JPS60114265A - Inactivation of heat generating substance - Google Patents

Inactivation of heat generating substance

Info

Publication number
JPS60114265A
JPS60114265A JP22072983A JP22072983A JPS60114265A JP S60114265 A JPS60114265 A JP S60114265A JP 22072983 A JP22072983 A JP 22072983A JP 22072983 A JP22072983 A JP 22072983A JP S60114265 A JPS60114265 A JP S60114265A
Authority
JP
Japan
Prior art keywords
water
pyrogenic
bacteria
pyrogen
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22072983A
Other languages
Japanese (ja)
Other versions
JPH0252507B2 (en
Inventor
紙田 章義
後藤 達乎
許斐 尚武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP22072983A priority Critical patent/JPS60114265A/en
Publication of JPS60114265A publication Critical patent/JPS60114265A/en
Publication of JPH0252507B2 publication Critical patent/JPH0252507B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は医療用および製薬工業用などで用いられる精製
水、注射用水、輸液などの中に存在する発熱性物質を分
解し、不活性化する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for decomposing and inactivating pyrogens present in purified water, water for injection, infusions, etc. used in medical and pharmaceutical industries.

さらに詳しくは従来、生菌の殺菌方法の補助的な一手段
として用いられていた紫外線照射法ケ用いて水または水
溶液中の発熱性物質を分解または不活性化する方法に関
する。
More specifically, the present invention relates to a method of decomposing or inactivating pyrogenic substances in water or an aqueous solution using ultraviolet irradiation, which has conventionally been used as an auxiliary method for sterilizing viable bacteria.

一般に医療、製薬用の精製水、注射用水、輸液などは有
害物質含有量などが局方で厳しく規定されており、こf
19を除去するために各種の方法が用いられている。
In general, the content of harmful substances in purified water for medical and pharmaceutical purposes, water for injection, and infusions is strictly regulated by the Japanese Pharmacopeia.
Various methods have been used to remove 19.

これらの有害物質の中で完全な除去法が難しいことなど
で特に問題となっているのは細菌類および発熱性物質と
称されているものである。その中でも細菌類は完全にゼ
ロにしない限りは増殖するものであり1発熱性物質の主
なものは生菌、死菌。
Among these harmful substances, bacteria and pyrogens are particularly problematic because it is difficult to completely remove them. Among them, bacteria will proliferate unless completely eliminated, and the main pyrogenic substances are live bacteria and dead bacteria.

菌の代謝物など細菌に由来するものが多い。細菌の中で
も特にグラム陰性菌に由来する内毒素が最も代表的な発
熱性物質として知られている。
Many of them are derived from bacteria, such as bacterial metabolites. Among bacteria, endotoxins derived from Gram-negative bacteria are known as the most typical pyrogenic substances.

したがって水または輸液などを無菌にするというこさば
発熱性物質を増加させない方法の一つにはなる。しかし
ながら除去または不活性化することにはならない。
Therefore, one way to prevent the increase in pyrogenic substances is to make water or infusions sterile. However, it does not result in removal or inactivation.

この細菌、なかでも特に生菌を殺菌する方法さしては対
象物の形状にもよるが、加熱法、薬剤による殺滅画法、
γ線照射法などが用いられてきた。
Methods for sterilizing these bacteria, especially live bacteria, depend on the shape of the object, but include heating methods, sterilization methods using chemicals,
Gamma ray irradiation methods have been used.

対象物が注射用水の場合には蒸留法によることが局方で
も定められており広く用いられているが。
When the target substance is water for injection, the distillation method is prescribed by the Japanese Pharmacopoeia and is widely used.

紫外線照射による殺菌は補助的な手段として用いられて
きたに過ぎない@ 一方熱や薬品に対して安定で1局方に規定さ名。
Sterilization by ultraviolet irradiation has only been used as an auxiliary method.On the other hand, it is stable against heat and chemicals and is prescribed in one pharmacopoeia.

ている蒸気滅菌lこよっても分解しない発熱性物質を除
去する方法さしては蒸溜法とともに最近では限外p適法
や逆浸透法などのような半透膜を用いた膜分離法が注目
されてきている。
Steam sterilization is a method for removing pyrogenic substances that do not decompose even after steam sterilization.In addition to distillation, membrane separation methods that use semipermeable membranes, such as ultraponic and reverse osmosis methods, have recently attracted attention. There is.

この膜分離法を使用すiLば発熱性物質とともに生菌、
死菌なども蒸留法と同じ程度まで同時に除去することが
可能で1局方規定の試験にも充分合格することがその普
及のスピードからも一般に認められてきているこおが明
ら力)である。
Using this membrane separation method, live bacteria as well as pyrogens,
It is now generally recognized that it can simultaneously remove dead bacteria to the same extent as the distillation method, and that it satisfactorily passes the tests stipulated by one pharmacopoeia. be.

ところで、この発熱性物質試験法として局方に規定され
ているうさき全使用する方法は言わば定性的な試験法で
あり、まだ時間とコストのかかる方法であるため、それ
に代る定量的な方法としてリムラステストと称される試
験法が既に広く普及してきており、特に最近ではリム、
ラステストの中でも比色法が開発され、高感度で、しか
も判定の客観性において優れていることが注目されてい
る。
By the way, the method of using all rabbits specified in the pharmacopoeia as a pyrogenic substance test method is a qualitative test method, and it is still a time-consuming and costly method, so an alternative quantitative method is recommended. A test method called the rimulus test has already become widespread, and especially recently, the rimulus test
Among the last tests, a colorimetric method has been developed and is attracting attention for its high sensitivity and excellent objectivity of judgment.

このリムラステストの感度は一般に局方に規定されてい
る発熱性物質試験法のi 0=1 o o倍と言われて
いるため逆に新たな問題がクローズアップされてきた。
The sensitivity of this limulus test is generally said to be i 0 = 1 o times the pyrogenic substance test method specified in the pharmacopoeia, and new problems have been brought to the fore.

それは従来2局方で規定さ力、た試験法で合格と判定さ
れていた場合でも高感度なリムラステストによるとかな
りの量の発熱性物質が検出されることがわかってき・た
ことである。
This is because it has been found that even in cases where the test method specified by the two pharmacopeias has passed the test, the highly sensitive limulus test detects a considerable amount of pyrogenic substances.

これは蒸留法、膜分離法のどちらの方法で調整されだも
のでも同じ程度であり1例えば原水として1〜10 n
g /mlの発熱性物質を含有するイオが一般的である
This is the same whether it is prepared by distillation or membrane separation; for example, raw water is 1 to 10 n.
Io containing 2 g/ml pyrogen is common.

この11ムラステストと局方に規定されているテストと
の相関性についてはリムラステストで0.2ng / 
m/3以下であれば局方に規定されている方法でも陰性
になると言われている。
Regarding the correlation between this 11 Muras test and the test specified in the pharmacopoeia, the Limuras test is 0.2 ng /
It is said that if it is less than m/3, it will be negative even by the method specified in the pharmacopoeia.

したがって、このように局方の規定では合格する程度で
あってもリムラステストで定量的に検出されるわづかな
量の発熱性物質を除去するだめの努力が医薬品に関する
GMP令の施行とともになされるようになってきた。
Therefore, efforts should be made to eliminate the small amount of pyrogenic substances that can be quantitatively detected by the Limulus test, even if they pass the pharmacopeia regulations, along with the enforcement of the GMP Ordinance regarding pharmaceuticals. It has become.

例えば膜分離法と蒸留法との組合せシステム。For example, a system that combines membrane separation and distillation.

膜分離法、蒸留法を夫々2段システムで使用する方法な
どがその代表的な例である。
Typical examples include a method using a membrane separation method and a distillation method in a two-stage system.

し力)しながらこれらの方法はシステムが複雑で設備コ
スト ランニングコストとも莫大なものとなり、実用的
ではない。
However, these methods are not practical because the systems are complex and the equipment costs and running costs are enormous.

そこで本発明者らは鋭意検討した結果、簡単なシステム
で、且つ、安価に、より西品質の注射用水、輸液などを
製造することができる方法を発見し1本発明を完成させ
るに至った。
As a result of intensive studies, the inventors of the present invention have discovered a method of producing high-quality water for injection, infusion, etc. using a simple system and at low cost, and have completed the present invention.

次に本発明の構成を詳しく弾明する。Next, the configuration of the present invention will be explained in detail.

本発明は従来から生菌の殺菌法として広範囲に使用され
てきた紫外線殺菌器を発熱性物質の分解まだは不活性化
のために使用することである。
The present invention uses an ultraviolet sterilizer, which has been widely used as a method of sterilizing viable bacteria, for decomposing and inactivating pyrogenic substances.

従来、紫外線殺菌器は生菌を殺菌する方法として液体ま
たは気体物質に適用されており、それなりの有効性は認
められていたが、これだけでは不完全であり、先に述べ
た膜分離法などを後段に組合せて使用されるケースが多
かった。
Conventionally, ultraviolet sterilizers have been applied to liquid or gaseous substances as a method of sterilizing living bacteria, and although they have been recognized to be somewhat effective, this alone is insufficient, and methods such as the membrane separation method mentioned earlier have been used. In many cases, it was used in combination with the latter stage.

その理由は紫外線殺菌器は明ら力)に生菌に対する殺菌
力は非常に優れており2条件次第では完全無菌を達成す
ることができるが、殺菌によって生じた死菌および菌の
代謝物などを除去することが、T:きないので、これら
が発熱性物質として残存し。
The reason for this is that ultraviolet sterilizers have a very good sterilizing power against living bacteria, and depending on two conditions, complete sterilization can be achieved, but they also remove dead bacteria and bacterial metabolites produced by sterilization. Since they cannot be removed, they remain as pyrogenic substances.

これを除去するだめの手段として膜分離法を使用する々
いう、考え方が一般的な常識であった。
It was common knowledge to use membrane separation as a means of removing this.

また紫外−線殺菌器の生菌に対する殺菌効果は認められ
ていたものの1発熱性物質に対しては全く効果がないも
のと考えられていた(中外医学社発行、玉熊正悦1石山
賢共著「エンドトキシンショック」1頁26など参照)
。したがって紫外線殺菌器を発熱性物質の分解または不
活性化のために使用するということは言わば当業者間で
も盲点となっていた。
In addition, although the sterilizing effect of ultraviolet sterilizers on viable bacteria was recognized, it was thought to be completely ineffective against pyrogenic substances (published by Chugai Igakusha, co-authored by Masayoshi Tamakuma and Ken Ishiyama). (See “Endotoxin Shock,” p. 1, 26, etc.)
. Therefore, the use of ultraviolet sterilizers to decompose or inactivate pyrogenic substances has been a blind spot even among those skilled in the art.

しかしながら1本発明者らは適用する対象液中の発熱性
物質の濃度および紫外線強度次第では紫外線照射法だけ
でも発熱性物質を分解才たけ不活性化することができる
ことを見出し9本発明に到達した。
However, the present inventors discovered that depending on the concentration of the pyrogenic substance in the target liquid to be applied and the intensity of the ultraviolet light, the ultraviolet irradiation method alone can decompose and inactivate the pyrogenic substance9.9 The present invention has been achieved. .

本発明の方法は紫外線照射性単独でも有効であるが、蒸
留装置や膜分離装置で処理して局方に定められた規定で
は合格するが、高感度なリムラステストで検出されるよ
うな比較的低濃度の発熱性物質を含む液に対して適用す
るのが特に有効である。発熱性物質含有量が比較的少い
場合は紫外線照射を前段にしても、単独で使用してもよ
い。また蒸留装置や膜分離装置に供給する原水はイオン
交換水、井戸水、水道水などいづれでも良い。
Although the method of the present invention is effective with ultraviolet irradiation alone, it passes the pharmacopoeial regulations when treated with a distillation device or membrane separation device, but it does not produce a relatively low It is particularly effective to apply to liquids containing high concentrations of pyrogenic substances. If the content of the pyrogenic substance is relatively small, ultraviolet irradiation may be used as a first step or may be used alone. The raw water supplied to the distillation device or membrane separation device may be ion-exchanged water, well water, tap water, or the like.

このように本発明の方法を蒸留装置または膜分離装置と
組み合わせて使用するときのもう一つの利点は蒸留装置
と膜分離装置との組合せ、またはそれぞれの装置の2段
組合せなどでは供給した原液量に対して2段目で得られ
る発熱性物質を除去した液の回収率が8()〜90チで
あるのに対して殆んど100%に近いこ々である。また
一旦溶液にしてしまった輸液などの場合は蒸留装置を使
用することができず、また膜分離装置の場合は発熱性物
質は除去されても組成が変わることも起こり得る。
Another advantage when using the method of the present invention in combination with a distillation device or a membrane separation device is that the amount of raw liquid supplied is In contrast, the recovery rate of the liquid obtained in the second stage from which pyrogenic substances have been removed is 8 to 90%, whereas it is almost 100%. Further, in the case of infusions that have been made into a solution, a distillation device cannot be used, and in the case of a membrane separation device, the composition may change even if the pyrogen is removed.

こねに対して紫外線照射による方法であれば循環するだ
けで組成の変化を起こさずに発熱性物質を分解または不
活性化することができる。
If the method involves irradiating the dough with ultraviolet rays, it is possible to decompose or inactivate the pyrogen without causing a change in the composition just by circulating the dough.

また本発明のように発熱性物質の分解または不活性化の
ために紫外線照射法を用いれば、従来蒸留装置や膜分離
装置で一旦発熱性物質を除去した水を80℃以上の加熱
をすることなしにタンク中に貯留することは良くないと
されていた考え方も覆えずことができる。即ち上記装置
で一旦処理した水をタンク中に加熱せずに貯留しておき
、循環回路中で紫外線を照射しておけば菌の増殖を防止
できるとともに発熱性物質を分解または不活性化するこ
とが可能である。したがって従来の夜間または休日中の
運転管理に関する問題を解決することができる。
Furthermore, if ultraviolet irradiation is used to decompose or inactivate pyrogens as in the present invention, water from which pyrogens have been removed using conventional distillation equipment or membrane separation equipment can be heated to 80°C or higher. The idea that it was not good to store water in a tank without water can be changed. In other words, by storing the water that has been treated with the above device in a tank without heating it and irradiating it with ultraviolet rays in the circulation circuit, it is possible to prevent the growth of bacteria and to decompose or inactivate pyrogenic substances. is possible. Therefore, problems related to conventional operation management during nighttime or holidays can be solved.

次に本発明の効果を実施例に基いて説明する。Next, the effects of the present invention will be explained based on examples.

実施例−1 原水二重水を陽イオン交換樹脂塔と陰イオン交換樹脂塔
に通水して得た電気伝導度1μ0/C1rLのイオン交
換水 水温=20℃ 発熱性物質分析法=(比色式リムラステスト法−パイロ
ディック法により分析) 原水発熱性物質濃度:2ng/ml 原水供給量:2501/時間 紫外線照射水量:2507/時間 紫外線発生器用カニ 14.6ワツト 紫外線照射水の発熱性物質濃度: 0.2 ng / 
ml実施例−2 実施例−1における原水を限外濾過膜処理した水を原水
とした以外は実施例−1と同様に行ない以下の結果を得
た。
Example-1 Ion-exchanged water with electrical conductivity of 1μ0/C1rL obtained by passing raw double water through a cation-exchange resin tower and an anion-exchange resin tower Water temperature = 20°C Pyrogen analysis method = (colorimetric method) Raw water pyrogenic substance concentration: 2 ng/ml Raw water supply amount: 2501/hour Ultraviolet irradiated water amount: 2507/hour Ultraviolet ray generator crab 14.6 Watts Pyrogenic substance concentration in ultraviolet irradiated water: 0 .2ng/
ml Example-2 The same procedure as in Example-1 was carried out, except that the raw water in Example-1 was treated with an ultrafiltration membrane, and the following results were obtained.

限外濾過膜処理水の発熱性物質濃度: O、] ng/
ml限外p過膜処理水に紫外線照射した水の発熱性物質
濃度: 0.02 ng / ml実施例−3 ()ifco社製11ポポリサッカライドE 、 Co
110127 B −8k 10 ng / ml!の
濃度になるように調整したブドウ糖10係水溶液’15
07作成し、実施例−1と同じ紫外線照射量の下で液温
を20℃に保ちながらポンプによる循環運転を行ない、
各経過時間毎の発熱性物質濃度全測定し、得らねだ結果
を図−1に示した。図−1において横軸は経過時間(時
間)、縦軸はパイロディック法により測定した発熱性物
質の濃度(ng /ml ) 。
Pyrogen concentration of ultrafiltration membrane treated water: O,] ng/
Concentration of pyrogen in ultrap membrane-treated water irradiated with ultraviolet rays: 0.02 ng/ml Example-3 () 11polysaccharide E, Co manufactured by ifco
110127 B-8k 10 ng/ml! Glucose 10% aqueous solution '15 adjusted to a concentration of
07 was prepared, and under the same amount of ultraviolet irradiation as in Example-1, a circulation operation was performed using a pump while keeping the liquid temperature at 20 ° C.
All concentrations of pyrogenic substances were measured at each elapsed time, and the obtained results are shown in Figure 1. In Figure 1, the horizontal axis represents the elapsed time (hours), and the vertical axis represents the concentration of pyrogenic substances (ng/ml) measured by the pyrodic method.

1−1は本実施例−3,2−2は次記比較例−1の結果
である。
1-1 is the result of the present Example-3, and 2-2 is the result of the following Comparative Example-1.

比較例−1 紫外線照射を行なわずに、実施例3と同様に行ない、得
られた結果全図−11こ併記した。
Comparative Example 1 The same procedure as in Example 3 was carried out without ultraviolet irradiation, and the results obtained are also shown in Figure 11.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例−3および比較例−1のテスト結果で、
縦軸は発熱性物質濃度、横軸は運転経過時間である。
Figure 1 shows the test results of Example-3 and Comparative Example-1.
The vertical axis is the pyrogenic substance concentration, and the horizontal axis is the elapsed operation time.

Claims (4)

【特許請求の範囲】[Claims] (1) 発熱性物質含有液に紫外線を照射することによ
り該発熱性物質金不浩性化することを特徴とする発熱性
物質不活性化方法。
(1) A method for inactivating a pyrogen, which comprises making the pyrogen inert by irradiating the pyrogen-containing liquid with ultraviolet rays.
(2)発熱性物質含有液が10 ng 7ml以下の発
熱性物質を含有する液である特許請求の範囲第1項記載
の方法。
(2) The method according to claim 1, wherein the pyrogenic substance-containing liquid is a liquid containing 10 ng 7 ml or less of a pyrogenic substance.
(3)発熱性物質含有液が限外済過処理した水である特
許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the pyrogen-containing liquid is ultra-supertreated water.
(4)発熱性物質含有液がブドウ糖水溶液である特許請
求の範囲第1項記載の方法。
(4) The method according to claim 1, wherein the pyrogenic substance-containing liquid is an aqueous glucose solution.
JP22072983A 1983-11-25 1983-11-25 Inactivation of heat generating substance Granted JPS60114265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22072983A JPS60114265A (en) 1983-11-25 1983-11-25 Inactivation of heat generating substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22072983A JPS60114265A (en) 1983-11-25 1983-11-25 Inactivation of heat generating substance

Publications (2)

Publication Number Publication Date
JPS60114265A true JPS60114265A (en) 1985-06-20
JPH0252507B2 JPH0252507B2 (en) 1990-11-13

Family

ID=16755604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22072983A Granted JPS60114265A (en) 1983-11-25 1983-11-25 Inactivation of heat generating substance

Country Status (1)

Country Link
JP (1) JPS60114265A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503730A (en) * 1988-03-29 1991-08-22 イアトロス リミテッド blood processing equipment
JP2020151043A (en) * 2019-03-18 2020-09-24 ウシオ電機株式会社 Decontamination method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364948A (en) * 1976-11-24 1978-06-09 Kurita Water Ind Ltd Method of producing refined water not containing heat generating substance
JPS55132603A (en) * 1979-04-04 1980-10-15 Kuraray Co Ltd Purifying method of water for dialysis
JPS56141811A (en) * 1980-04-03 1981-11-05 Asahi Chem Ind Co Ltd Ultrafiltration method
JPS57147405A (en) * 1981-03-10 1982-09-11 Nikkiso Co Ltd Method for treating water by reverse osmotic membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364948A (en) * 1976-11-24 1978-06-09 Kurita Water Ind Ltd Method of producing refined water not containing heat generating substance
JPS55132603A (en) * 1979-04-04 1980-10-15 Kuraray Co Ltd Purifying method of water for dialysis
JPS56141811A (en) * 1980-04-03 1981-11-05 Asahi Chem Ind Co Ltd Ultrafiltration method
JPS57147405A (en) * 1981-03-10 1982-09-11 Nikkiso Co Ltd Method for treating water by reverse osmotic membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503730A (en) * 1988-03-29 1991-08-22 イアトロス リミテッド blood processing equipment
JP2020151043A (en) * 2019-03-18 2020-09-24 ウシオ電機株式会社 Decontamination method
WO2020189437A1 (en) * 2019-03-18 2020-09-24 ウシオ電機株式会社 Decontamination method
CN113677376A (en) * 2019-03-18 2021-11-19 优志旺电机株式会社 Decontamination method

Also Published As

Publication number Publication date
JPH0252507B2 (en) 1990-11-13

Similar Documents

Publication Publication Date Title
DE2249190C3 (en) Mass sterilization method
DE59510662D1 (en) Process for the simultaneous removal of tumor necrosis factor alpha and bacterial lipopolysaccharides from an aqueous liquid
EP0330047B1 (en) Method for the sterilization of blood, plasma, blood derivatives, plasma derivatives, cell suspensions or the like
EP0306778A2 (en) Process for sterilizing plasma or plasma fractions
Wieslander et al. Heat sterilization of glucose-containing fluids for peritoneal dialysis: biological consequences of chemical alterations
DE69927020T2 (en) Method for preventing the replication of Cryptosporidium Parvum with ultraviolet light
DE60017243T2 (en) METHOD FOR INACTIVATING PATHOGENIC BY WIDE SPECTRUM PULSE LIGHT
DE2817871A1 (en) METHOD AND DEVICE FOR SEPARATION AND PURIFICATION OF PROTEINS BY CHROMATOGRAPHY
EP0514421B1 (en) Process for depleting viruses in solutions and for determining the depletion rate of the viruses
JPS60114265A (en) Inactivation of heat generating substance
US5731164A (en) method of checking the rate of removal of pyrogenic substances, in particular viruses, from organic material
CN1752102A (en) Technology of preparing rat nerve growth factor using organic solvent virus deactivation method
HU190632B (en) Process for producing materials for stimulating respiration of celles from calf's blood
Henzler et al. Avoiding viral contamination in biotechnological and pharmaceutical processes
DE4039721A1 (en) METHOD FOR PRODUCING A PASTEURIZED AND IRON-FREE HUMAN TRANSFERRIN AND ITS USE
WO2000008463A2 (en) Immunoadsorber for removing endotoxins
Komuro et al. Detection of low molecular size lipopolysaccharide contaminated in dialysates used for hemodialysis therapy with polyacrylamide gel electrophoresis in the presence of sodium deoxycholate
US6338849B1 (en) Process of preparing immunoglobulin for intravenous injection by viruses double-sterilized without adding any protectant
DE4126034C1 (en)
DD263449A1 (en) PROCESS FOR THE OEKONOMIC AND SAFE HYGIENIZATION AND EXCLUSION INHIBITION OF MATERIALS AND BIOPRODUCTS
JP3442842B2 (en) Processing method of permselective membrane
RU2681413C2 (en) Preparation methods for a novel generation of biological safe klh products used for cancer treatment, for the development of conjugated therapeutic vaccines and as challenging agents
Szathmary et al. Characterization of the DialguardTM device for endotoxin removal in hemodialysis
DE112016003921T5 (en) Endotoxin-reduced thermolysin
McCullough et al. Depyrogenation by Inactivation and Removal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees