JPS60114340A - Adsorbent for adsorption of low specific gravity lipoprotein - Google Patents

Adsorbent for adsorption of low specific gravity lipoprotein

Info

Publication number
JPS60114340A
JPS60114340A JP58220532A JP22053283A JPS60114340A JP S60114340 A JPS60114340 A JP S60114340A JP 58220532 A JP58220532 A JP 58220532A JP 22053283 A JP22053283 A JP 22053283A JP S60114340 A JPS60114340 A JP S60114340A
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
density
negative charge
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58220532A
Other languages
Japanese (ja)
Other versions
JPH043988B2 (en
Inventor
Toru Kuroda
徹 黒田
Naokuni Yamawaki
山脇 直邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58220532A priority Critical patent/JPS60114340A/en
Priority to DE8484113358T priority patent/DE3480177D1/en
Priority to US06/668,795 priority patent/US4576927A/en
Priority to EP84113358A priority patent/EP0143369B2/en
Publication of JPS60114340A publication Critical patent/JPS60114340A/en
Publication of JPH043988B2 publication Critical patent/JPH043988B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable adsorption of low specific gravity lipoprotein with high efficiency by using an adsorbent which has the polyanion part having many functional groups exhibiting negative charge in a molecule and having a relatively large mol. wt. on the surface and of which the negative charge density is in a specific ragne. CONSTITUTION:The polyanion part having >=600mol.wt. (e.g., polyacrylic acid) is provided on the surface. The polyanion part of which the negative charge is >=1mueq/ml and <=1meq/ml and the mol. wt. is >=600 is made into the polyanion part having at least one functional group (e.g., carboxyl group and sulfonate group) exhibiting negative charge for each 300mol.wt. Such adsorbent adsorbs selectively the low specific gravity lipoprotein in a bodily fluid with high efficiency, decreases nonselective adsorption, has safety, permits simple sterilization operation and is suitable for cleaning up or regeneration of the bodily fluid.

Description

【発明の詳細な説明】 本発明は、血漿脂質の増加に起因する各種疾患と密接な
関係を持つと考えられている低比重リボ蛋白質を選択的
に吸着除去する低比重リボ蛋白吸着材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low-density riboprotein adsorbent that selectively adsorbs and removes low-density riboproteins, which are thought to be closely related to various diseases caused by an increase in plasma lipids.

周知の如く、血液中の脂質、特に低比重リボ蛋白質の増
加は、動脈硬化の原因あるいは進行と密接な関係を持っ
ていると考えられている。動脈硬化9碓むと心腋志脳梗
塞等循環器系の重篤な症状に陥る可能性が非常に高くな
シ、死亡率も高い。
As is well known, an increase in blood lipids, particularly low-density riboproteins, is thought to be closely related to the cause or progression of arteriosclerosis. When arteriosclerosis develops, there is a very high possibility of developing serious circulatory system symptoms such as axillary cerebral infarction, and the mortality rate is also high.

そこで、血液、血漿等の体液成分から低比重リボ蛋白質
を選択的に吸着除去することによって、上記の如き疾患
の進行を防止し、症状を軽減せしめ、さらには治ゆを早
めることが期待されていた。
Therefore, by selectively adsorbing and removing low-density riboproteins from body fluid components such as blood and plasma, it is expected that the progression of the above-mentioned diseases can be prevented, symptoms can be alleviated, and furthermore, healing can be accelerated. Ta.

上記目的に使用可能な既存の技術には、アガロースゲル
にヘパリンを固定化した吸着材による吸着(Lupie
n、 P−J 、 et、a4 : A new ap
proach t。
Existing techniques that can be used for the above purpose include adsorption using adsorbents in which heparin is immobilized on agarose gel (Lupie
n, P-J, et, a4: A new ap
proach t.

the management of familia
l hypercholesternlemia。
the management of family
l hypercholesternlemia.

Removal of plasma−cholest
erol based on theprincipl
e of affinity chromatogra
phy、Lancet。
Removal of plasma-cholest
erol based on the principle
e of affinity chromatogra
phy, Lancet.

2:1261〜1264,1976、)、およびガラス
パウダーまたはガラスピーズを用いたクロマトグラフィ
ー(Carlson、 L 、 A 、: Chrom
atographicseparation of s
erum 1ipoproteint on glas
spowder colums+ Descripti
on of the methodand some 
applications、Cl1n、Chim、Ac
ta、5:528〜538.1960.)がある。
2:1261-1264, 1976), and chromatography using glass powder or glass beads (Carlson, L.A.: Chromatography
atographic separation of s
erum 1ipoprotein on glass
sprayer columns + Description
on of the method and some
applications, Cl1n, Chim, Ac
ta, 5:528-538.1960. ).

しかしながら、ヘパリンをアガロースに固定した吸着材
は、低比重リボ蛋白質に選択的吸着能を示すものの吸着
能力が充分でなく、捷た、担体にアガロースを用いてい
るため、機械的強度が不充分で取り扱い性、操作性が悪
く、体液を流した場合の目づ筐りが起こり易く、また、
滅菌操作によるボアーの破壊があり、表常に使い難いも
のであった。
However, although the adsorbent in which heparin is immobilized on agarose shows selective adsorption ability for low-density riboproteins, its adsorption ability is insufficient, and because it uses agarose as a carrier, it has insufficient mechanical strength. It is difficult to handle and operate, and can easily cause eyelids when body fluids are poured into it.
The bore was destroyed during the sterilization process, making it difficult to use.

また、ガラスパウダーやガラスピーズを用いる方法は、
吸着能力が低く、その上、吸着選択性が低いという欠点
があり、実用的でなかった。
In addition, the method using glass powder or glass peas is
It had the drawbacks of low adsorption capacity and low adsorption selectivity, making it impractical.

本発明の目的は、上記の如き従来技術に基づく吸着材の
問題点に鑑み、一般的に普及可能であり、低比重リボ蛋
白質を高い効率で選択的に吸着し、非選択的な吸着が少
なく、安全性があり、滅菌操作も簡単に行なうことがで
き、体液浄化あるいは再生用に適した吸着材を提供しよ
うとするものである。
In view of the problems of adsorbents based on the prior art as described above, an object of the present invention is to be generally applicable, to selectively adsorb low-density riboproteins with high efficiency, and to minimize non-selective adsorption. The present invention aims to provide an adsorbent that is safe, easy to sterilize, and suitable for body fluid purification or regeneration.

本発明者らは、上記目的に沿って鋭意研究した結果、分
子中に負電荷を示す官能基を多数個持ち、分子量が比較
的大きいポリアニオン部を表面に有し、かつ、その負電
荷密度が特定の範囲にある吸着材が、驚くべき11ど高
い効率で低比重リボ蛋白質を吸着し、非選択的な吸着が
少なく、かつ、血液の凝固、線溶系、補体系を活性化す
ることが少ないことを見出し、本発明を完成するに至っ
た。
As a result of intensive research in line with the above objectives, the present inventors discovered that the molecule has many functional groups exhibiting negative charges, has a relatively large polyanion moiety on its surface, and has a negative charge density. Adsorbents in a specific range adsorb low-density riboproteins with surprisingly high efficiency, exhibiting less non-selective adsorption and less activation of blood coagulation, fibrinolytic system, and complement system. This discovery led to the completion of the present invention.

すなわち、本発明は、表面に分子量が600以上である
ポリアニオン部を有し、かつ、その負電荷密度が1μe
q/−以上、1meq/−以下であること全特徴とする
低比重リボ蛋白質吸着用の吸着材であり、分子量が60
0以上であるポリアニオン部が鎖状構造のポリアニオン
部であることが好ましく、また、分子量が600以上で
あるポリアニオン部が分子量300当りに少なくとも1
個の負電荷を示す官能基を持つポリアニオン部であるこ
とが好ましい。
That is, the present invention has a polyanion portion having a molecular weight of 600 or more on the surface and a negative charge density of 1 μe.
It is an adsorbent for adsorbing low-density riboproteins, which is characterized by having a molecular weight of 60 meq/- or more and 1 meq/- or less.
It is preferable that the polyanion moiety having a molecular weight of 0 or more is a polyanion moiety having a chain structure, and the polyanion moiety having a molecular weight of 600 or more is preferably at least 1 per molecular weight 300.
It is preferable that the polyanionic moiety is a polyanionic moiety having a functional group exhibiting negative charges.

本発明で対象とする吸着物質は、低比重リボ蛋白質であ
るが、より詳細に説明すると、分子量が2.2 X 1
0’から5,5 X 106、水和密度が1,003か
ら1,034 (f/m/)、浮上係数(1,063)
が0から20 X 1 o−”crn’5ec−” d
yn−’−?−’、直径が20.0からS O,Onm
のリボ蛋白(5CANU、 A 、 M 。
The target adsorbent of the present invention is low-density riboprotein, and to explain in more detail, it has a molecular weight of 2.2
0' to 5,5
is 0 to 20 X 1 o-"crn'5ec-" d
yn-'-? -', diameter from 20.0 to SO, Onm
riboproteins (5CANU, A, M.

:plasma 1ipoproteins : an
 1ntroduction 。
: plasma 1ipoproteins : an
1ntroduction.

’ The Biochemistry of Ath
erosclerosis ” ed。
'The Biochemistry of Ath
erosclerosis” ed.

by 5CANU A8M、、 1979 、 P、5
〜8.による)を言う。
by 5CANU A8M, 1979, P, 5
~8. ).

これより比重の小さいリボ蛋白、すなわち、浮上係数(
1,063)が20 X 10−”crn−8ec−’
−dyn−’ j f’より大きいリボ蛋白質は吸着さ
れてもよいが、比重の高い高比重リボ蛋白は吸着されな
いことが好ましい。
Riboproteins with a smaller specific gravity, i.e., levitation coefficient (
1,063) is 20 X 10-"crn-8ec-'
Although riboproteins larger than -dyn-' j f' may be adsorbed, it is preferable that high-density riboproteins with high specific gravity are not adsorbed.

本発明で言うポリアニオン部とは、1分子の分子量が6
00以上であり、1分子中に負電荷を示す官能基、すな
わち、カルボキシル基(C0OH。
The polyanionic moiety referred to in the present invention means that the molecular weight of one molecule is 6.
00 or more and has a negative charge in one molecule, that is, a carboxyl group (C0OH).

coo−・)、スルホン酸基(So、H、5os−)ガ
と血漿中で負電荷を示す官能基を多数個持つものを言う
coo-), sulfonic acid groups (So, H, 5os-), and a large number of functional groups that exhibit negative charges in plasma.

例示すると、ポリアクリル酸、ポリビニルスルホン酸、
ポリビニルリン酸等のビニル系合成ボリア 5 − ニオン、ポリスチレンスルホン酸、ポリスチレンリン酸
等のスチレン系ポリアニオン、ポリグルタミン酸、ポリ
アスパラギン酸等のペプチド系ポリアニオン、RNA、
DNA等の核酸系ポリアニオンやポリメタクリル酸、ポ
リリン酸、ポリホスフェイトエステル、ポリ−α−メチ
ルスチレンスルホン酸、スチレン−マレイン酸共重合体
などのポリアニオンがあげられる。
Examples include polyacrylic acid, polyvinylsulfonic acid,
Vinyl synthetic boria 5-ions such as polyvinyl phosphate, styrene polyanions such as polystyrene sulfonic acid and polystyrene phosphate, peptide polyanions such as polyglutamic acid and polyaspartic acid, RNA,
Examples include polyanions based on nucleic acids such as DNA, polymethacrylic acid, polyphosphoric acid, polyphosphate ester, poly-α-methylstyrene sulfonic acid, and styrene-maleic acid copolymers.

中でも合成することによって得られるポリアニオンは、
その化学的安定性に優れ、高圧蒸気滅菌、γ線滅菌、エ
チレンオキサイド滅菌等に対しても安定なものを得易く
、また、分子量の調節も比較的簡匣に行なえる等の点で
天然の物より優れ、推奨できる。また、合成によシ得ら
れるポリアニオンの場合、天然の多糖類にみられるよう
な補体の活性化を起こし難いポリアニオンが容易に得ら
れるため好ましい。さらに、ビニル系アニオンのように
、担体に対して直接クラフト重合を行なえるものは、担
体に対して分子量の大きいポリアニオンを高保持量で固
定することができる点で、よシ 6− 好ましい結果を与える。
Among them, polyanions obtained by synthesis are
It has excellent chemical stability, and is easy to obtain that is stable against high-pressure steam sterilization, gamma ray sterilization, ethylene oxide sterilization, etc., and the molecular weight can be adjusted relatively easily. Better than anything else and can be recommended. In addition, polyanions obtained by synthesis are preferable because polyanions that do not easily cause complement activation as seen in natural polysaccharides can be easily obtained. Furthermore, products such as vinyl anions that can be directly subjected to craft polymerization on a carrier are better in that polyanions with large molecular weights can be immobilized on the carrier in a high retention amount. give.

また、吸着目的物質である低比重リボ蛋白質は、直径が
約200Xという巨大なリボ■白であるため、ポリアニ
オン部の構造は鎖状構造であることが好1しく、吸着材
表面から長く伸びている方が好ましい。また、ポリアニ
オン部中の負電荷密度は、分子量300当りに少なくと
も1個あるのが好ましい。さらに好ましくは、分子量2
00当りに1個以上であり、分子量70から150の単
位に1個あるのが望ましい。ここで言う分子量には、負
電荷を示す官能基の分子量も含む。ポリアニオン部の分
子量は、小さくなると低比重リボ蛋白質をあまり吸着し
なくなるので、少なくとも600は必要である。好まし
いのは5000以上であシ、25000から10000
00の範囲が望ましい。
In addition, since the low-density riboprotein, which is the substance to be adsorbed, is a huge riboprotein with a diameter of about 200X, it is preferable that the structure of the polyanion part is a chain structure, and it extends long from the surface of the adsorbent. It's better to be there. Further, it is preferable that the polyanion moiety has at least one negative charge density per 300 molecular weight. More preferably, the molecular weight is 2
The number is one or more per 00, and preferably one per unit of molecular weight 70 to 150. The molecular weight referred to here includes the molecular weight of a functional group that exhibits a negative charge. The molecular weight of the polyanion moiety needs to be at least 600 because as it becomes smaller, low-density riboproteins will not be adsorbed much. Preferably 5000 or more, 25000 to 10000
A range of 00 is desirable.

ポリアニオン部が持つ多数個の負電荷を示す官能基が、
低比重リボ蛋白質の多数点を認識することにより、強い
クーロン力で低比重リボ蛋白質を結合すると考えられる
The polyanion moiety has a large number of negatively charged functional groups,
It is thought that by recognizing multiple points on low-density riboproteins, it binds low-density riboproteins with strong Coulomb force.

負電荷の密度は吸着材1−当シ1μeqから1 meq
の範囲が低比重リボ蛋白質の吸着性能が良く、吸着選択
性が良く、凝固線溶系、補体系への影響が少ない適当な
範囲である。1μeq/fn1.より負電荷密度が低く
なると、低比重リボ蛋白質の吸着能力が実用性能に満た
ず、1 meqを越えると非選択的な吸着が増え、凝固
線溶系、補体系に悪影響を与える。より好ましい範囲は
5μeq/rrtから700μeq/rnl、さらに好
ましいのは10μeq/−から500μeq /m、よ
シ望ましくは20μeq/−から300 μeq/ml
である。
The density of negative charge is 1 μeq to 1 meq per adsorbent.
This range is an appropriate range that has good adsorption performance for low-density riboproteins, good adsorption selectivity, and little influence on the coagulation fibrinolytic system and the complement system. 1μeq/fn1. When the negative charge density becomes lower, the adsorption ability of low-density riboproteins falls short of practical performance, and when it exceeds 1 meq, non-selective adsorption increases, which adversely affects the coagulation fibrinolytic system and the complement system. A more preferred range is 5 μeq/rrt to 700 μeq/rnl, even more preferably 10 μeq/- to 500 μeq/m, and even more preferably 20 μeq/- to 300 μeq/ml.
It is.

負電荷密度の測定は、通常の陽イオン交換樹脂のイオン
交換容量測定方法に準じて行なうことができる。
The negative charge density can be measured according to a conventional method for measuring the ion exchange capacity of a cation exchange resin.

本発明吸着材を創造する方法は、例えば、担体を活性化
し、鎖状合成ポリアニオンをその片末端で共有結合させ
る方法、担体にアニオンモノマーをグラフト重合させ、
ポリアニオンのグラフト鎖を形成する方法などが挙げら
れる。
Methods for creating the adsorbent of the present invention include, for example, activating a carrier and covalently bonding a chain synthetic polyanion at one end thereof, graft polymerizing an anionic monomer to the carrier,
Examples include a method of forming a polyanion graft chain.

担体は、少なくとも6000分子量を持つポリアニオン
を負電荷密度で1μsq/−から1meq/TnI!。
The carrier is a polyanion having a molecular weight of at least 6000 with a negative charge density of 1 μsq/- to 1 meq/TnI! .

の範囲で固定できればよく、親水性担体、疎水性担体い
ずれも使用できるが、疎水性担体を用いる場合には、時
に担体へのアルブミンの非特異的吸着が生じるため、親
水性担体の方が好ましい結果を与える。
Both hydrophilic and hydrophobic carriers can be used; however, when using a hydrophobic carrier, non-specific adsorption of albumin to the carrier sometimes occurs, so a hydrophilic carrier is preferable. Give results.

不溶性担体の形状は、粒子状、繊維状、中空糸状、膜状
等いずれの公知の形状も用いうるが、少なくとも600
0分子量を持つポリアニオンの保持量、吸着材としての
取扱い性よりみて、粒子状、繊維状のものが好ましい。
The shape of the insoluble carrier may be any known shape such as particulate, fibrous, hollow fiber, or membrane, but at least 600
Particulate or fibrous forms are preferable in terms of the amount of polyanions having a molecular weight of 0 retained and ease of handling as an adsorbent.

粒子状担体としては、平均粒径25μmないし2500
μmの範囲にあることが好ましい。平均粒径はJIS−
Z−8801に規定されるフルイを用いて流水中で分級
した後、各級の上限粒径と下限粒径の中間値を各級の粒
径とし、その重量平均として平均粒径を算出する。また
、粒子形状は球形が好ましいが、特に限定されるもので
はない。平均粒径が2500μm以上では、低比重リボ
蛋白質の吸着量および吸着速度が低下するし、25μm
以下では、凝固系の活性化、血球粘着をおこしやすい。
The particulate carrier has an average particle size of 25 μm to 2500 μm.
Preferably, it is in the μm range. The average particle size is JIS-
After classification in running water using a sieve specified in Z-8801, the intermediate value between the upper limit particle size and the lower limit particle size of each class is taken as the particle size of each class, and the average particle size is calculated as the weight average. Further, the particle shape is preferably spherical, but is not particularly limited. If the average particle size is 2500 μm or more, the adsorption amount and adsorption rate of low-density riboprotein will decrease;
Below, activation of the coagulation system and blood cell adhesion are likely to occur.

 9− 使いうる粒子状担体としては、アガロース系、デキスト
ラン系、セルロース系、ポリアクリルアミド系、ガラス
系、シリカ系活性炭系等が挙げられるが、ゲル構造を有
する親水性担体が良好な結果を与える。また、通常固定
化酵素、アフイニテイクロマトグラフイーに用いられる
公知の担体は、特別な限定なく使用することができる。
9- Particulate carriers that can be used include agarose-based, dextran-based, cellulose-based, polyacrylamide-based, glass-based, silica-based activated carbon-based, etc., but hydrophilic carriers having a gel structure give good results. Furthermore, known carriers commonly used for immobilized enzymes and affinity chromatography can be used without any particular limitations.

ここで、担体の蛋白質排除限界分子量は200万以上あ
ることが必要であり、250万から1000万が好まし
く、300万から700万の範囲にあるのが好ましい。
Here, the protein exclusion limit molecular weight of the carrier needs to be 2 million or more, preferably from 2.5 million to 10 million, and preferably from 3 million to 7 million.

これを細孔の平均孔径で示すと200^な“し300°
′A、より好ましくは250 Xないし700Xの範囲
、望1しくけ)ooから650Xの範囲にある本のであ
る。
This is expressed in terms of the average pore diameter of 200° and 300°.
'A, more preferably in the range 250X to 700X, preferably in the range oo to 650X.

粒子状担体としては、多孔性粒子、特に多孔性重合体を
用いることもできる。本発明で用いられる多孔性重合体
粒子は、少なくとも600の分子量を持つポリアニオン
を負電荷密度で1μsq/m/から1meq/−の範囲
で固定化しうるものであり、重合体組成は、ポリアミド
系、ポリエステル系、−10− ポリウレタン系、ビニル化合物の重合体等、多孔性構造
をとりうる公知の重合体を用いることができるが、特に
親水性モノマーにより親水化したビニル化合物系多孔性
重合体粒子が好ましい結果を与える。
Porous particles, especially porous polymers, can also be used as particulate carriers. The porous polymer particles used in the present invention can immobilize a polyanion having a molecular weight of at least 600 at a negative charge density in the range of 1 μsq/m/ to 1 meq/−, and the polymer composition is polyamide-based, Known polymers that can have a porous structure, such as polyester, -10-polyurethane, and vinyl compound polymers, can be used; however, vinyl compound porous polymer particles made hydrophilic with a hydrophilic monomer are particularly useful. give favorable results.

本発明の吸着材は、体液の浄化治療用に用いられるので
、体液を流したときに目詰まりが起こらないことが必要
である。したがって、本発明に用いられる担体は硬質担
体であることが好ましく、合成高分子担体、無機担体等
が好ましく用いられる。
Since the adsorbent of the present invention is used for purification treatment of body fluids, it is necessary that no clogging occurs when body fluids are passed through it. Therefore, the carrier used in the present invention is preferably a hard carrier, and synthetic polymer carriers, inorganic carriers, etc. are preferably used.

ここで言う硬質担体とは、外力を加えたとき、担体の物
性値が一定値以上を保持するものを言うが、具体的には
、ゲルを直径10+n+i、長さ50mTAの容器に充
填し、通水するとき、カラムの入口圧力と出口圧力との
差が200 mlxHgの状態でゲルの体積減少率が1
0係以下であるのが好ましい。
The hard carrier here refers to a carrier whose physical properties maintain a certain value or higher when an external force is applied. Specifically, gel is filled into a container with a diameter of 10+n+i and a length of 50 mTA, and the gel is passed through the container. When watering, the volume reduction rate of the gel is 1 when the difference between the inlet pressure and outlet pressure of the column is 200 ml x Hg.
It is preferable that the coefficient is 0 or less.

前記多孔性構造は、平均孔!20OAないし5ooo′
Aの範囲にあるのが好ましbが、平均孔径が小さすぎる
場合には、吸着される低比重リポ蛋白質の量が少なく、
大きすぎる場合には、重合体粒子の強度が低下し、かつ
表面積が減少するため実用的ではない。表面積は少なく
とも10ゴ/y以上あることが好ましく、55771″
/li’以上であることがさらに好ましb0望筐しくは
1(10ゴ/7以上である。
The porous structure has an average pore size! 20OA to 5ooo'
It is preferable that the average pore size is within the range of A, and if the average pore diameter is too small, the amount of low-density lipoprotein adsorbed will be small;
If it is too large, it is not practical because the strength of the polymer particles decreases and the surface area decreases. The surface area is preferably at least 10 g/y, and is 55,771″
It is more preferable that the value is /li' or more, and b0 is preferably 1 (10g/7 or more).

平均孔径の測定は水銀圧入式ポロシメーターによった。The average pore diameter was measured using a mercury intrusion porosimeter.

この方法は、多孔性物質に水銀を圧入してゆき、侵入し
た水銀量から気孔量を、圧入に要する圧力から孔径をめ
る方法であり、40′5L以上の孔を測定することがで
きる。本発明の孔とは、孔径が40大以上の表面からの
連通孔と定義する。平均孔径は、孔径をr、ポロシメー
ターで測定した累積気孔量を■としたとき、dv/dl
ogrの直が最大となるときのrの値とする。
In this method, mercury is injected into a porous material, and the pore size is determined from the amount of mercury intruded and the pore size is calculated from the pressure required for the intrusion. Pores of 40'5L or more can be measured. The pores of the present invention are defined as pores communicating from the surface with a pore diameter of 40 or more. The average pore diameter is dv/dl, where r is the pore diameter and ■ is the cumulative pore volume measured with a porosimeter.
Let it be the value of r when the directness of ogr is maximum.

繊維状担体を用いる場合には、その繊維径が1μmない
し50μm、よシ好ましくは5μmから25μmの範囲
にあるものがよい。繊維径が大きすぎる場合には、低比
重リポ蛋白質の吸着量および吸着速度が低下するし、小
さすぎる場合には、凝固系の活性化、血球粘着、目づま
りをおこしやすい。
When a fibrous carrier is used, the fiber diameter is preferably in the range of 1 μm to 50 μm, more preferably 5 μm to 25 μm. If the fiber diameter is too large, the adsorption amount and adsorption rate of low-density lipoproteins will be reduced, and if it is too small, activation of the coagulation system, blood cell adhesion, and clogging are likely to occur.

用いつる繊維状担体としては、再生セルロース系繊維、
ナイロン、アクリル、ポリエステル等公知の繊維を一般
に用いることができる。
The vine fibrous carrier used includes regenerated cellulose fibers,
Generally known fibers such as nylon, acrylic, and polyester can be used.

少々くとも600の分子量を持つポリアニオンを不溶性
担体の表面に固定する方法は、共有結合、イオン結合、
物理吸着、包埋あるいは重合体表面への沈設不溶化等あ
らゆる公知の方法を用いることができるが、ポリアニオ
ンの溶出性から考えると、共有結合により、固定、不溶
化して用いることが好ましい。そのため通常固定化酵素
、アフイニテイクロマトグラフイーで用いられる公知の
担体の活性化方法、リガンドとの結合方法、訃よび担体
を幹ポリマーとし、ポリアニオンを枝とするグラフト重
合の手法を用いることができる。
Methods for immobilizing a polyanion having a molecular weight of at least 600 on the surface of an insoluble carrier include covalent bonding, ionic bonding,
Any known method such as physical adsorption, embedding, or insolubilization by depositing on the surface of a polymer can be used, but considering the elution property of the polyanion, it is preferable to use the polyanion after fixation and insolubilization by covalent bonding. For this purpose, it is possible to use an immobilized enzyme, a known carrier activation method used in affinity chromatography, a binding method with a ligand, and a graft polymerization method in which the polymer and carrier are used as a trunk polymer and polyanions are used as branches. .

活性化方法を例示すると、)・ロダン化シアン法、エピ
クロルヒドリン法、ビスエポキシド法、ハロゲン化トリ
アジン法、ブロモアセチルプロミド法、エチルクロロホ
ルマー)法、1.1’−カルボニルジイミダゾール法等
をあげることができる。本発明= 13− の活性化方法は、リガンドのアミノ基、水酸基、カルボ
キシル基、チオール基等の活性水素を有する核反応基と
置換および/または付加反応できればよく、上記の例示
に限定されるものではないが、化学的安定性、熱的安定
性等を考慮すると、エポキシドを用いる方法が好ましく
、特にエピクロルヒドリン法が推奨できる。
Examples of activation methods include cyanide rhodanide method, epichlorohydrin method, bisepoxide method, halogenated triazine method, bromoacetyl bromide method, ethyl chloroformer) method, 1,1'-carbonyldiimidazole method, etc. I can give it to you. The activation method of the present invention = 13- is limited to the above examples as long as it can perform a substitution and/or addition reaction with a nuclear reactive group having active hydrogen such as an amino group, a hydroxyl group, a carboxyl group, a thiol group, etc. of the ligand. However, in consideration of chemical stability, thermal stability, etc., a method using an epoxide is preferable, and an epichlorohydrin method is particularly recommended.

また、シリカ系、ガラス系等のシラノール基を持つ担体
については、各種シランカップリング剤が好ましく用す
られる。
Furthermore, various silane coupling agents are preferably used for carriers having silanol groups, such as silica-based and glass-based carriers.

グラフト重合法を例示すると、連鎖移動法、乳化重合法
、セリウム塩、過硫酸塩−ノ・ロゲン化リチウム、過酸
化水素−金槁塩等各種開始剤を用いたグラフト重合法、
パーエステル基、メルカプト基、ジアゾ基等の官能基を
有するポリマーによるグラフト重合法、空気またはオゾ
ン酸化によるグラフト重合法、放射線グラフト法などが
あげられるが、中でも水酸基、チオール、アルデヒド、
アミンなどの還元性基を有する担体に、セリウム塩、鉄
塩などを開始剤としつアニオンモノマーをグラ−14− フト重合して行く方法が簡便であり、推奨できる。
Examples of graft polymerization methods include chain transfer method, emulsion polymerization method, graft polymerization method using various initiators such as cerium salt, persulfate-no-lithium chloride, hydrogen peroxide-Kinki salt, etc.
Graft polymerization methods using polymers having functional groups such as perester groups, mercapto groups, and diazo groups, graft polymerization methods using air or ozone oxidation, and radiation grafting methods include, among others, hydroxyl groups, thiols, aldehydes,
A method in which an anionic monomer is graft-polymerized onto a carrier having a reducing group such as an amine using a cerium salt, iron salt, or the like as an initiator is simple and recommended.

また、グラフト重合の系は、比較的分子量の大きいポリ
アニオンを担体の内部1で固定できるので好ましく用い
られる。
In addition, a graft polymerization system is preferably used because a polyanion having a relatively large molecular weight can be fixed inside the carrier.

担体に、少なくとも600の分子量を持つポリアニオン
を2棟類以上結合させてもさしつかえない。
Two or more types of polyanions having a molecular weight of at least 600 may be bound to the carrier.

以上、本発明吸着材の製造方法を例示して、少なくとも
6000分子量を持つポリアニオンを1μeq/mj!
から1meq/mlの負電荷密度で担体に結合する方法
について詳細に説明したが、本発明は、これに限定され
るものでは彦い。
The above is an example of the method for manufacturing the adsorbent of the present invention, and the polyanion having a molecular weight of at least 6000 is 1 μeq/mj!
Although the method of binding to a carrier with a negative charge density of 1 meq/ml has been described in detail, the present invention is not limited thereto.

例えば、少なくとも6000分子量を持つポリアニオン
部を有する重合性モノマーを用いて重合(共重合)する
方法、少なくとも600の分子量を持つポリアニオン全
活性化した後に担体と結合する方法等も採用することが
できる。
For example, a method of polymerizing (copolymerizing) using a polymerizable monomer having a polyanion moiety having a molecular weight of at least 6000, a method of binding to a carrier after fully activating a polyanion having a molecular weight of at least 600, etc. can also be adopted.

すなわち、本発明は、吸着材表面に、少なくとも600
0分子量を持つポリアニオン部を1μeq/−から1m
eq/艷の負電荷密度で有することにより、その効果を
発揮するものであり、製造方法に左右されるものではな
い。
That is, in the present invention, at least 600
Polyanion part with 0 molecular weight from 1μeq/- to 1m
The effect is exhibited by having a negative charge density of eq/c, and is not dependent on the manufacturing method.

本発明低比重リボ蛋白質吸着材は、体液の導出入口を備
えた容器内に充填保持されて使用されるのが一般的であ
る。
The low-density riboprotein adsorbent of the present invention is generally used while being filled in a container equipped with an inlet and outlet for body fluids.

図面において、1は本発明低比重リボ蛋白質吸着材を納
めてなる吸着装置の一例を示すものであり、円筒2の一
端開口部に、内側にフィルター3を張ったバッキング4
を介して体液導入口を有するキャップ6をネジ嵌合し、
円筒2の他端開口部に内側にフィルター3′を張ったバ
ッキング4′を介して体液導出ロアを有するキャップ8
をネジ嵌合して容器を形成し、フィルター5および3′
の間隙に吸着材を充填保持させて吸着材層9を形成して
なるものである。
In the drawings, reference numeral 1 shows an example of an adsorption device containing the low-density riboprotein adsorbent of the present invention, in which a backing 4 with a filter 3 placed inside is placed in an opening at one end of a cylinder 2.
Screw-fit the cap 6 having a body fluid inlet through the
A cap 8 having a lower body fluid outlet through a backing 4' having a filter 3' placed inside the opening at the other end of the cylinder 2.
are screwed together to form a container, and filters 5 and 3' are screwed together to form a container.
The adsorbent layer 9 is formed by filling and holding an adsorbent in the gap.

吸着材層9には、本発明低比重リボ蛋白質吸着材を単独
で充填してもよく、他の吸着材と混合もしくは積層して
もよい。他の吸着材としては、例えば幅広い吸着能を有
する活性炭のようなものを用いることができる。これに
より吸着材の相乗効果によるより広範な臨床効果が期待
できる。吸着材層9の容積は、体外循環に用いる場合、
50〜4007!程度が適当である。本発明の装置を体
外循環で用いる場合には、大路次の二通りの方法がある
。一つには、体内から取り出した血液を遠心分離器もし
くは模型血漿分離器を使用して、血漿成分と血球成分と
に分離した後、血漿成分を該装置に通過させ、浄化した
後、血球成分と合わせて体内にもどす方法であり、他の
一つは体内から取り出した血液を直接核装置に通過させ
、浄化する方法である。
The adsorbent layer 9 may be filled with the low-density riboprotein adsorbent of the present invention alone, or may be mixed or laminated with other adsorbents. Other adsorbents that can be used include, for example, activated carbon, which has a wide range of adsorption capacities. As a result, a wider range of clinical effects can be expected due to the synergistic effect of the adsorbent. The volume of the adsorbent layer 9 is, when used for extracorporeal circulation,
50~4007! The degree is appropriate. When the device of the present invention is used for extracorporeal circulation, there are two methods as follows: First, blood taken from the body is separated into plasma components and blood cell components using a centrifuge or a model plasma separator, and the plasma components are passed through the device to be purified and then separated into blood cell components. One method is to return the blood to the body along with the blood, and the other method is to pass blood taken from the body directly through a nuclear device and purify it.

また、血液もしくは血漿の通過速度に9いては、該吸着
材の吸着能率が非常に高いため、吸着材の粒度を粗くす
ることができ、また充填度を低くできるので、吸着材層
の形状の如何にか\わりなく高い通過速度を与えること
ができる。そのため多量の体液処理をすることができる
In addition, since the adsorption efficiency of the adsorbent is very high when the blood or plasma passage rate is 9, the particle size of the adsorbent can be made coarser, and the degree of packing can be lowered, so the shape of the adsorbent layer can be changed. It is possible to give an equally high passing speed. Therefore, a large amount of body fluid can be treated.

体液の通液方法としては、臨床上の必要に応じあるいは
設備の装置状況に応じて、連続的に通液してもよいし、
また、断続的に通液使用してもよ− 17− い。
The method for passing body fluids may be continuous, depending on clinical needs or equipment conditions.
It is also possible to use the liquid intermittently.

本発明の吸着材は、以上述べてきたように、体液中の低
比重リボ蛋白質を高率かつ選択的に吸着除去し、該吸着
材を用いた吸着装置は非常にコンパクトであると共に簡
便かつ安全である。そして、血漿蛋白中の他の成分を非
選択的に吸着することが少なく、高い効率で低比重リボ
蛋白質を吸着でき、さらに凝固線溶、補体系を活性化す
ることが少ない。
As described above, the adsorbent of the present invention selectively adsorbs and removes low-density riboproteins in body fluids at a high rate, and an adsorption device using the adsorbent is extremely compact, simple, and safe. It is. In addition, other components in plasma proteins are less likely to be adsorbed non-selectively, low-density riboproteins can be adsorbed with high efficiency, and coagulation fibrinolysis and complement system activation are less likely to occur.

本発明は、高脂血症等の体液の浄化、再生する一般的な
用法に適用可能であり、高脂血症に起因した疾患の安全
で確実々治療に有効である。
The present invention is applicable to general usage for purifying and regenerating body fluids such as hyperlipidemia, and is effective in safely and reliably treating diseases caused by hyperlipidemia.

以下実施例によシ、本発明の実施の態様をより詳細に説
明する。
Embodiments of the present invention will be explained in more detail with reference to Examples below.

実施例1 担体としてセファローズ4B(スエーデン、ファルマシ
ア社製)を用b、アクリル酸のグラフト重合を行なった
。先ず、蒸留水200rrLtにセファローズ4Bを1
0−(湿潤容量)浸漬し、窒素置換を行ない、次にアク
リル酸(分子量72当シに−18− 1個のカルボキシル基を持つ)を35 mmot加え、
最後に0.1規定硝酸50rnt中に硝酸第2セリウム
アンモニウム塩2,5mmotを溶解し、加えた。その
後、窒素雰囲気下、35Cで3時間、攪拌しながらグラ
フト重合を行なった。反応後充分水洗し、低比重リボ蛋
白質吸着用吸着材を得た。得られた吸着材のイオン交換
容量、すなわち、負電荷密度を常法によシ測定したとこ
ろ40μeq/+++zであった。
Example 1 Graft polymerization of acrylic acid was carried out using Sepharose 4B (manufactured by Pharmacia, Sweden) as a carrier. First, add 1 part of Sepharose 4B to 200rrLt of distilled water.
0- (wet capacity), followed by nitrogen substitution, then 35 mmot of acrylic acid (having a molecular weight of 72 and -18-1 carboxyl group) was added.
Finally, 2.5 mmot of ceric ammonium nitrate was dissolved in 50 rnt of 0.1N nitric acid and added. Thereafter, graft polymerization was carried out under a nitrogen atmosphere at 35C for 3 hours with stirring. After the reaction, the mixture was thoroughly washed with water to obtain an adsorbent for adsorbing low-density riboproteins. The ion exchange capacity, ie, negative charge density, of the obtained adsorbent was measured by a conventional method and found to be 40 μeq/+++z.

吸着実験は、高脂血症患者血漿10容と吸着材1容とを
混合し、37C,5時間、振とうしながらインキュベー
トした。吸着後の低比重リボ蛋白質(以下、LDLと略
す)をヘパリン・カルシウム沈殿法にて、高比重リボ蛋
白質コレステロール(以下、HDLchと略す)をヘパ
リン−マンガン沈殿法にて、アルブミンをブロムクレゾ
ールグリーン法にて測定した。分析の結果は、血漿中の
LDLが704 my/d!であったのに対し、吸着後
は34 s my/di (吸着前(7)49%)に低
下したが、HDLchは17fnQ/diカ17fn9
7dl(100% )、アルブミンは3.5 ?/dl
カ3.51il/d! (100% )と下がらず、L
DLを選択的に吸着した。
In the adsorption experiment, 10 volumes of hyperlipidemic patient plasma and 1 volume of adsorbent were mixed and incubated at 37C for 5 hours with shaking. After adsorption, low-density riboproteins (hereinafter abbreviated as LDL) were extracted by the heparin-calcium precipitation method, high-density riboprotein cholesterol (hereinafter abbreviated as HDLch) by the heparin-manganese precipitation method, and albumin by the bromcresol green method. Measured at The analysis results showed that LDL in plasma was 704 my/d! On the other hand, after adsorption it decreased to 34 s my/di (49% before adsorption (7)), but HDLch decreased to 17fnQ/di and 17fn9.
7 dl (100%), albumin is 3.5? /dl
Ka3.51il/d! (100%) and does not fall, L
DL was selectively adsorbed.

実施例2 アクリル酸の代わりにビニルスルホン酸(分子量108
当りに1個のスルホン酸基を持つ)を用いた以外は、実
施例1と同様にグラフト重合を行ない、低比重リボ蛋白
質吸着材を得た。得られた吸着材のイオン交換容量、す
なわち、負電荷密度を常法により測定したところ52μ
eq/1ntであった。吸着実験は、実施例1と同様に
行なった。その結果、LDLは704 rR97dlテ
6ツ&(7)K対し、吸着後は310〜/di (吸着
前の44チ)に低下したが、HDLchは17 m97
diが17 m9/di (1o 。
Example 2 Vinyl sulfonic acid (molecular weight 108
A low-density riboprotein adsorbent was obtained by carrying out graft polymerization in the same manner as in Example 1, except for using a sulfonic acid group (having one sulfonic acid group per sulfonic acid group). The ion exchange capacity, that is, the negative charge density, of the obtained adsorbent was measured by a conventional method and was found to be 52μ.
eq/1nt. The adsorption experiment was conducted in the same manner as in Example 1. As a result, LDL was 704 rR97dlte6t&(7)K, but after adsorption it decreased to 310~/di (44 di before adsorption), but HDLch was 17 m97
di is 17 m9/di (1o.

チ)、アルブミンは3.5 t/diが3.4 t/d
i (97%)と殆んど下がらなかった。
H), albumin is 3.5 t/di and 3.4 t/d
i (97%), which hardly decreased.

比較例1 実施例1と同様のグラフト重合において、硝酸第2セリ
ウムアンモニウム塩の量を0.25 mmojに変えた
以外は、同じように重合した。得られた吸着材のイオン
交換容量は0.7μeq/−であった。
Comparative Example 1 Graft polymerization was carried out in the same manner as in Example 1, except that the amount of ceric ammonium nitrate was changed to 0.25 mmoj. The ion exchange capacity of the obtained adsorbent was 0.7 μeq/−.

実施例1と同様に吸着実験を行なったところ、LDLは
704 my/dlが6 a 3 mg/dz (97
% )、HDLchは17 h19/dlが17my/
cit (1o o % )、アルブミンは3.5 Y
/diが3,5 f/dt(1o o % )と殆んど
吸着されなかった。
When an adsorption experiment was conducted in the same manner as in Example 1, LDL was 704 my/dl and 6 a3 mg/dz (97
%), HDLch is 17 h19/dl is 17 my/
cit (1o o %), albumin is 3.5 Y
/di was 3.5 f/dt (1 o %), and almost no adsorption was observed.

実施例3 酢mビ=ル1o o y、) リアリルイソシアヌレー
)41.4fI(X=0.40)、酢酸エチル1o。
Example 3 Vinegar mVyl 1o o y,) Reallylisocyanurate) 41.4fI (X=0.40), Ethyl acetate 1o.

v1ヘプタン100 f、ポリ酢酸ビニル(重合度50
0 ) 7.5 ?および2,2′−アゾビスイソブチ
ロニトリル3.81よりなる均一混合液と、ポリビニル
アルコール1重量%、リン酸二水素ナトリウム二水和物
0.05重量%およびリン酸水素二ナトリウム十二水和
物1.5重量%を溶解した水4001ntとをフラスコ
に入れ、十分攪拌したのち65cで18時間、さらに7
5cで5時間加熱攪拌して懸濁重合を行ない、粒状共重
合体を得た。濾過水洗、ついでアセトン抽出後、カセイ
ソーダ46.59およびメタノール2tよシなる溶液中
で40cで18時間、共重合体のエステル交換反応を行
なり− 21− た。
v1 heptane 100 f, polyvinyl acetate (polymerization degree 50
0) 7.5? and 3.81% of 2,2'-azobisisobutyronitrile, 1% by weight of polyvinyl alcohol, 0.05% by weight of sodium dihydrogen phosphate dihydrate and 12% by weight of disodium hydrogen phosphate. Add 4,001 nt of water in which 1.5% by weight of hydrate was dissolved and stir thoroughly.
Suspension polymerization was carried out by heating and stirring at 5c for 5 hours to obtain a granular copolymer. After filtration, washing with water, and extraction with acetone, the copolymer was transesterified in a solution consisting of 46.59 g of caustic soda and 2 t of methanol at 40 °C for 18 hours.

得られたゲルの平均粒径は150μm、単位重量あたり
のビニルアルコール単位(q OH)はq 、 o m
eq / f 、比表面積は60rrt/f、デキスト
ランによる排除限界分子量は6 X 10’であった。
The average particle size of the obtained gel was 150 μm, and the vinyl alcohol units (q OH) per unit weight were q, o m
eq/f, specific surface area was 60rrt/f, and exclusion limit molecular weight by dextran was 6 x 10'.

得られたゲルを担体として用い、この担体1〇−を蒸留
水200−に浸漬し、窒素置換した後、0.1規定硝酸
50−中に硝酸第2セリウムアンモニウム15 mmo
tを溶解し、加えた。窒素雰囲気下35Cで20分間反
応させた後、水洗し、70mmolのアクリル酸を加え
た蒸留水200−に浸漬させた。この後、窒素雰囲気下
で35C,3時間の反応を攪拌しながら行なった。反応
後充分水洗し、・低比重リボ蛋白質吸着用吸着材金得た
。得られた吸着材のイオン交換容量を測定したところ2
20μeq/−であった。
Using the obtained gel as a carrier, this carrier 10 was immersed in 200 mm of distilled water and replaced with nitrogen, and then 15 mmol of ceric ammonium nitrate was added to 50 mm of 0.1N nitric acid.
t was dissolved and added. After reacting for 20 minutes at 35C under a nitrogen atmosphere, the sample was washed with water and immersed in 200ml of distilled water to which 70 mmol of acrylic acid had been added. Thereafter, a reaction was carried out at 35C for 3 hours under a nitrogen atmosphere with stirring. After the reaction, it was thoroughly washed with water to obtain an adsorbent for adsorbing low-density riboproteins. When the ion exchange capacity of the obtained adsorbent was measured, it was found that 2
It was 20μeq/-.

吸着実験は、実施例1と同様に行なった。その結果、L
DLは7041V/#カ282my/di(40チ)に
下がったのに対し、HDLchは17m97di 7り
x161n9/di (94%)、アルブミンは5.5
17di−22− が3.4 t/di (97%)と殆んど下がらなかっ
た。
The adsorption experiment was conducted in the same manner as in Example 1. As a result, L
DL dropped to 7041V/#282my/di (40ch), while HDLch was 17m97di7ri x161n9/di (94%), and albumin was 5.5
17di-22- hardly decreased to 3.4 t/di (97%).

比較例2 吸着材としてローム・アンド・ハース社のC0OH基を
持つ陽イオン交換樹脂IRC−50(イオン交換容量が
3.Omeq/ml、孔径2110〜21]00X、粒
径330〜500μm)を用−1実施例1と同様の吸着
実験を行なった。その結果、LDLは704〜/8であ
ったのに対し、吸着後は667〜/di (95%)と
あ捷り下がらず、HDLchは17η/diが15〜/
di (88チ)、アルブミンは3.517diが3.
1r/dl(89qI))と、あまり選択性がなかった
Comparative Example 2 A cation exchange resin IRC-50 with C0OH group manufactured by Rohm & Haas (ion exchange capacity 3.0meq/ml, pore size 2110-21]00X, particle size 330-500 μm) was used as an adsorbent. -1 An adsorption experiment similar to Example 1 was conducted. As a result, LDL was 704~/8, but after adsorption it remained at 667~/di (95%), and HDLch had 17η/di of 15~/di.
di (88chi), albumin is 3.517di is 3.
1r/dl (89qI)), which was not very selective.

比較例3 CNB r 活性化セファローズ4B(スエーデン。Comparative example 3 CNB r Activated Sepharose 4B (Sweden).

ファルマシア社製)に、通常の方法によりD−グルコサ
ミタロン酸(分子量193、カルボキシル基を1個持つ
)を固定した。得られた吸着材のイオン交換容量は21
μeq/−であった。実施例1と同様に吸着実験を行な
ったところ、LDLは704〜/aが67”9/dA!
 (96% ) 、HD L chは17m!?/dl
が16mg/di (94% )、アルブミンは3.5
グ/diが3,5 f/dl(100%)と殆んど吸着
されなかった。
D-glucosamitalonic acid (molecular weight: 193, having one carboxyl group) was immobilized on D-glucosamitalonic acid (molecular weight: 193, having one carboxyl group) by a conventional method. The ion exchange capacity of the obtained adsorbent was 21
It was μeq/-. When an adsorption experiment was conducted in the same manner as in Example 1, LDL was 704~/a was 67''9/dA!
(96%), HD L channel is 17m! ? /dl
is 16 mg/di (94%), albumin is 3.5
The gas/di was 3.5 f/dl (100%), meaning almost no adsorption was observed.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明低比重リボ蛋白質吸着材を使用した吸着装
置の1例を示す断面図である。
The drawing is a sectional view showing an example of an adsorption device using the low-density riboprotein adsorbent of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)表面に分子量が600以上であるポリアニオン部
を有し、かつ、その負電荷密度が1μeq /#//以
上、1 meq/m/!以下であることを特徴とする低
比重リボ蛋白質吸着用の吸着材。
(1) It has a polyanion moiety with a molecular weight of 600 or more on the surface, and its negative charge density is 1 μeq /#// or more, 1 meq/m/! An adsorbent for adsorbing low-density riboproteins, which is characterized by:
(2)分子量が600以上であるポリアニオン部が鎖状
構造のポリアニオン部である特許請求の範囲第1項記載
の低比重リボ蛋白質吸着用の吸着材。
(2) The adsorbent for adsorbing low-density riboproteins according to claim 1, wherein the polyanion moiety having a molecular weight of 600 or more has a chain structure.
(3)分子量が600以上であるポリアニオン部が分子
量300当りに少なくとも1個の負電荷を示す官能基を
持つポリアニオン部である特許請求の範囲第1項記載の
低比重リボ蛋白質吸着用の吸着材。
(3) The adsorbent for adsorbing low-density riboproteins according to claim 1, wherein the polyanionic moiety having a molecular weight of 600 or more is a polyanionic moiety having at least one functional group exhibiting a negative charge per molecular weight of 300. .
JP58220532A 1983-11-25 1983-11-25 Adsorbent for adsorption of low specific gravity lipoprotein Granted JPS60114340A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58220532A JPS60114340A (en) 1983-11-25 1983-11-25 Adsorbent for adsorption of low specific gravity lipoprotein
DE8484113358T DE3480177D1 (en) 1983-11-25 1984-11-06 A porous adsorbent for adsorbing low density lipoproteins
US06/668,795 US4576927A (en) 1983-11-25 1984-11-06 Porous adsorbent for adsorbing low density lipoproteins
EP84113358A EP0143369B2 (en) 1983-11-25 1984-11-06 A porous adsorbent for adsorbing low density lipoproteins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58220532A JPS60114340A (en) 1983-11-25 1983-11-25 Adsorbent for adsorption of low specific gravity lipoprotein

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4355447A Division JPH088928B2 (en) 1992-12-21 1992-12-21 Device for producing plasma from which low-density lipoprotein has been removed

Publications (2)

Publication Number Publication Date
JPS60114340A true JPS60114340A (en) 1985-06-20
JPH043988B2 JPH043988B2 (en) 1992-01-24

Family

ID=16752468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58220532A Granted JPS60114340A (en) 1983-11-25 1983-11-25 Adsorbent for adsorption of low specific gravity lipoprotein

Country Status (1)

Country Link
JP (1) JPS60114340A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222657A (en) * 1985-07-20 1987-01-30 旭化成株式会社 Low specific gravity lipoprotein adsorbing material and its production
JPH02149341A (en) * 1988-11-28 1990-06-07 Kanegafuchi Chem Ind Co Ltd Adsorbent for serum amyloid p-protein
US11389783B2 (en) 2014-05-02 2022-07-19 W.R. Grace & Co.-Conn. Functionalized support material and methods of making and using functionalized support material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827559A (en) * 1981-08-11 1983-02-18 株式会社クラレ Low density lipoprotein adsorbent
JPS58165859A (en) * 1982-03-29 1983-09-30 旭化成株式会社 Adsorbing material for purifying body liquid, production thereof and adsorbing apparatus for purifying body
JPS59196738A (en) * 1983-04-21 1984-11-08 Kanegafuchi Chem Ind Co Ltd Adsorbent and preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827559A (en) * 1981-08-11 1983-02-18 株式会社クラレ Low density lipoprotein adsorbent
JPS58165859A (en) * 1982-03-29 1983-09-30 旭化成株式会社 Adsorbing material for purifying body liquid, production thereof and adsorbing apparatus for purifying body
JPS59196738A (en) * 1983-04-21 1984-11-08 Kanegafuchi Chem Ind Co Ltd Adsorbent and preparation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222657A (en) * 1985-07-20 1987-01-30 旭化成株式会社 Low specific gravity lipoprotein adsorbing material and its production
JPH02149341A (en) * 1988-11-28 1990-06-07 Kanegafuchi Chem Ind Co Ltd Adsorbent for serum amyloid p-protein
US11389783B2 (en) 2014-05-02 2022-07-19 W.R. Grace & Co.-Conn. Functionalized support material and methods of making and using functionalized support material

Also Published As

Publication number Publication date
JPH043988B2 (en) 1992-01-24

Similar Documents

Publication Publication Date Title
EP0143369B1 (en) A porous adsorbent for adsorbing low density lipoproteins
JP2543693B2 (en) Adsorbent for low-density lipoprotein and method for producing the same
JPS6090039A (en) Blood purifying adsorbing body
JPS60114340A (en) Adsorbent for adsorption of low specific gravity lipoprotein
JP3633979B2 (en) Endotoxin adsorbent, adsorption removal method and adsorber
JPS59206045A (en) Adsorbent for lipoprotein of low specific weight
JPH01181875A (en) Adsorptive body of immune complex and removing device for immune complex with it
JPS6259976B2 (en)
JPH0424065B2 (en)
JPS6226073A (en) Method and apparatus for direct infusion and adsorption of blood
JP2534867B2 (en) Myoglobin adsorbent
JPH024301B2 (en)
JP3633978B2 (en) Tumor necrosis factor-α adsorbent, adsorption removal method and adsorber
JPH01315338A (en) Adsorbent for lipoprotein having low specific gravity
JP2568846B2 (en) Myoglobin adsorbent
JPS6359344B2 (en)
JP2665526B2 (en) β2-microglobulin adsorbent
JPS62244442A (en) Low specific gravity lipoprotein adsorbing material and its preparation
JPH088928B2 (en) Device for producing plasma from which low-density lipoprotein has been removed
JPS6227967A (en) Regeneration of low specific gravity lipoprotein adsorbing material
JPS6361024B2 (en)
JPS6222658A (en) Low specific gravity lipoprotein adsorbing apparatus
JPH0595999A (en) Adsorption body for contrast medium
JP2726662B2 (en) Adsorbent and removal device using the same
JPS6222657A (en) Low specific gravity lipoprotein adsorbing material and its production