛2上−7Iこり1頃いIこりづることかなく
、これ(、二より多孔v′(1木の欠損等を生じること
イ1く鋳7%lI内の所定の領域に(所望の合金を製造
Jることができる。
Effects and Effects of the Invention According to the present invention, the porous body disposed in the mold is displaced relative to the fr mold by the perforated holding element that is in contact with the mold and is secured to the inner wall surface of the mold at the peripheral edge. Therefore, even when the specific gravity of the porous body and the specific gravity of the molten metal of the second metal are very different, the molten metal of the second metal is prevented from being in the mold. At the stage of being lagooned, the porous body is injected into the mold - C) ゛ 2 upper - 7 I stiffness 1 - without cracking, this (, 2 more porous v' (1 wood loss etc. occurs) In particular, a desired alloy can be manufactured in a predetermined area within the casting 7% lI.

尚本発明による合金の製造方法に於ては、第−及び第二
の金属番よl1l−の金属元素又は合金のいずれであっ
てもよく、多孔質体は、第一の金属のV)末、不連続繊
維、切粉、箔片又はこれらの混合物の圧縮成形体又は吸
引成形体、第一の金属の連続繊維又は細線の結束体、箔
又は薄板の積層体等であってにい。また本発明による合
金の製造り法に於て使用される有孔保持要素は、第二の
金属の溶湯がそれを通過づるに足るイi孔度を右しI多
孔質体に作用する浮力に抗して該多孔質体を所定の位置
に保持し得る強度を右づるbのであり、まIC第二の金
属にりも1よるかに高い融点を有づる材料にて形成され
ていることが好ましく、例えば金網、有孔金属板、各種
の無機短繊維の成形体等であって一二い。
In the method for producing an alloy according to the present invention, any of the metal elements or alloys of the first metal number and the second metal number may be used, and the porous body may be the V) powder of the first metal. , compression molding or suction molding of discontinuous fibers, chips, foil pieces, or mixtures thereof, bundles of continuous fibers or thin wires of the first metal, laminates of foils or thin plates, etc. The porous retaining element used in the process for producing the alloy according to the invention also has a porosity sufficient to allow the molten metal of the second metal to pass through it and to compensate for the buoyant forces acting on the porous body. The second metal of the IC is also made of a material with a much higher melting point than the second metal. Preferred examples include wire mesh, perforated metal plates, and molded bodies of various inorganic short fibers.

実施例1 先ず第1図に示されている如く、円筒状の孔1をイエリ
゛る型本体2ど、孔1に嵌合りるアッパバンチ3及びロ
アバンチ4とにりなる圧縮成形型を用意した。次いで第
1図に示され(いる如く型本体2とロアバンチ4どによ
り郭定される円筒状の窪み内に平均粒径が15μ−であ
る47.2g純ニツケル(純度99.0%ンの粉末を充
填し、孔1にアッパバンチ3を嵌合させ、図には示され
−Cいないプレス装置によりアッパバンチ3とロアバン
チ4とを互に近付く方向へ押圧りることににす、かさ密
度が4 、45 Q /acCある直径30u+m、長
さ15+amの円柱状の圧縮成形体5を形成した。
Example 1 First, as shown in FIG. 1, a compression molding mold was prepared, including a mold body 2 with a cylindrical hole 1, and an upper bunch 3 and a lower bunch 4 that fit into the hole 1. . Next, as shown in FIG. 1, 47.2 g of pure nickel (99.0% pure powder) having an average particle size of 15 μ- The upper bunch 3 is fitted into the hole 1, and the upper bunch 3 and the lower bunch 4 are pressed in the direction toward each other using a press device (not shown in the figure).The bulk density is 4, A cylindrical compression molded body 5 having a diameter of 30 u+m and a length of 15+ am was formed.

次いで図には示されていないがアルゴンガス雰囲気中に
て圧縮成形体5を600℃に予熱し、しかる後第2図に
示されている如く圧縮成形体5を300℃の鋳型7内に
配置した。次いでステンレス鋼LIIS規格S U S
 304 )にて形成された金網(目開き寸法2n+m
、a径1111m)ニテ形成され外縁部が直径31ステ
ンレス鋼(JIs規格5U8304)のリングに(補強
されIこ直径42n+mの保持板8を圧縮成形体6上に
配若し、その周縁部を鋳型7の内壁面9に圧入すること
によって保持板を固定した。
Next, although not shown in the figure, the compression molded body 5 is preheated to 600°C in an argon gas atmosphere, and then the compression molded body 5 is placed in a mold 7 at 300°C as shown in FIG. did. Next, stainless steel LIIS standard S US
304) wire mesh (opening size 2n+m)
A retaining plate 8 with a diameter of 42 nm+m is placed on the compression molded body 6, and the outer edge is formed into a ring made of stainless steel (JIs standard 5U8304) with a diameter of 31 mm. The holding plate was fixed by press-fitting it into the inner wall surface 9 of 7.

次いで第3図に示されている如く、鋳型内に300cc
、湯部800℃の純アルミニウム(純度99.7%)の
溶1g10を江湖した。この場合純アルミニウムの溶湯
10はその表面張力により保持板8上に配置されIζ状
態を維持した。次いで第4図に示されCいる如く、純ア
ルミニウムの溶湯10をプランシト11により1000
k(]/cm’の圧ツノにて加圧し、溶湯10の一部を
保持板8の下方へ移動させ、その加圧状態を溶湯が完全
に凝固するまで保持した。溶湯が完全に凝固した後、ノ
ックアウトビン12ににって鋳型7内にり凝固イネを取
出した。その凝固体を軸線に沿って切[]7i シたと
ころ、所望の均一な組織を有づるNi−A1合金が保持
板8の下方の所定の位置にて形成されており、圧縮成形
体の欠10等の不具合も認められなかった。
Then, as shown in Figure 3, 300 cc was placed in the mold.
1 g of pure aluminum (purity 99.7%) was poured into a hot water bath at 800°C. In this case, the pure aluminum molten metal 10 was placed on the holding plate 8 due to its surface tension and maintained in the Iζ state. Next, as shown in FIG.
Pressure was applied with a pressure horn of k(]/cm', a part of the molten metal 10 was moved below the holding plate 8, and the pressurized state was maintained until the molten metal was completely solidified.The molten metal was completely solidified. After that, the solidified rice was removed from the mold 7 using the knockout bottle 12. When the solidified rice was cut along the axis, the Ni-A1 alloy with the desired uniform structure was retained. It was formed at a predetermined position below the plate 8, and no defects such as chipping 10 in the compression molded body were observed.

尚上述の如く形成されたNi−A1合金のマク1コの組
成はNi−23,3%A1であった。
The composition of the Ni-A1 alloy molding formed as described above was Ni-23, 3%A1.

実施例2 平均繊維径が80μmであり平均繊維長が3mmである
21.80のCu−Zn[維(C1−40%Zn)が実
質的に三次元ランダムに配向されがさ密度が2.06 
a/ccである圧縮成形体が形成され、該圧縮成形体が
4.00℃に予熱され、第二の金属の溶湯としてアルミ
ニウム合金〈J[S規格A C4,0)が使用され、湯
温及び溶湯に対づ−る加圧力がそれぞれ720℃、75
0 k(1/ 係’に設定された点を除き、上述の実施
例1の場合と同一の要領にてCIJ −ZIT−A1合
金を製造した。
Example 2 21.80 Cu-Zn [fibers (C1-40%Zn) having an average fiber diameter of 80 μm and an average fiber length of 3 mm, the fibers (C1-40% Zn) are oriented substantially three-dimensionally randomly, and the fiber density is 2.06
A compression molded body of a/cc is formed, the compression molded body is preheated to 4.00°C, an aluminum alloy <J [S standard A C4,0) is used as the molten metal of the second metal, and the hot water temperature is and the pressure applied to the molten metal was 720°C and 75°C, respectively.
A CIJ-ZIT-A1 alloy was produced in the same manner as in Example 1 above, except that it was set to 0 k (1/').

この実施例に於ても所望の均一な組織をイjするCIJ
 −7n−A1合金が保持板の下方の所定の位置にて形
成され、圧縮成形体の欠損等の不具合は認められなかっ
た。尚この実施例に於て製造されたCu −Zr+−A
1合金のマクロの組成は△1−30.2%CI+−20
,2%Z11であった。
In this example as well, CIJ was used to achieve the desired uniform structure.
-7n-A1 alloy was formed at a predetermined position below the retaining plate, and no defects such as loss of the compression molded body were observed. Note that Cu-Zr+-A produced in this example
Macro composition of 1 alloy is △1-30.2%CI+-20
, 2% Z11.

実施例3 平均粒径が2μn1である30.5(+の純り1−1ム
(純度99.0%)の粉末にてかさ密度2.88g/c
cの圧縮成形体が形成され、該圧縮成形体が500℃に
予熱され、保持板どして直径が42mmであり、厚さが
1.5mmであり、直径2mmの小孔を約100個有づ
る鉄板が使用され、第二の金属の溶湯として純マグネシ
ウム(純IJ!99.2%)の溶湯が使用され、潟)品
が700℃に設定された点を除さ、上述の実施例1の場
合と同一の要領にてOr−M(1合金を製造した。
Example 3 Powder of 30.5 (+ purity 1-1 μm (purity 99.0%)) with an average particle size of 2 μn1 has a bulk density of 2.88 g/c
A compression molded body c was formed, and the compression molded body was preheated to 500°C, and the holding plate had a diameter of 42 mm, a thickness of 1.5 mm, and had about 100 small holes with a diameter of 2 mm. Example 1 as described above, except that a steel plate was used, a molten metal of pure magnesium (pure IJ! 99.2%) was used as the molten metal of the second metal, and the temperature of the molten metal was set at 700°C. Or-M (1 alloy) was produced in the same manner as in the case of .

この実施例に於(も所望の均一な組織をイjするC+゛
−M(+合金が保持板の下方の所定の位置にて形成され
、圧縮成形体の欠損茗の不具合は認められイ1かった。
In this example, the C+゛-M(+ alloy) was formed at a predetermined position below the retaining plate, and no defects such as cracks in the compression molded body were observed. won.

尚この実施例に於て製造されたC1・−Mg合金のマク
[1の絹1戊は0r−26,8%Mりであった。
The C1.--Mg alloy fabric made in this example had an M content of 0r-26.8%.

実施例4 平均粒径が40μmである24.’lCIの純デクニウ
ムの粉末にてかさ密度2.27 1/ccの圧縮成形体
が形成され、該圧縮成形体が/100℃に予熱され、保
持板どして第5図に示されている如くmm22tnmの
正方形の各1n点、各辺の中点、及び中心に配置された
直径5mtnの孔8aを9個イ1りる厚さ1.5mm、
直径42mmのス゛テンレス鋼(JIS規格S U S
 305 )にて形成された保持板8[)が使用され、
純アルミニウムの溶湯に対する加圧力が1500kg/
ノに設定された点を除き、上述の実施例1の場合と同一
の要領にて11−A1合金を製造した。
Example 4 24. The average particle size is 40 μm. A compression molded body having a bulk density of 2.27 1/cc was formed from pure decnium powder of 'lCI, and the compression molded body was preheated to /100°C and held with a holding plate as shown in FIG. A square with a thickness of 1.5 mm and 9 holes 8a with a diameter of 5 mtn placed at each 1n point, the midpoint of each side, and the center of a square of 22 tnm in diameter.
Stainless steel with a diameter of 42 mm (JIS standard SUS
A retaining plate 8[) formed of 305) is used,
Pressure force on molten pure aluminum is 1500kg/
An 11-A1 alloy was produced in the same manner as in Example 1 above, except for the following points.

この実施例に於ては、鋳を内に注湯された純△1の溶湯
は自らの重力ににり保持板8bの孔8aを通過してそれ
よりも下方まで流動した。この実施例に於ても所望の均
一なM1織を右Jる1−i−A1合金が保持板の下方の
所定の位置にて形成さ11、圧縮成形体の欠損等の不具
合は認められなかった。
In this embodiment, the pure △1 molten metal poured into the casting passed through the hole 8a of the holding plate 8b and flowed below it due to its own gravity. In this example as well, the 1-i-A1 alloy with the desired uniform M1 weave was formed at a predetermined position below the retainer plate 11, and no defects such as defects in the compression molded body were observed. Ta.

尚この実施例に於て製造された王i−Δ1合金のマクロ
の組成はTi−37,3%A1であった。
The macroscopic composition of the Oi-Δ1 alloy produced in this example was Ti-37, 3% A1.

実施例5 上述の実施例1に於て使用された圧縮成形型と同様の圧
縮成形型を用いて、平均繊維径が80μmであり平均繊
維長が3mmである20.4(+のアルミニウム合金(
J Is規格ΔC4G >の繊組が実質的に三次元ラン
ダムに配向された直径40mm、長さ30IIII11
の円柱状の圧縮成形体131を形成した。
Example 5 Using a compression mold similar to that used in Example 1 above, a 20.4 (+) aluminum alloy (with an average fiber diameter of 80 μm and an average fiber length of 3 mm) was prepared.
J Is standard ΔC4G > fibers oriented substantially three-dimensionally randomly, diameter 40 mm, length 30III11
A cylindrical compression molded body 131 was formed.

次いで図には示されていないが圧縮成形体13をアルゴ
ンガス雰囲気中にて400℃に予熱し、しかる後第6図
に示されている如く加圧室14aと成形室14bとをV
i’Jる鋳型14の成形室1411内に配置した。次い
で圧縮成形体13の上端に当接した状態にて加圧室14
aの底壁上に直径70tallのアルミニウム合金(J
ISJJ目名八〇4)へりなる保持板15を配置し、−
での周縁部を加圧室14aの内壁面に圧入Jることによ
って保持板15を固定した。この場合保持板15は第9
図に示されている如く、その中央部に直1114 mm
の円周上に中心間距離5II1mにて互いに隔置された
直径InIImの孔と直径28IIllllの円周上に
中心間距11f10mmにC互に隔置された直径4Il
lIllの孔とが接線で結4f ttた形状の孔15a
を8個何していた。
Next, although not shown in the figure, the compression molded body 13 is preheated to 400° C. in an argon gas atmosphere, and then the pressurizing chamber 14a and the molding chamber 14b are heated to V as shown in FIG.
It was placed in the molding chamber 1411 of the i'J mold 14. Next, the pressurizing chamber 14 is placed in contact with the upper end of the compression molded body 13.
An aluminum alloy (J
ISJJ name 804) Arrange the retaining plate 15, and -
The holding plate 15 was fixed by press-fitting the peripheral edge thereof into the inner wall surface of the pressurizing chamber 14a. In this case, the holding plate 15 is the ninth
1114 mm straight in its center as shown in the figure.
Holes of diameter InIIm spaced apart from each other with a distance between centers of 5II1m on the circumference of , and holes of diameter 4Il spaced apart from each other with a center distance of 11f and 10mm on the circumference of diameter 28IIllll.
A hole 15a having a shape where the hole 1Ill is connected with a tangent line 4f tt
What were you doing with the eight?

次いで第7図に示されている如(、鋳型14の加圧室1
48及び成形室14b内に500 cc、潟m E50
0℃の純111jlf(純U99.3%)の溶湯16を
注湯し、第8図に示されている如く該溶湯をプランジャ
17により1000 kg/ am’の圧力にて加圧し
、その加圧状態を溶湯が完全に凝固するまで保持した。
Next, as shown in FIG.
48 and 500 cc in the molding chamber 14b, lagoon E50
A molten metal 16 of pure 111jlf (99.3% pure U) at 0°C is poured, and the molten metal is pressurized at a pressure of 1000 kg/am' with a plunger 17 as shown in Fig. 8. The condition was maintained until the molten metal completely solidified.

溶湯が完全に凝固した後、ノックアウトビン18ににつ
て#R型14内より凝固体を取出した。その凝固体を軸
線に沿って切…i L、 /jところ、所望の均一な組
織を有するZo−Al合金が保持板15より下方の成形
室14b内の所定の位百にて形成されており、圧縮成形
体の欠損等の不只合は認められなかった。尚この実施例
に於て製造されたZn−Al合金のマクロの組成はZl
l−8,6%へ1であった。
After the molten metal was completely solidified, the solidified material was taken out from the #R mold 14 in a knockout bottle 18. When the solidified body is cut along the axis...i L, /j, a Zo-Al alloy having a desired uniform structure is formed at a predetermined position in the molding chamber 14b below the holding plate 15. No defects such as defects in the compression molded product were observed. The macroscopic composition of the Zn-Al alloy produced in this example is Zl.
It was 1 to 1-8,6%.

以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて種々の実施例が可能である
ことは当業者にとって明らかであろう。
Although the present invention has been described above in detail with reference to several embodiments, the present invention is not limited to these embodiments, and various embodiments are possible within the scope of the present invention. This will be clear to those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至m4図は本発明による合金の製造り法の一つ
の実施例の製造工程を承り解団的断面図、第5図は本発
明による合金の製造り法の一つの実施例に於て使用され
た保持板を示り91而図、第6図乃至第8図は本発明に
よる合金の製造り法の他の一つの実施例の製造工程を示
J′前回的断面図、第9図は第6図乃至第8図に示され
た実施例に於て使用された保持板を承り平面図である。 1・・・孔、2・・・型本体、3・・・アッパパンチ、
4・・・Uアバンチ、5・・・圧縮成形体、7・・・鋳
型、8・・・保持板、9・・・内壁面、10・・・純ア
ルミニウムの溶湯。 11・・・プランジ+−,12・・・ノックアウトビン
、13・・・圧縮成形体、14・・・鋳型、14a・・
・加圧室。 14b・・・成形室、15・・・保持板、16・・・純
jlF鉛の溶湯、17・・・プランジャ、18・・・ノ
ックアウトビン 特 8′[出 粕 人 ト3夕自動車株式会社代 理 
人 弁理1 明 ?i 昌 毅第1図 第3図 第4図 第 6 図 +4n 第7図 第8図
Figures 1 to 4 are exploded sectional views showing the manufacturing process of an embodiment of the method for manufacturing an alloy according to the present invention, and Figure 5 is a cross-sectional view of an embodiment of the method for manufacturing an alloy according to the present invention. Figures 6 to 8 show the holding plate used in the process, and Figures 6 to 8 show the manufacturing process of another embodiment of the method for manufacturing an alloy according to the present invention. The figure is a plan view of the retaining plate used in the embodiment shown in FIGS. 6 to 8. 1... Hole, 2... Mold body, 3... Upper punch,
4... U abunch, 5... Compression molded body, 7... Mold, 8... Holding plate, 9... Inner wall surface, 10... Molten metal of pure aluminum. 11... Plunge +-, 12... Knockout bottle, 13... Compression molded body, 14... Mold, 14a...
- Pressurized chamber. 14b... Molding chamber, 15... Holding plate, 16... Molten metal of pure JIF lead, 17... Plunger, 18... Knockout bottle special 8' Reason
Person Patent Attorney 1 Akira? i Takeshi Masa Figure 1 Figure 3 Figure 4 Figure 6 Figure +4n Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 第一の金属と該第−の金属よりも低い融点を右する第二
の金属とよりなる合金のvl造方法にして、前記第一の
金属よりなる多孔質体を形成し、前記多孔質体を鋳型内
に配置し、前記多孔質体上にこれに当接して右孔保持要
素を配置し、前記右孔保持′g5:素をその周縁部にて
前記鋳型の内壁面に係止し、前記鋳型内に前記第二の金
属の溶湯を注渇し、前記溶湯を前記多孔質体内に浸透さ
せることにより前記第一の金属と前記第二の金属とを合
金化させる合金の製造方法。
A method for producing an alloy consisting of a first metal and a second metal having a melting point lower than that of the second metal, forming a porous body made of the first metal; is placed in the mold, a right hole holding element is placed on the porous body in contact with the right hole holding element, and the right hole holding element is locked to the inner wall surface of the mold at its peripheral edge; A method for producing an alloy, comprising pouring a molten metal of the second metal into the mold and allowing the molten metal to permeate into the porous body, thereby alloying the first metal and the second metal.
JP22151783A 1983-11-25 1983-11-25 Production of alloy Pending JPS60114537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22151783A JPS60114537A (en) 1983-11-25 1983-11-25 Production of alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22151783A JPS60114537A (en) 1983-11-25 1983-11-25 Production of alloy

Publications (1)

Publication Number Publication Date
JPS60114537A true JPS60114537A (en) 1985-06-21

Family

ID=16767949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22151783A Pending JPS60114537A (en) 1983-11-25 1983-11-25 Production of alloy

Country Status (1)

Country Link
JP (1) JPS60114537A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455371A (en) * 1987-08-26 1989-03-02 Sumitomo Jukikai Chutan Kk Production of composite material for drilling tooth
US5553657A (en) * 1988-11-10 1996-09-10 Lanxide Technology Company, Lp Gating means for metal matrix composite manufacture
US5851686A (en) * 1990-05-09 1998-12-22 Lanxide Technology Company, L.P. Gating mean for metal matrix composite manufacture
WO2001048266A1 (en) * 1999-12-24 2001-07-05 Xiumei Pang Method for producing a composite coating
CN103143695A (en) * 2013-03-13 2013-06-12 江苏时代华宜电子科技有限公司 Technology and die-casting device for aluminium silicon carbide accurate die-casting forming

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455371A (en) * 1987-08-26 1989-03-02 Sumitomo Jukikai Chutan Kk Production of composite material for drilling tooth
JPH0328974B2 (en) * 1987-08-26 1991-04-22 Sumitomo Jukikai Chutan Kk
US5553657A (en) * 1988-11-10 1996-09-10 Lanxide Technology Company, Lp Gating means for metal matrix composite manufacture
US5851686A (en) * 1990-05-09 1998-12-22 Lanxide Technology Company, L.P. Gating mean for metal matrix composite manufacture
WO2001048266A1 (en) * 1999-12-24 2001-07-05 Xiumei Pang Method for producing a composite coating
CN103143695A (en) * 2013-03-13 2013-06-12 江苏时代华宜电子科技有限公司 Technology and die-casting device for aluminium silicon carbide accurate die-casting forming

Similar Documents

Publication Publication Date Title
CN1101478C (en) Process for preparing foam metal
JPS58167736A (en) Manufacture of composite body containing dispersed particle
US4065303A (en) Method of producing shaped objects
JPS60114537A (en) Production of alloy
US6383248B1 (en) Process for manufacturing precious metal artifacts
JP3223081B2 (en) Method for producing electrode substrate for battery and mold used therefor
JPS60114532A (en) Production of alloy
JPS6070143A (en) Manufacture of alloy
KR200152430Y1 (en) Die casting machine
RU2001135023A (en) A method of obtaining a composite material based on titanium intermetallic and a product obtained by this method
JPS6356346A (en) Production of fiber reinforced composite material
JPH0446638A (en) Superplastic die and superplastic forming method
FR2619035A1 (en) PROCESS FOR MANUFACTURING CONSTRUCTION ELEMENTS FROM METALLIC OR NON-METALLIC POWDERS
JPH06170516A (en) Production of metal-base composite material by pressurized casting
JP3431223B2 (en) Forming method of Al alloy based composite material
JPS60114534A (en) Production of alloy
JPS6137935A (en) Composite ingot and its manufacture
JPH0234611B2 (en)
JPS62185844A (en) Production of fiber reinforced metallic composite material
JPS6070137A (en) Manufacture of alloy
RU2167741C2 (en) Method of producing low-porous powder materials
JPS60108157A (en) Production of composite member
JPS6070139A (en) Manufacture of alloy
JPS60114536A (en) Production of alloy
JPH03107432A (en) Manufacture of preform of metal matrix composite