JPS6314679B2 - - Google Patents

Info

Publication number
JPS6314679B2
JPS6314679B2 JP57119709A JP11970982A JPS6314679B2 JP S6314679 B2 JPS6314679 B2 JP S6314679B2 JP 57119709 A JP57119709 A JP 57119709A JP 11970982 A JP11970982 A JP 11970982A JP S6314679 B2 JPS6314679 B2 JP S6314679B2
Authority
JP
Japan
Prior art keywords
value
rotor
circulation path
amount
mixed liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57119709A
Other languages
Japanese (ja)
Other versions
JPS5910393A (en
Inventor
Hideki Iwabe
Hiroshi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP57119709A priority Critical patent/JPS5910393A/en
Publication of JPS5910393A publication Critical patent/JPS5910393A/en
Publication of JPS6314679B2 publication Critical patent/JPS6314679B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【発明の詳細な説明】 本発明は、排水処理装置において処理に最適な
Do値を維持させるための制御方法に関するもの
である。一般に中小規模の排水処理場において
は、散気方式や活性汚泥法等に比べて省エネルギ
ー型で、運転管理の面でも容易なオキシデーシヨ
ンデイツチシステムと呼ばれる排水処理装置が多
く採用されている。ところが、この排水処理装置
は循環路を形成するデイツチ槽に設けた横型ロー
タ回転式の曝気装置により、汚水の曝気と流動を
行なわせるようにしているため、硝化や脱窒率が
高いという利点はあるが、当初設定したままの運
転条件で稼動されるため、汚水の流入水量や水
質、特にBODの変化等に伴なう流入負荷条件の
変動に対して適切に対応することができず、処理
水のDo値が所定の値となるように最適に制御す
ることはきわめて困難であつた。そのため低負荷
条件下では過曝気となり、硝化反応のみが進行し
て脱窒が起こらず、PH値が低下する等の障害を起
こすばかりか、不要な動力を消費することにもな
り、逆に高負荷条件下ではDo不足となり、硝化
反応や脱窒が促進されず、処理水質が悪化する
等、多くの欠点があつた。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an optimal treatment method for wastewater treatment equipment.
This invention relates to a control method for maintaining the Do value. In general, in small and medium-sized wastewater treatment plants, wastewater treatment equipment called oxidation date systems is often used, as it is energy-saving and easier to operate and manage than the aeration method, activated sludge method, etc. However, this wastewater treatment equipment uses a horizontal rotor-rotating aeration system installed in the Deitzch tank that forms the circulation path to aerate and flow the wastewater, so it does not have the advantage of high nitrification and denitrification rates. However, since the operation is performed under the same operating conditions as originally set, it is not possible to respond appropriately to changes in the inflow load conditions due to changes in the amount and quality of sewage inflow, especially BOD. It has been extremely difficult to optimally control the Do value of water to a predetermined value. Therefore, under low load conditions, overaeration occurs, and only the nitrification reaction progresses, denitrification does not occur, which not only causes problems such as a decrease in PH value, but also consumes unnecessary power. Under load conditions, there were many drawbacks such as insufficient Do, nitrification reactions and denitrification were not promoted, and the quality of treated water deteriorated.

本発明は、上記従来の欠点を改善するためにな
されたもので、排水処理装置における循環路内の
所定位置において検出したDoの検出値と設定値
との差に応じて循環路内の水位を変化させ、ロー
タの浸水深さに対応して酸素供給量を調節し、
Do値が所定の値となるように制御するようにし
たことを特徴としており、流水の流入負荷条件が
変動しても処理水のDo値が所定の値となるよう
に最適に制御することができる排水処理装置にお
ける酸素供給量の制御方法を提供せんとするもの
である。
The present invention has been made to improve the above conventional drawbacks, and the water level in the circulation path is adjusted according to the difference between the detected value of Do detected at a predetermined position in the circulation path of a wastewater treatment device and the set value. The amount of oxygen supplied is adjusted according to the depth of immersion of the rotor.
The feature is that the Do value is controlled to a predetermined value, and it is possible to optimally control the Do value of treated water to a predetermined value even if the inflow load conditions of flowing water change. The purpose of the present invention is to provide a method for controlling the amount of oxygen supplied in a wastewater treatment device.

以下本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図乃至第3図において、1は循環路2を有
するデイツチ槽で、一般にトラツク型の循環路2
が形成されている。3はデイツチ槽1の循環路2
上を横切つて配置された横型ロータ回転式の曝気
装置で、その回転軸4の両端は各々デイツチ槽1
に設けた軸受5に支承されており、回転軸4の両
端部に平行に固定された円形の端板6,6間に回
転軸4の軸心と平行に複数の翼板7を放射状に配
置してロータ8を構成している。そして、モータ
9を駆動することにより、ロータ8は第2図に矢
印で示すように時計方向に回転し、処理水の曝気
と流動を行なうようになつている。10は汚水流
入管で、その流出側はデストリビユータ管11に
接続されている。デストリビユータ管11は、ロ
ータ8の回転によつて循環路2内を第1図に示す
矢印方向に流動される混合液12に対し、曝気装
置3より所定距離をおいた上流側に循環路2を横
切るように配置されており、その下流側の側面に
は所定間隔をおいて放出孔13が設けられ、汚水
流入管10を介してデストリビユータ管11に導
かれた汚水の原水14は、放出孔13より循環路
2内に均一に分散して放出されるようになつてい
る。なお、15は汚水流入管10の途中に設けら
れた開閉弁で、この開閉弁15を開閉し、汚水の
原水14の流入量を調節することができる。
1 to 3, reference numeral 1 denotes a date tank having a circulation path 2, which is generally a track type circulation path 2.
is formed. 3 is the circulation path 2 of the deitsch tank 1
It is a horizontal rotor-rotating aeration device placed across the top, and both ends of its rotating shaft 4 are connected to a date tank 1, respectively.
A plurality of blade plates 7 are arranged radially in parallel with the axis of the rotating shaft 4 between circular end plates 6, 6 fixed parallel to both ends of the rotating shaft 4. The rotor 8 is configured as follows. By driving the motor 9, the rotor 8 is rotated clockwise as shown by the arrow in FIG. 2, thereby aerating and flowing the treated water. Reference numeral 10 denotes a wastewater inflow pipe, the outflow side of which is connected to a distributor pipe 11. The distributor pipe 11 connects the circulation path 2 to the upstream side at a predetermined distance from the aeration device 3 with respect to the mixed liquid 12 flowing in the direction of the arrow shown in FIG. Discharge holes 13 are provided at predetermined intervals on the downstream side of the discharge holes 13. It is designed to be more uniformly dispersed and released within the circulation path 2. In addition, 15 is an on-off valve provided in the middle of the wastewater inflow pipe 10, and this on-off valve 15 can be opened and closed to adjust the inflow amount of the raw waste water 14.

また、デストリビユータ管11よりもさらに上
流側には、デイツチ槽1の側壁を貫通して流水路
16が設けられ、この流水路16の入口となるデ
イツチ槽1の側壁に設けられた開口部17に、両
端をデイツチ槽1の開口部に設けた溝に案内され
て上下方向に駆動装置21により移動可能な可動
せき18が設けられており、可動せき18を下げ
ると循環路2内の混合液12が可動せき18の上
縁を越えて流水路16内に溢流し、循環路2内の
水位が低下する。19は流水路16の底面に開口
する流出管で、流水路16内に溢流した混合液1
2は流出管19を介して図示しない沈澱池等に導
かれている。なお、沈澱池等に導かれた混合液1
2は沈澱池等で分離濃縮され返送汚泥として返送
手段を介して適宜デイツチ槽1内に返送され、曝
気処理されることになる。また、循環路2内の水
位を上げるには、可動せき18を引上げて循環路
2の有効水深を上げればよい。
Further, on the upstream side of the distributor pipe 11, a flow channel 16 is provided passing through the side wall of the deutsch tank 1, and an opening 17 provided in the side wall of the deutsch tank 1, which serves as an inlet of the flow channel 16, is provided. A movable weir 18 is provided which is movable in the vertical direction by a drive device 21 with both ends guided by grooves provided in the opening of the deutsch tank 1. When the movable weir 18 is lowered, the mixed liquid 12 in the circulation path 2 is moved. The water exceeds the upper edge of the movable weir 18 and overflows into the flow channel 16, and the water level in the circulation channel 2 decreases. Reference numeral 19 denotes an outflow pipe that opens at the bottom of the flow channel 16, through which the mixed liquid 1 overflowing into the flow channel 16 is discharged.
2 is led to a sedimentation basin (not shown) or the like via an outflow pipe 19. In addition, the mixed liquid 1 led to a sedimentation tank etc.
2 is separated and concentrated in a sedimentation tank or the like, and is appropriately returned to the Deitch tank 1 as return sludge via a return means, where it is aerated. Furthermore, in order to raise the water level in the circulation path 2, the movable weir 18 may be pulled up to increase the effective water depth of the circulation path 2.

このように、上記構成の排水処理装置において
は、可動せき18を移動させることによつて循環
路2内の水位を任意に変化させることができるか
ら、曝気装置3のロータ8の水平位置を上下させ
ることなく、水位の方を第2図に示すようにL−
L〜L′−L′のように変化させることにより、ロー
タ8の浸水深さlを任意に変えることができるこ
とになる。
In this way, in the wastewater treatment device having the above configuration, the water level in the circulation path 2 can be changed arbitrarily by moving the movable weir 18, so the horizontal position of the rotor 8 of the aeration device 3 can be changed up or down. As shown in Figure 2, the water level is L-
By changing it from L to L'-L', the immersion depth l of the rotor 8 can be changed arbitrarily.

第4図は流水に対するロータの浸水深さlと酸
素供給量との関係を実験的に求めた性能曲線図
で、この図から明らかなように、ロータ8の浸水
深さlと酸素供給量とは密接な関係があり、ロー
タ8の浸水深さlが大きくなると、これに比例し
て酸素供給量も増加するの傾向がある。従つて、
設置する曝気装置3のロータ8の径と回転数に対
応するロータ8の浸水深さlと酸素供給量との関
係をあらかじめ実験により求めておけば、ロータ
8の浸水深さlを変化させることにより任意の酸
素供給量を得ることが可能となる。
Figure 4 is a performance curve diagram that experimentally determined the relationship between the immersion depth l of the rotor 8 and the oxygen supply amount.As is clear from this figure, the relationship between the immersion depth l of the rotor 8 and the oxygen supply amount is There is a close relationship, and as the submersion depth l of the rotor 8 increases, the amount of oxygen supplied tends to increase in proportion to this. Therefore,
If the relationship between the immersion depth l of the rotor 8 corresponding to the diameter and rotational speed of the rotor 8 of the aeration device 3 to be installed and the oxygen supply amount is determined in advance through experiments, the immersion depth l of the rotor 8 can be changed. This makes it possible to obtain an arbitrary amount of oxygen supply.

混合液12のDo値は、曝気による酸素供給量
が増加するにつれて上昇し、逆に酸素供給量が減
少するとDo値は低下する傾向にある。従つて、
ロータ8の浸水深さlを変化させることにより、
混合液12のDo値を制御することが可能となる。
そこで本発明においては汚水の生物学的処理に適
したDo値をあらかじめ設定して設定器に記憶さ
せておくと共に、循環器2内の所定位置における
混合液12のDo値をDoメータ22,23にて検
出し、その検出値と設定器の設定値とを比較器2
0により比較し、Doの検出値が設定値の上限よ
りも大きければ可動せき18を下げてロータ8の
浸水深さlを小さくし、酸素供給量を減少させて
混合液12のDo値を設定値まで引き下げ、逆に
Doの検出値が設定値の下限よりも小さければ、
可動せき18を上げてロータ8の浸水深さlを大
きくし、酸素供給量を増大させて混合液12の
Do値を設定値まで引き上げるようにし、汚水の
流入負荷条件が変動しても混合液12のDoを生
物学的処理に適した設定値の範囲内に維持し、
Do値を自動的に最適な値に制御し得るのである。
The Do value of the mixed liquid 12 tends to increase as the amount of oxygen supplied by aeration increases, and conversely, when the amount of oxygen supplied decreases, the Do value tends to decrease. Therefore,
By changing the immersion depth l of the rotor 8,
It becomes possible to control the Do value of the mixed liquid 12.
Therefore, in the present invention, a Do value suitable for biological treatment of wastewater is set in advance and stored in the setting device, and the Do value of the mixed liquid 12 at a predetermined position in the circulatory system 2 is measured using the Do meters 22, 23. Comparator 2 detects the detected value and the setting value of the setting device.
If the detected value of Do is larger than the upper limit of the set value, the movable weir 18 is lowered to reduce the immersion depth l of the rotor 8, the oxygen supply amount is decreased, and the Do value of the mixed liquid 12 is set. lower to the value and vice versa
If the detected value of Do is smaller than the lower limit of the set value,
The movable weir 18 is raised to increase the immersion depth l of the rotor 8, increasing the amount of oxygen supplied and increasing the amount of mixed liquid 12.
The Do value is raised to the set value, and the Do of the mixed liquid 12 is maintained within the range of the set value suitable for biological treatment even if the inflow load conditions of sewage vary.
This allows the Do value to be automatically controlled to the optimum value.

なお、本実施例の図面においては、可動せき1
8の移動手段については省略されているが、可動
せき18は電動或いは油圧等により可動し得るよ
うにしておき、比較器で比較したDoの検出値と
設定値との差に応じた誤差信号を受けて可動せき
18が移動し得るようにしておけばよい。この場
合、可動せき18は比較器からのDoの誤差信号
を受けて一度に10〜20mm程度ずつ昇降し、その位
置における混合液12のDo値の変化を検出して
さらに設定値との間に差があればまた昇降するよ
うなフイードバツク回路を組込んで、ステツプ応
答を行なわせることもできる。
In addition, in the drawings of this embodiment, the movable weir 1
Although the moving means 8 is omitted, the movable weir 18 is made movable by electric power or hydraulic pressure, and outputs an error signal according to the difference between the detected value of Do and the set value compared with the comparator. The movable weir 18 may be moved in response to this. In this case, the movable weir 18 receives the Do error signal from the comparator and moves up and down by about 10 to 20 mm at a time, detects the change in the Do value of the mixed liquid 12 at that position, and further detects the change in the Do value of the mixed liquid 12 at that position. If there is a difference, a feedback circuit that goes up and down can be incorporated to provide a step response.

以上説明したように、本発明は、循環路を形成
するデイツチ槽に設けた横型ロータ回転式の曝気
装置により、汚水の曝気と流動を行なわせるよう
にした排水処理装置において、上記デイツチ槽に
循環路内の混合液が溢流する流水路を設けると共
に、その流水路の入口に溢水量を調節するための
可動せきを設け、循環路内の所定位置における混
合液のDo値を検出して、その検出値と設定値と
を比較し、その差に応じて可動せきを自動的に移
動させ、循環路内の水位を変化させてDo値が所
定の値となるようにロータの浸水深さを調節する
ようにしたので、次のように多くの優れた効果を
有するものである。
As explained above, the present invention provides a wastewater treatment system in which wastewater is aerated and fluidized by a horizontal rotor-rotating aeration device installed in a deitch tank forming a circulation path. In addition to providing a flow channel through which the mixed liquid in the circulation path overflows, a movable weir is provided at the entrance of the flow channel to adjust the amount of overflow, and the Do value of the mixed liquid at a predetermined position in the circulation path is detected. The detected value is compared with the set value, and the movable weir is automatically moved according to the difference, changing the water level in the circulation path and adjusting the depth of water immersion of the rotor so that the Do value becomes a predetermined value. Since it is controlled, it has many excellent effects as follows.

(1) 汚水の流入負荷条件が変動しても混合液の
Do値を最適条件の範囲内に維持することがで
きるから、処理水質が安定し、硝化や脱窒もき
わめて良好に行なえる。
(1) Even if the inflow load conditions of wastewater change, the mixed liquid
Since the Do value can be maintained within the optimum range, the quality of the treated water is stable and nitrification and denitrification can be performed extremely well.

(2) 曝気装置のロータの運転台数や回転数等を変
えることなく、可動せきを昇降させるだけで、
循環路内の水位を変化させて酸素供給量を調節
することができるので、Doの制御がきわめて
容易かつ安価にでき、故障も少ない。
(2) Simply raise and lower the movable weir without changing the number of rotors in operation or the rotation speed of the aeration equipment.
Since the amount of oxygen supplied can be adjusted by changing the water level in the circulation path, Do can be controlled extremely easily and inexpensively, and failures are rare.

(3) 必要な酸素供給量を越えて過曝気されること
はないから、消費動力に無駄がない。
(3) There is no need to over-aerate, exceeding the required amount of oxygen supply, so there is no waste in power consumption.

(4) 既設の排水処理装置でも大巾に改造すること
なく適用することができる。
(4) It can be applied to existing wastewater treatment equipment without major modifications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した排水処理装置の1実
施例を示す平面図、第2図及び第3図は各々第1
図における矢視−及び−線に沿つて切断
した断面図、第4図はロータの浸水深さと酸素供
給量との関係を示す性能曲線図である。 1……デイツチ槽、2……循環路、3……曝気
装置、4……回転軸、5……軸受、6……端板、
7……翼板、8……ロータ、9……モータ、10
……汚水流入管、11……デストリビユータ管、
12……混合液、13……放出孔、14……原
水、15……開閉弁、16……流水路、17……
開口部、18……可動せき、19……流出管。
FIG. 1 is a plan view showing one embodiment of a wastewater treatment device to which the present invention is applied, and FIGS.
FIG. 4 is a cross-sectional view taken along the arrows - and - in the figure, and is a performance curve diagram showing the relationship between the depth of immersion of the rotor and the amount of oxygen supplied. 1... Datetsu tank, 2... Circulation path, 3... Aeration device, 4... Rotating shaft, 5... Bearing, 6... End plate,
7... Wing plate, 8... Rotor, 9... Motor, 10
... Sewage inflow pipe, 11 ... Distributor pipe,
12...Mixed liquid, 13...Discharge hole, 14...Raw water, 15...Open/close valve, 16...Flow channel, 17...
Opening, 18...movable weir, 19...outflow pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 回転式ロータにより、汚水の曝気と流動を行
なわせるようにしたデイツチ方式の排水処理装置
において、デイツチ槽に循環路内の混合液が溢流
する流水路を設けると共に、その流水路の入口に
溢水量を調節するための可動せきを設け、循環路
内の所定位置における処理水のDo値を検出して、
その検出値と設定値とを比較し、その差に応じて
可動せきを自動的に移動させ、循環路内の水位を
変化させてロータの浸水深さを調節することによ
りDo値を調節することを特徴とする、排水処理
装置における酸素供給量制御方法。
1. In a Deitzch-type wastewater treatment equipment that uses a rotary rotor to aerate and flow wastewater, the Deitzch tank is provided with a flow channel through which the mixed liquid in the circulation channel overflows, and a flow channel is installed at the entrance of the flow channel. A movable weir is installed to adjust the amount of overflow, and the Do value of treated water at a predetermined position in the circulation path is detected.
The Do value is adjusted by comparing the detected value and the set value, automatically moving the movable weir according to the difference, and changing the water level in the circulation path to adjust the immersion depth of the rotor. A method for controlling the amount of oxygen supplied in a wastewater treatment device, characterized by:
JP57119709A 1982-07-12 1982-07-12 Method for controlling supply rate of oxygen in treating device for waste water Granted JPS5910393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57119709A JPS5910393A (en) 1982-07-12 1982-07-12 Method for controlling supply rate of oxygen in treating device for waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119709A JPS5910393A (en) 1982-07-12 1982-07-12 Method for controlling supply rate of oxygen in treating device for waste water

Publications (2)

Publication Number Publication Date
JPS5910393A JPS5910393A (en) 1984-01-19
JPS6314679B2 true JPS6314679B2 (en) 1988-03-31

Family

ID=14768153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119709A Granted JPS5910393A (en) 1982-07-12 1982-07-12 Method for controlling supply rate of oxygen in treating device for waste water

Country Status (1)

Country Link
JP (1) JPS5910393A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391574U (en) * 1986-11-28 1988-06-14
JPH04297638A (en) * 1991-03-26 1992-10-21 Matsushita Electric Works Ltd Water closet toilet bowl
JPH054783Y2 (en) * 1989-02-28 1993-02-05

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249595A (en) * 1985-04-26 1986-11-06 Shimizu Constr Co Ltd Surface aeration type waste water treatment device
JP5315118B2 (en) * 2009-04-20 2013-10-16 神鋼環境メンテナンス株式会社 Operation method of organic wastewater treatment facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391574U (en) * 1986-11-28 1988-06-14
JPH054783Y2 (en) * 1989-02-28 1993-02-05
JPH04297638A (en) * 1991-03-26 1992-10-21 Matsushita Electric Works Ltd Water closet toilet bowl

Also Published As

Publication number Publication date
JPS5910393A (en) 1984-01-19

Similar Documents

Publication Publication Date Title
US5234595A (en) Two-phase orbital-type wastewater treatment system and method
US4614589A (en) Method and apparatus for biological aerobic wastewater treatment
US3426899A (en) Aeration apparatus
JPS6314679B2 (en)
JP2001252681A (en) Device for controlling water level of oxidation ditch
JPH0130559B2 (en)
JP4579450B2 (en) Operation control method of oxidation ditch
JP2007326030A (en) Operation method of oxidation ditch
GB2080276A (en) The treatment of effluent by aeration
JPH01249192A (en) Method and device for controlling water spraying rate of variable volume bioreactor
JPS631920B2 (en)
JPS6314680B2 (en)
JP2002001379A (en) Sewage treating apparatus and method
US3505212A (en) Method and equipment for activated sludge processing of sewage
JPS6351077B2 (en)
US3423077A (en) Adjustable weir
JPH0538497A (en) Controlling method for sewage treating process
JP2515255B2 (en) Automatic adjustment device for sludge concentration in sewage treatment tank
JPH01249191A (en) Method and device for controlling air diffusion rate of variable volume bioreactor
JPH0773709B2 (en) Control method of wastewater treatment in the oxidation ditch method
JPH01249193A (en) Water level control method for waste water in variable volume bioreactor
JPS61249595A (en) Surface aeration type waste water treatment device
JPH0824918B2 (en) Aeration tank for anaerobic / aerobic treatment and scum outflow method in this aeration tank
JPS58137495A (en) Apparatus for purifying filthy water
Barnard et al. Hydraulics in BNR plants