JPS60114396A - Control method of do in oxidation ditch method - Google Patents

Control method of do in oxidation ditch method

Info

Publication number
JPS60114396A
JPS60114396A JP58222565A JP22256583A JPS60114396A JP S60114396 A JPS60114396 A JP S60114396A JP 58222565 A JP58222565 A JP 58222565A JP 22256583 A JP22256583 A JP 22256583A JP S60114396 A JPS60114396 A JP S60114396A
Authority
JP
Japan
Prior art keywords
outflow
blade
aerator
amount
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58222565A
Other languages
Japanese (ja)
Other versions
JPS6351077B2 (en
Inventor
Makoto Yoshikawa
信 吉川
Takashi Adachi
足立 喬
Akira Yamada
章 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO FUAUDORAA KK
Shinko Pfaudler Co Ltd
Original Assignee
SHINKO FUAUDORAA KK
Shinko Pfaudler Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO FUAUDORAA KK, Shinko Pfaudler Co Ltd filed Critical SHINKO FUAUDORAA KK
Priority to JP58222565A priority Critical patent/JPS60114396A/en
Publication of JPS60114396A publication Critical patent/JPS60114396A/en
Publication of JPS6351077B2 publication Critical patent/JPS6351077B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To maintain the DO value of sewage at a prescribed value by providing an outflow weir which fluctuates the water level in a discharging channel according to the inflow rate in the outflow part of a circulating water course and fluctuating the aeration rate by the change in the depth of the blade of an aerator on the basis of said fluctuation. CONSTITUTION:An outflow weir 3 is provided to fluctuate the water level in an aeration tank 1 according to an inflow rate in the case in which the sewage to be treated fluctuates in volume with lapse of time. More specifically, the outflow resistance of the weir 3 is set by an operation of moving vertically the notch width at the center of the slit plate 3a of the weir 3 or the plate 3a and outlet 11 by a screw mechanism 3b so that the immersion depth of the blade of the tank 3 attains the displacement in the specified range. The water level in the tank 1 is thus controlled and a specified fluctuation is given to the immersion depth of the blade 2a of the aerator 2. The aeration tank having the shape with which the aeration rate is changed by the blade 2a corresponding to the fluctuation is used.

Description

【発明の詳細な説明】 本発明は、長円形の循環水路に機械式表面曝気機を設置
して、汚水を活性汚泥処理する、オキシデーションディ
ッチ法における、汚水内のDo(溶存酸素)制御方法に
関するものである。
Detailed Description of the Invention The present invention provides a method for controlling Do (dissolved oxygen) in wastewater in an oxidation ditch method, in which a mechanical surface aerator is installed in an oblong circulation waterway to treat wastewater with activated sludge. It is related to.

オキシデーションディッチ法とは、長円形の循環水路(
曝気槽)を設けて、該水路内を機械式の曝気機(以下、
単に曝気機という。)によって汚水(本明細書において
、曝気槽内の下水と汚泥の混合液をいう。)を循環させ
ながらエアレーシツンして活性汚泥処理する方法である
。そして、オキシデーションディッチ法等の活性汚泥処
理法で処理するには汚水が所定のり。
The oxidation ditch method is an oblong circulation waterway (
An aeration tank) is installed, and a mechanical aerator (hereinafter referred to as
It is simply called an aerator. ) is a method for treating activated sludge by circulating sewage (herein referred to as a mixed solution of sewage and sludge in an aeration tank) while aerating it. The sewage must reach a certain level to be treated with an activated sludge treatment method such as the oxidation ditch method.

値を維持することが要求される。そのため、従来曝気槽
内の汚水のDo値を常時あるいは適時検出し、該検出値
を制御装置にフィードバンクして、その値に基づき曝気
機の回転数を変化させることにより、あるいはその値に
基づき流出堰を昇降させて曝気機のブレードの浸漬深さ
を変化させること(以下、自動制御方式という。
Required to maintain value. Therefore, conventionally, the Do value of sewage in the aeration tank is constantly or timely detected, the detected value is fed to the control device, and the rotation speed of the aerator is changed based on that value. Changing the immersion depth of the aerator blade by raising and lowering the outflow weir (hereinafter referred to as automatic control method).

)により、曝気量を変化させて所定のDo値に維持して
いた。かかる、オキシデーションディッチ法の特徴は、
比較的大きな敷地を必要とするが、維持管理が容易で、
比較的大きな流入負荷変動にも対処でき、高度処理(N
、Pの除去)も可能である等の点にあり、そのため中、
小都市の(中、小規模の)下水処理法として適している
。しかし、一方において中小規模の下水施設は、施設区
域が狭く、下水処理場までの到達時間が短いという特質
を有するため、第1図に示すように時刻的に下水流入量
(線図A)の変動が大きく、かつ水質(線図■)の変動
も大きい。このように下水(本明細書において曝気槽投
入以前のものをいう。)が時刻による変動をもった形で
、上記曝気槽内に投入されたく流入した)場合、汚水を
所定のDo値に維持するため曝気量即ち酸素供給量(酸
素溶解M)を上記変動に対応して変化させることが要求
され、その制御手段として上記自動制御方式を採用する
ことは、下水処理施設が小さくなればなるほど、施設全
体の建設費用にしめる該自動制御設備に要する費用の割
合は大きくなり、処理能力に対する建設コストは割高に
なり、上記オキシデーションディッチ法が中小規模の下
水処理に適する要素を有するにもかかわらず、自動制御
設備に多額の負担を強いられることとなっている。尚、
上記自動制御に換えて手動により、逐次Doの測定値に
基づき上記回転数、浸漬深さ等を制御する方法もあるが
、かかる場合ランニングコストが高くなり、かつ所定の
Do値を維持することが難しい。
), the amount of aeration was changed to maintain a predetermined Do value. The characteristics of this oxidation ditch method are:
Although it requires a relatively large site, it is easy to maintain and manage.
It can handle relatively large inflow load fluctuations and has advanced processing (N
, removal of P) is also possible, and therefore, in the middle,
It is suitable as a sewage treatment method for small cities (medium and small scale). However, on the other hand, small and medium-sized sewage facilities have a narrow facility area and a short time to reach the sewage treatment plant. The fluctuations are large, and the fluctuations in water quality (diagram ■) are also large. In this way, when sewage (in this specification refers to the water before being input into the aeration tank) flows into the aeration tank in a manner that fluctuates depending on the time, the sewage is maintained at a predetermined Do value. Therefore, it is required to change the amount of aeration, that is, the amount of oxygen supplied (oxygen dissolved M) in response to the above fluctuations.The adoption of the above automatic control method as a control means is difficult as the sewage treatment facility becomes smaller. The cost required for the automatic control equipment increases as a percentage of the construction cost of the entire facility, and the construction cost relative to the treatment capacity becomes relatively high. This places a large burden on automatic control equipment. still,
As an alternative to the automatic control described above, there is also a method of manually controlling the rotation speed, immersion depth, etc. based on successive measured values of Do, but in this case running costs are high and it is difficult to maintain a predetermined Do value. difficult.

本発明は上記現況に鑑みなされたもので、長円形の循環
水路に機械式表面曝気機を設置して汚水を活性汚泥処理
するオキシデーションディッチ法において、手動による
操作や、自動制御方式を採用することなく、上記循環水
路の流出部に、流入水量に応じて該水路内の水位を変動
せしめる流出部を設け、上記水位の変動に基づく曝気機
のブレードの浸漬深さの変化により曝気量を変動させる
ことにより、汚水のDO値を所定の値に維持する、安価
なりo制御方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned current situation, and it adopts manual operation and automatic control method in the oxidation ditch method, which treats wastewater with activated sludge by installing a mechanical surface aerator in an oblong circulation waterway. An outflow section is provided at the outflow section of the circulation channel that changes the water level in the channel according to the amount of inflow water, and the amount of aeration is varied by changing the immersion depth of the aerator blade based on the fluctuation of the water level. It is an object of the present invention to provide an inexpensive o control method that maintains the DO value of sewage at a predetermined value.

以下、本発明にかかる方法の実施に使用する装置の概要
について説明し、次に本発明であるオキシデーションデ
ィッチ法におけるDO制御方法について具体的に説明す
る。第2図は本発明にかかるオキシデーションディッチ
法を実施するための装置全体の平面図、第3図は第2図
の装置の一部を構成するスリット型流出堰の正面図、第
4図は同様第2図の装置の一部を構成する曝気機の側面
図、第5図は上記曝気機のブレード部分の詳細側面図で
あり、ブレードの浸漬深さの変化を示す。図において、
1は曝気槽、2は曝気機、3は流出部、4は下水流入口
である。尚、5は沈澱槽、6は汚泥返送ポンプ、7は汚
泥返送口である。そして、曝気槽1は平面図において外
形が長円形で、その長手中心線に沿って中央分離壁1a
で分離され循環水路を形成する。本曝気機2は縦型の表
面曝気機で、電動機の回転軸下端部に曝気用のブレード
2aが取設されている。また、流出部3は、流出抵抗を
もたせるため中央の一部のみ切欠かれ汚水の流出を制限
するよう構成されたスリット板3aを、上記曝気槽1の
一部に形成された切欠凹部1bに上下自在に装着され、
螺子機構3bで上下動させることができるよう構成され
ている。しかして、曝気機2は、曝気槽1の半円状の湾
曲部で中央分離壁1aの一端に隣接するような位置に装
置され、流出部3は曝気槽1の外壁の一部に装着され、
同じく下水流入口4、及び汚泥返送ロアが曝気槽1に取
設されている。尚、流出部3は ゛上記説明したスリッ
ト型のものの他流大変動量、水質等により三角形等の切
欠部を有するスリット板からなるスリット型の堰でもよ
く、また第6図に示すような導管8の径を細くし、屈曲
部9を設けて、ジャバラ10と甥子機構3b’で上下動
自在に装置された出水口11を設ける等して流れの損失
を大きくし、また出水口11の高さを調節することによ
り流出量を制限するよう構成された円筒型の流出113
a’でもよい。また、上記において、各流出部(スリッ
ト板3aまたは出水口11)が螺子機構3b (3b 
’ )により上下自在に構成されているのは、当初ある
いはその後流入量に対応する曝気槽の適正な水位の変動
範囲あるいは変動量が得られるよう調節可能にするため
である。
Hereinafter, an outline of the apparatus used to carry out the method according to the present invention will be explained, and then a DO control method in the oxidation ditch method according to the present invention will be specifically explained. Fig. 2 is a plan view of the entire apparatus for carrying out the oxidation ditch method according to the present invention, Fig. 3 is a front view of a slit-type outflow weir forming a part of the apparatus shown in Fig. 2, and Fig. 4 is a plan view of the entire apparatus for carrying out the oxidation ditch method according to the present invention. Similarly, FIG. 2 is a side view of an aerator forming part of the apparatus, and FIG. 5 is a detailed side view of the blade portion of the aerator, showing changes in the immersion depth of the blade. In the figure,
1 is an aeration tank, 2 is an aerator, 3 is an outlet, and 4 is a sewage inlet. In addition, 5 is a settling tank, 6 is a sludge return pump, and 7 is a sludge return port. The aeration tank 1 has an oval outer shape in a plan view, and has a central separation wall 1a along its longitudinal centerline.
The water is separated from the water to form a circulation waterway. This aerator 2 is a vertical surface aerator, and an aeration blade 2a is attached to the lower end of the rotating shaft of an electric motor. In addition, in the outflow section 3, a slit plate 3a, which is configured such that only a part of the center is cut out to provide outflow resistance and restrict the outflow of sewage, is inserted vertically into a notched recess 1b formed in a part of the aeration tank 1. Can be attached freely,
It is configured so that it can be moved up and down by a screw mechanism 3b. Therefore, the aerator 2 is installed at a position adjacent to one end of the central separation wall 1a in the semicircular curved part of the aeration tank 1, and the outflow part 3 is attached to a part of the outer wall of the aeration tank 1. ,
Similarly, a sewage inlet 4 and a sludge return lower are installed in the aeration tank 1. Note that the outflow section 3 may be a slit-type weir made of a slit plate having a triangular cutout depending on the amount of large fluctuation of the other flow, water quality, etc., as described above, or a conduit as shown in Fig. 6. The diameter of the water outlet 8 is made thinner, a bent part 9 is provided, and a water outlet 11 is provided which is movable up and down using a bellows 10 and a bellows mechanism 3b'. Cylindrical outflow 113 configured to limit outflow by adjusting height
It may be a'. Further, in the above, each outflow portion (slit plate 3a or water outlet 11) is connected to the screw mechanism 3b (3b
The reason why the aeration tank is configured to be able to move up and down freely is to enable adjustment so as to obtain an appropriate range or amount of fluctuation in the water level of the aeration tank corresponding to the initial or subsequent inflow amount.

次に、本発明にかかる方法について上記装置及び第7図
を参照して説明する。処理すべき下水が第7図の線図A
で表されるように時刻とともに量的に変動して流入する
場合、曝気槽への総流入量は沈澱槽5から一定の割合で
曝気槽1に返送させる汚泥を加えた線図Bの如きになる
。上記状態で、流出量を設けることにより、流入量に応
じて曝気槽(循環水路)内の水位を変動せしめる。即ち
、曝気槽からの流出量が線図Cのようになって流入量に
応じて曝気槽1の水位が変位し、曝気機のブレードの浸
漬深さが線図りで表されるような一定範囲の変位を有す
るように、流出量3の流出抵抗を設定する(上記流出量
のスリット板3aの中央の切欠き幅、またはスリット板
3a、出水口11を蝦子機構3b、3b′で上下させる
等により行う)ことにより、上記曝気槽1 (水路)の
水位を制御し、曝気機2のブレード2aの浸漬深さに一
定(実施例では5〜23am)の変動を与える。一方、
該ブレード2aは浸漬深さが変化すると、それに対応し
てブレード2aにより汚水を空中に散布する量(曝気量
)が変化するような形状のものを使用する。即ち、ブレ
ード2aは第5図に示すような浸漬深さの増減と曝気槽
1の下水の増減量に伴う必要な酸素供給量(曝気量)が
略比例する(第7図線図り、E参照)ような形状のもの
を使用する。さすれば、ブレード2aの浸漬深さDに対
応して酸素供給能力が変動するため、循環中の汚水の酸
素溶解量は線図Eのように水位に略比例して変動する。
Next, the method according to the present invention will be explained with reference to the above-mentioned apparatus and FIG. 7. The sewage to be treated is shown in line diagram A in Figure 7.
When the amount of inflow changes with time as shown in Figure B, the total amount of inflow to the aeration tank is as shown in diagram B, which includes the sludge returned from settling tank 5 to aeration tank 1 at a constant rate. Become. In the above state, by providing an outflow amount, the water level in the aeration tank (circulation waterway) is varied according to the inflow amount. In other words, the outflow amount from the aeration tank is as shown in diagram C, the water level in aeration tank 1 changes according to the inflow amount, and the immersion depth of the aerator blade is within a certain range as shown in the diagram. The outflow resistance for the outflow amount 3 is set so that the outflow amount 3 has a displacement of By controlling the water level of the aeration tank 1 (channel), the immersion depth of the blade 2a of the aerator 2 is varied at a constant level (5 to 23 am in the example). on the other hand,
The blade 2a is shaped so that when the immersion depth changes, the amount of sewage sprayed into the air (aeration amount) by the blade 2a changes accordingly. In other words, the required oxygen supply amount (aeration amount) for the blade 2a is approximately proportional to the increase or decrease in the immersion depth and the increase or decrease in the amount of sewage in the aeration tank 1 as shown in FIG. ). Since the oxygen supply capacity varies in accordance with the immersion depth D of the blade 2a, the amount of dissolved oxygen in the circulating wastewater varies approximately in proportion to the water level as shown in the diagram E.

そのため下水の流入量の変動に伴い、曝気槽内の汚水の
BOD負荷量は第1図の線図Fのように変動するが、そ
れに対応して上記酸素溶解量も線図Eのように変動する
ため、曝気槽内のDo値は線図Gで表されるように、常
に所定の適正範囲内に維持することができる。尚、第6
図のHは曝気機の軸出力を示す。
Therefore, as the amount of sewage inflow changes, the BOD load of the sewage in the aeration tank fluctuates as shown in diagram F in Figure 1, and correspondingly, the amount of dissolved oxygen also fluctuates as shown in diagram E. Therefore, the Do value in the aeration tank can always be maintained within a predetermined appropriate range, as shown in diagram G. Furthermore, the 6th
H in the figure indicates the shaft output of the aerator.

以上説明したように、本発明によれば、オキシデーショ
ンディッチ法において高価な自動制御方式等を用いるこ
となく、曝気槽内の汚水のDO値を常に所定の適正範囲
に維持することができるため、安価にオキシデーション
ディッチ法が実施でき、経済面より中小都市の下水処理
施設の整備の促進に貢献する。
As explained above, according to the present invention, the DO value of wastewater in the aeration tank can always be maintained within a predetermined appropriate range without using an expensive automatic control method in the oxidation ditch method. The oxidation ditch method can be implemented at a low cost, and economically contributes to promoting the development of sewage treatment facilities in small and medium-sized cities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は下水の流入量と水質の変動を横軸に時刻をとっ
て表した図、第2図は本発明にかかるオキシデーション
ディッチ法を実施するための装置の全体平面図、第3図
は第2図の装置の一部を構成するスリット型流出堰の正
面図、第4図は同様第2図の装置の一部を構成する曝気
機の側面図、第5図は第4図の曝気機のプレード浸漬深
さの変化を示す側面図、第6図は堰の他の実施例を示す
円筒型流出量、第7図は縦軸に本発明の実施における曝
気槽内の、流出入量、水位の変動、Do値等の諸状態を
、横軸に時刻をとって表した線図である。 A・・・下水流入量、B・・・曝気槽総流入量、C・・
・曝気槽流出量、D・・・水位(ブレード浸漬深さ)、
E・・・酸素溶解量、F・・・BOD負荷量、G・・・
口0値、H・・・曝気機軸出力、■・・・流入下水のB
OD値、1・・・曝気槽(循環水路)、2・・・曝気機
、3・・・流出量、4・・・下水流入口、5・・・沈澱
槽、6・・・汚泥返送ポンプ、7・・・汚泥返送口、8
・・・導管、9・・・屈曲部、10・・・ジャバラ、1
1・・・出水口。 0
Fig. 1 is a diagram showing changes in the amount of sewage inflow and water quality with time plotted on the horizontal axis, Fig. 2 is an overall plan view of the apparatus for carrying out the oxidation ditch method according to the present invention, and Fig. 3 is a front view of the slit-type outflow weir that forms part of the apparatus shown in Fig. 2, Fig. 4 is a side view of the aerator that similarly forms part of the apparatus shown in Fig. 2, and Fig. 5 is a side view of the aerator that forms part of the apparatus shown in Fig. 4. A side view showing changes in the immersion depth of the blades of the aerator, FIG. 6 is a cylindrical outflow amount showing another embodiment of the weir, and FIG. It is a diagram showing various conditions such as water volume, water level fluctuation, Do value, etc., with time plotted on the horizontal axis. A...Sewage inflow amount, B...Total aeration tank inflow amount, C...
・Aeration tank outflow amount, D... water level (blade immersion depth),
E... Oxygen dissolution amount, F... BOD load amount, G...
0 value, H...Aeration machine shaft output, ■...B of inflow sewage
OD value, 1... Aeration tank (circulation waterway), 2... Aerator, 3... Outflow amount, 4... Sewage inlet, 5... Sedimentation tank, 6... Sludge return pump , 7...Sludge return port, 8
... Conduit, 9 ... Bend part, 10 ... Bellows, 1
1... Water outlet. 0

Claims (1)

【特許請求の範囲】[Claims] 長円形の循環水路に機械式曝気機を設置して汚水を活性
汚泥処理するオキシデーションディッチ法において、上
記循環水路の流出部に、流入量に応じて該水路内の水位
を変動せしめる流出堰を設け、上記水位の変動に基づく
曝気機のブレードの浸漬深さの変化により曝気量を変動
させることにより、汚水のDo値を所定の値に維持する
ことを特徴とするオキシデーションディッチ法における
DO制御方法。
In the oxidation ditch method, in which a mechanical aerator is installed in an oblong circulation waterway to treat wastewater with activated sludge, an outflow weir is installed at the outlet of the circulation waterway to change the water level in the waterway according to the amount of inflow. DO control in the oxidation ditch method, characterized in that the Do value of wastewater is maintained at a predetermined value by varying the amount of aeration by changing the immersion depth of the blade of the aerator based on the fluctuation of the water level. Method.
JP58222565A 1983-11-25 1983-11-25 Control method of do in oxidation ditch method Granted JPS60114396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58222565A JPS60114396A (en) 1983-11-25 1983-11-25 Control method of do in oxidation ditch method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58222565A JPS60114396A (en) 1983-11-25 1983-11-25 Control method of do in oxidation ditch method

Publications (2)

Publication Number Publication Date
JPS60114396A true JPS60114396A (en) 1985-06-20
JPS6351077B2 JPS6351077B2 (en) 1988-10-12

Family

ID=16784448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58222565A Granted JPS60114396A (en) 1983-11-25 1983-11-25 Control method of do in oxidation ditch method

Country Status (1)

Country Link
JP (1) JPS60114396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001379A (en) * 2000-06-27 2002-01-08 Sumitomo Heavy Ind Ltd Sewage treating apparatus and method
JP2010247127A (en) * 2009-04-20 2010-11-04 Kobelco Eco-Maintenance Co Ltd Method of operating organic waste water treatment facility

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437788U (en) * 1990-07-30 1992-03-30

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109291A (en) * 1982-12-13 1984-06-23 Hitachi Ltd Control device for oxidation ditch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109291A (en) * 1982-12-13 1984-06-23 Hitachi Ltd Control device for oxidation ditch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001379A (en) * 2000-06-27 2002-01-08 Sumitomo Heavy Ind Ltd Sewage treating apparatus and method
JP2010247127A (en) * 2009-04-20 2010-11-04 Kobelco Eco-Maintenance Co Ltd Method of operating organic waste water treatment facility

Also Published As

Publication number Publication date
JPS6351077B2 (en) 1988-10-12

Similar Documents

Publication Publication Date Title
JP3205450B2 (en) Automatic injection rate determination device and automatic determination method
US3426899A (en) Aeration apparatus
JPH0130559B2 (en)
JPS60114396A (en) Control method of do in oxidation ditch method
JP7016623B2 (en) Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
RU2705966C2 (en) Control method of liquid cleaning device
JPS6314679B2 (en)
US2559462A (en) Method and apparatus for separating oxidizable materials from liquids by oxygenation and aerobic biochemical action
US3505212A (en) Method and equipment for activated sludge processing of sewage
JP7166181B2 (en) Aeration and agitation system and method of operating the aeration and agitation system
JPH11104685A (en) Method for controlling dissolved oxygen of waste water treating system
US3423077A (en) Adjustable weir
JPS6314680B2 (en)
JP2003251385A (en) Water treatment system and operation method therefor
JPH05345103A (en) Precipitation pond operating method in wastewater treatment
JPS5837511Y2 (en) Biological treatment equipment for wastewater
JP3654742B2 (en) Sludge dewatering method
US10287196B2 (en) Plant and control method for aerobic treatment
JP2000185296A (en) Control method of operation of sludge withdrawing pump
JPS62114697A (en) Aeration type water treatment apparatus
JPH05285487A (en) Device for quantitatively supplying treated ater
JPH0679717B2 (en) Return sludge amount control device
JPS58159895A (en) Method for controlling sewage treatment plant
JPH0720590B2 (en) Oxygen supply controller in oxidation ditch
JPS6019095A (en) Aeration apparatus for oxidation ditch

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees