JPS60113684A - Vector controller of induction motor - Google Patents

Vector controller of induction motor

Info

Publication number
JPS60113684A
JPS60113684A JP58219165A JP21916583A JPS60113684A JP S60113684 A JPS60113684 A JP S60113684A JP 58219165 A JP58219165 A JP 58219165A JP 21916583 A JP21916583 A JP 21916583A JP S60113684 A JPS60113684 A JP S60113684A
Authority
JP
Japan
Prior art keywords
current
component
command
induction motor
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58219165A
Other languages
Japanese (ja)
Inventor
Noboru Azusawa
梓沢 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58219165A priority Critical patent/JPS60113684A/en
Publication of JPS60113684A publication Critical patent/JPS60113684A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/08Indirect field-oriented control; Rotor flux feed-forward control
    • H02P21/09Field phase angle calculation based on rotor voltage equation by adding slip frequency and speed proportional frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To correct the slip frequency even at low speed time including zero speed by correcting the slip by an exciting current component. CONSTITUTION:A current detector 14 obtain a torque current component it' and an exciting current component im' from the primary current i1, and a voltage detector 19 obtains a reactive voltage component eq from a voltage detection value v1. A current vector calculator 8 outputs the primary current command i1* in response to an exciting current command im* and a deviation between a torque current command it* and torque current component it'. A pulse width modulation controller 7 controls an inverter 2 in response to a deviation between the primary current command i1* and the primary current i1. A multiplier 23 multiplies the deviation between the command im* and the component im' by a slip frequency command Ws and outputs a slip frequency correction signal DELTAWs.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は誘導電動機の速度制御に係シ、特に、トルク成
分と励磁成分とをベク)・ル演算して速度制御する誘導
電動機のベクトル制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to speed control of an induction motor, and in particular, to a vector control device for an induction motor that performs speed control by vector calculation of a torque component and an excitation component. Regarding.

〔発明の背景〕[Background of the invention]

第1図に従来の誘導電動機のベクトル制御装置の構成を
示す。ベクトル制御装置はサイリスタ等で構成される直
流電源1と、インバータ2と;(2−1〜2−6はイン
バータを構成するGTO嶋ヲ 。
FIG. 1 shows the configuration of a conventional vector control device for an induction motor. The vector control device includes a DC power supply 1 composed of a thyristor, etc., and an inverter 2; (2-1 to 2-6 are GTO mounts that constitute the inverter).

等の半導体制御素子である)インバータで可変周波数、
可変電圧に制御された交流で駆動される誘導電動機3と
、速度検出器(PG)4と、電流検出器5と、電圧検出
器6と、パルス幅変調(PWM)制御回路7と、玉流ベ
クトル制御装置8と、基準磁束発生回路9と、トルク電
流制御回路10と、電圧制御回路11と、トルクすべり
演算器12と、周波数指令作成回路13と、トルク成分
と励磁成分の電流を検出する電流検出回路14と、直交
性補償をするすべり補正回路15と、インビーズ/スト
ロツブ補償回路16と、低速を検出する検出器18と、
スイッチ17と、有効成分と無効成分の電圧を検出する
電圧検出回路19とより構成されている。ベクトル制御
は一般に、第2図に示すように、励磁電流指令1 ta
”とトルク電流指令11″とからベクトル演算して一次
電流指令111を作り、これによシ誘導電動機3の一次
電流を制御するもので、同図(5)、■、 (C)のよ
うにトルク電流指令が大きくなると磁束軸との角度θが
大きな一次電流指令119に従って大きくなる。
variable frequency with an inverter (which is a semiconductor control element such as
An induction motor 3 driven by alternating current controlled by a variable voltage, a speed detector (PG) 4, a current detector 5, a voltage detector 6, a pulse width modulation (PWM) control circuit 7, and a ball current. The vector control device 8, the reference magnetic flux generation circuit 9, the torque current control circuit 10, the voltage control circuit 11, the torque slip calculator 12, the frequency command generation circuit 13, and detect the torque component and excitation component currents. A current detection circuit 14, a slip correction circuit 15 for orthogonality compensation, an in-bead/strotub compensation circuit 16, a detector 18 for detecting low speed,
It is comprised of a switch 17 and a voltage detection circuit 19 that detects voltages of active components and reactive components. Vector control generally uses an exciting current command 1 ta as shown in FIG.
The primary current command 111 is created by vector calculation from the torque current command 11" and the torque current command 11", and the primary current of the induction motor 3 is controlled by this, as shown in (5), ■, and (C) in the same figure. As the torque current command increases, the angle θ with the magnetic flux axis increases in accordance with the large primary current command 119.

一方、−次電流指令119に使用している基準磁束軸(
基準磁束発生回路9で作成)と実際の磁束軸とは第3図
に示すように一般に角度δだけずれ機に与える周波数)
を演算するための速度検出値が実際の速度とずれること
である。すなわち、速度が検出器の誤差等により、検出
速度ω、′は第4図囚のように実速度ω、とΔωアだけ
ずれる。そのため、同期周波数としてはω1′+ω、′
が与えられ、点線で示すトルクカーブ上の運転をするこ
とになる。
On the other hand, the reference magnetic flux axis (
The actual magnetic flux axis (generated using the reference magnetic flux generation circuit 9) and the actual magnetic flux axis are generally shifted by an angle δ (the frequency given to the machine) as shown in Figure 3.
The speed detection value for calculating the speed differs from the actual speed. That is, due to errors in the speed detector, the detected speed ω,' deviates from the actual speed ω, by Δωa, as shown in FIG. Therefore, the synchronization frequency is ω1′+ω,′
is given, and the engine will be operated on the torque curve shown by the dotted line.

すなわち、励磁電流分を太きくシ(逆起電圧を犬きく)
、トルク電流成分を小さくした運転(δの発生する運転
をすることになる。第二の原因は誘導電動機の内部イン
ピーダンスの変化により要求されるすべり周波数がずれ
ることである。誘導電動機の内部インピーダンス、特に
二次抵抗は温度による変化、設計値とのずれが発生する
。すべり周波数は二次抵抗の関数であるため第4図(2
)の実線で示す特性に基づいて運転すべきところを温度
等による変化前の設計値r2“によりすべりを決定して
いるため点線で示すようなトルクカーブ上の運転となシ
、この結果ずれ角δが発生する。
In other words, increase the excitation current (increase the back electromotive force)
, operation with a small torque current component (operation in which δ occurs).The second cause is that the required slip frequency shifts due to changes in the internal impedance of the induction motor.The internal impedance of the induction motor, In particular, the secondary resistance changes due to temperature and deviates from the design value.Since the slip frequency is a function of the secondary resistance, Fig. 4 (2
), the slip is determined by the design value r2'' before changes due to temperature etc., so the operation is not on the torque curve as shown by the dotted line, and as a result, the deviation angle δ occurs.

このように電流指令に使用している磁束軸(演算磁束軸
と実際の磁束軸とが角度δだけずれると、誘導電動機3
に与えられるのは一次電流指令だけであるために一次電
流指令のトルク電流及び励磁電流jt”、i−と実際の
一次電流のトルク成分it、励磁成分i、とけずれ、指
令通りのトルクを発生することができなくなる。そのた
め、従来は、無効成分電圧eaがずれ角δの関数、すな
わち、e+=Vtsinδとなることを利用して、すベ
シ補償を行ない、ずれ角δを零とする方式を採用してい
た。
In this way, if the magnetic flux axis used for the current command (the calculated magnetic flux axis and the actual magnetic flux axis deviate by an angle δ), the induction motor 3
Since only the primary current command is given to the primary current command, the torque current and excitation current jt'', i- of the primary current command are different from the torque component it, excitation component i of the actual primary current, and the torque as per the command is generated. Therefore, in the past, a method has been used in which the reactive component voltage ea is a function of the deviation angle δ, that is, e+=Vtsin δ, to perform absolute compensation and make the deviation angle δ to be zero. was hiring.

この従来方式では、無効成分電圧e、(l e、1−■
1)の検出をインバータ2の出力端で行なっているが、
インバータ2と誘導電動機3とは距離が離れる場合が多
いために検出値V+に対して配線によるインピーダンス
分及び誘導電動機3内部のインピーダンス分によるイン
ピーダンスドロップ分の補正をインピーダンスドロップ
補償回路16で行なっている。誘導電動機3の等価回路
を第5図に示す。同図において無効成分電圧edの検出
値V1は配線のインピーダンス分(1,。
In this conventional method, the reactive component voltage e, (l e, 1-■
1) is detected at the output end of inverter 2, but
Since the inverter 2 and the induction motor 3 are often far apart, the impedance drop compensation circuit 16 corrects the detected value V+ for the impedance drop due to the impedance due to wiring and the impedance inside the induction motor 3. . An equivalent circuit of the induction motor 3 is shown in FIG. In the figure, the detected value V1 of the reactive component voltage ed is equal to the wiring impedance (1,.

rQ )及び誘導電動機内部の一次インピーダンス分(
t+ 、rl )Kよりインピーダンスドロップが実際
検出すべき電圧■l′に加算されて検出されることにな
る。すなわち、検出値■lyとなる。そのため、■1′
を検出するにはV1’=VI +=(弓+”* )十I
 : ωx (t: + 17)のようにインバータ2
の出力端から誘導電動機3の入力端までの配線及び誘導
電動機3のインピーダンスの設定値(r、” 、1.”
 、rτ、t7 )により補正することが必要となる。
rQ ) and the primary impedance inside the induction motor (
t+, rl)K, the impedance drop is added to the voltage l' to be actually detected and detected. In other words, the detected value is ly. Therefore, ■1'
To detect V1'=VI +=(bow+”*)×I
: ωx (t: + 17), inverter 2
The wiring from the output end of
, rτ, t7).

しかし設定値r: + r7+ t’o Ht:は実際
値ro + ”1r to + Alと誤差があり特に
抵抗は温度等により変化するため誤差が必ず生じる。
However, the set value r: + r7 + t'o Ht: has an error from the actual value ro + "1r to + Al, and in particular, an error always occurs because the resistance changes depending on the temperature and the like.

一般にインピーダンス補正分は誘導電動機3の定格運転
時5〜10%の大きさであるため速度の高い(電圧が大
きい)時はインピーダンスの誤差が2%あっても0.1
〜0.2%の電圧検出誤差ですみ問題とならない。とこ
ろが速度が小さく(電圧が低い)なると、例えば5チと
なると電圧検出誤差は、上記の20倍すなわち2%〜4
%となり問題となる。更に速度が1%となる一之100
倍(10%〜20%)の検出誤差が生じることになり、
低速時は補正できないことになり、ずれ角δが発生する
こととなる。ずれ角δが発生するとトルク電流指令と発
生トルクが比例しなくなり、特に張力、制御等に応用す
る場合は速度零まで使用するため従来の方式では問題と
なる。
Generally, the impedance correction amount is 5 to 10% when the induction motor 3 is operated at its rated value, so when the speed is high (voltage is large), even if the impedance error is 2%, it is 0.1%.
A voltage detection error of ~0.2% is enough to cause no problem. However, if the speed is small (voltage is low), for example, 5 inches, the voltage detection error will be 20 times the above value, or 2% to 4%.
%, which poses a problem. Kazuyuki 100 whose speed is further increased by 1%
This will result in a detection error that is twice as large (10% to 20%).
At low speeds, correction cannot be made and a deviation angle δ will occur. When the deviation angle δ occurs, the torque current command and the generated torque are no longer proportional, which poses a problem in the conventional method, especially when applied to tension, control, etc., because the speed is used up to zero.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、速度零を含めた低速時においてもすベ
シ周波数の補正を行なうことができ、電流指令値と発生
トルクとが一致するベクトル制御装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a vector control device that can correct the frequency even at low speeds including zero speed, and allows the current command value to match the generated torque.

〔発明の概要〕[Summary of the invention]

本発明は励磁電流成分は運転状態でtユ常にある一定値
以上であり、かつ磁束軸のずれ角δの門斂であることに
着目し、励磁電流成分によりすべり補正を行ない磁束軸
のずれ角δをなくすようにしたものである。
The present invention focuses on the fact that the excitation current component always exceeds a certain value in the operating state and is a gate of the deviation angle δ of the magnetic flux axis, and performs slip correction using the excitation current component to reduce the deviation angle of the magnetic flux axis. It is designed to eliminate δ.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第6図乃至第10図によp説明する。 Embodiments of the present invention will be described with reference to FIGS. 6 to 10.

第6図乃至第8図は本発明の原理図である。第6図は実
際の磁束軸がδ2だけ一次電流指令の磁束軸からずれた
ときの一次電流指令のベクトル図及び実際の一次電流の
ベクトル図を示したものである。この場合は励磁電流成
分が減少し、トルク成分電流が増加する。同図において
、−次電流指令の磁束軸に換算した励磁成分電流1 m
’及びトルク成分電流j t’は、−次電流11、すな
わぢIa+Iwの3相電流及び5?の磁束軸を決める基
準磁束発生回路9の出力信号よシ検出できる。
FIG. 6 to FIG. 8 are diagrams of the principle of the present invention. FIG. 6 shows a vector diagram of the primary current command and a vector diagram of the actual primary current when the actual magnetic flux axis is deviated from the magnetic flux axis of the primary current command by δ2. In this case, the excitation current component decreases and the torque component current increases. In the same figure, the excitation component current 1 m converted to the magnetic flux axis of the -order current command
' and the torque component current jt' are the negative current 11, that is, the three-phase current of Ia+Iw, and the 5? The output signal of the reference magnetic flux generation circuit 9, which determines the magnetic flux axis of the magnetic flux axis, can be detected.

3相電流1++1 +、、1w0q軸、d軸変換電流値
IQ、及びi6は I q ”” I n5In (ωτ t+δ)十i 
−tO5(ωτt+δ) −(1)i a −i mc
O3(GJ: t 十b)十i t sin (ω: 
+a) −(2)となるため、励磁成分電流1コ、トル
ク成分電流i +’は’Q+Idとsinωτを及びC
05(0:jよりI rn’ ”” I q・5111
ω”、 j−i 6 CO3ω1t= i 、 CO5
δ−i i sinδ ・・・(3)i < ’ = 
i、 −cos OJ: t + i a sinωτ
t= H、cos δ + 1 m 5ill δ ・
 (4)となシ第6図はずれ角δが正であることを示し
ずれ角δが零であればii′=it、tイ/−iヨとな
ることが理解できる。また、第7図に示すようにトルク
電流指令が小さな場合も同様である。
Three-phase current 1++1 +,, 1w0q-axis, d-axis converted current value IQ, and i6 are I q "" I n5In (ωτ t+δ) +i
−tO5(ωτt+δ) −(1)ia −i mc
O3 (GJ: t 1b) 1i t sin (ω:
+a) -(2), so the excitation component current 1 and the torque component current i +' are 'Q+Id and sinωτ and C
05 (from 0:j I rn'"" I q・5111
ω”, j−i 6 CO3ω1t= i, CO5
δ−i i sin δ (3) i <' =
i, −cos OJ: t + i a sinωτ
t=H, cos δ + 1 m 5ill δ ・
(4) Figure 6 shows that the deviation angle δ is positive, and it can be understood that if the deviation angle δ is zero, ii'=it, ti/-iyo. The same applies when the torque current command is small as shown in FIG.

一方、第8図に示すようにずれ角δが第6図とは逆方向
にδlだけずれ/ことすると励磁成分電流In+が励磁
電流指令i:より増加し、トルり成分電流jLがトルク
電流指令17よシ減少する、すなわち、(3)式、(4
)式のずれ角δが負である状態である。そこで励磁を流
指令にと検出励磁成分電流1□′との差がOとなるよう
にすベシ補正をすれば、磁束軸のずれ角δをOとするこ
とができる。
On the other hand, as shown in FIG. 8, when the deviation angle δ is shifted by δl in the opposite direction to that in FIG. 17, that is, equation (3), (4
) is a state in which the deviation angle δ of the equation is negative. Therefore, by performing Bessi correction such that the difference between the excitation current command and the detected excitation component current 1□' becomes O, the deviation angle δ of the magnetic flux axis can be set to O.

第9図は本発明に係るベクトル制御装置の一実施例の構
成図である。第1図に示した従来例と宿成上、異なる点
はすべり補正回路15の代りに電流検出回路14とトル
クすべり演算器12との間に一次電流指令の磁束軸に換
算した実際の一次電流の励磁成分電流10,1□′と励
磁電流指令I:との偏差を演算する偏差演算器22と偏
差演算器22の演算出力とすベシ周波数指令ω、とを乗
算する乗算器23とを設け、電流検出回路14、偏差演
算器22及び乗算器23によりすべり補正回路21を構
成していることであυ、第1図と同一参照符号を付した
ものは同一の構成要素を示している。
FIG. 9 is a block diagram of an embodiment of a vector control device according to the present invention. The difference from the conventional example shown in FIG. A deviation calculator 22 for calculating the deviation between the excitation component current 10,1□' and the excitation current command I: and a multiplier 23 for multiplying the calculated output of the deviation calculator 22 by the frequency command ω are provided. , a current detection circuit 14, a deviation calculator 22, and a multiplier 23 constitute a slip correction circuit 21, and the same reference numerals as in FIG. 1 indicate the same components.

次にすべり補正回路21の具体的構成を第10図に示す
。同図において、luをi、とおくと変換型流値idは
這:(t n+ −)となるため、減算器35より(i
u 1w )を作成(−1減算器換電流値iaを検出で
きる。そこで基準磁束発生回路9の出力信号であるco
sωτを及びsinωτtと11+i、を乗算器32.
33で乗算し、これらの演算出力を減算器31で減算し
く i q sinω?jiacosω1t)、励磁成
分電流1 m’を検出すると共に、更に減算器22によ
り(Im’l:)の信号を作成し、乗算器23ですべり
周波数指令ω、と乗算することにより偏差Δω、〔−ω
:(1+a’l二)〕を作成する。ここで(1m’ 1
:)が正の場合はすべりを大きくする補正となり、また
負の場合はすべりを小さくする補正となり、磁束軸のず
れ角δを零とすることができる。
Next, a specific configuration of the slip correction circuit 21 is shown in FIG. In the same figure, if lu is set to i, the conversion type flow value id becomes (t n+ -), so from the subtractor 35 (i
u 1w ) is created (-1 subtracter equivalent current value ia can be detected. Therefore, co which is the output signal of the reference magnetic flux generation circuit 9
sωτ and sinωτt and 11+i are multiplier 32.
Multiply by 33 and subtract these calculation outputs with subtractor 31.i q sinω? jiacosω1t), the excitation component current 1 m' is detected, and the subtracter 22 further creates a signal (Im'l:), and the multiplier 23 multiplies it by the slip frequency command ω, thereby obtaining the deviation Δω, [- ω
:(1+a'l2)]. Here (1m' 1
If :) is positive, the correction will increase the slip, and if it is negative, the correction will reduce the slip, and the deviation angle δ of the magnetic flux axis can be made zero.

すなわち、誘導電動機をベクトル制御する場合、速度に
関係なく励磁成分電流1+++は一定値以上、流れてお
り、また電流はインバータ出力端でも誘導電動機の内部
においても同一であるためインピーダンスの影響を受け
ない。
In other words, when performing vector control on an induction motor, the excitation component current 1+++ flows above a certain value regardless of the speed, and the current is the same both at the inverter output terminal and inside the induction motor, so it is not affected by impedance. .

従って励磁成分電流を検出して磁束軸のずれ角δを補正
する本実施例によれば速度に関係なく低速においても精
度良好にすべり周波数の補正を行なうことが可能となる
Therefore, according to this embodiment in which the excitation component current is detected and the deviation angle δ of the magnetic flux axis is corrected, it is possible to correct the slip frequency with good accuracy regardless of the speed and even at low speeds.

〔発明の効果〕〔Effect of the invention〕

本発明によれば誘導電動機の速度に無関係に精度良好に
すべり周波数の補正が可能となり、電流指令値と発生ト
ルクとを一致させることができる。
According to the present invention, it is possible to correct the slip frequency with good accuracy regardless of the speed of the induction motor, and it is possible to match the current command value and the generated torque.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の誘導電動機のベクトル制御装置の構成を
示すブロック図、第2図は励磁電流指令及びトルク電流
指令の大きさとこれらをベクトル合成して得られる一次
電流指令の大きさの関係を示すベクトル図、第3図は一
次電流指令に使用している基準磁束軸と実際の磁束軸が
ずれる状態を示すベクトル図、第4図は誘導電動機の速
度−トルク特性図、第5図は誘導電動機の等価回路図、
第6図乃至第8図はそれぞれ、本発明に係るベクトル制
御装置の原理を説明するためのベクトル図、第9図は本
発明に係るベクトル制御装置の一実施例の構成を示すブ
ロック図、第10図は第9図に示したベクトル制御装置
におけるすベシ補正回路21の具体的構成を示すブロッ
ク図である。 2・・・インバータ、3・・・誘導電動機、8・・・電
流ベクトル演算回路、9・・・基準磁束発生回路、12
・・・トルクすべり演算器、14・・・畦流検出回路、
19・・・電圧検出回路、21・・・すべり補正回路、
22・・・偏差演算器、23・・・乗算器。 代理人 弁理士 鵜沼辰之 (8) $y 区 茅Z 口 $7固 第3 口
Figure 1 is a block diagram showing the configuration of a conventional vector control device for an induction motor, and Figure 2 shows the relationship between the magnitudes of the excitation current command and torque current command and the magnitude of the primary current command obtained by vector synthesis of these. Figure 3 is a vector diagram showing a state in which the reference magnetic flux axis used for the primary current command and the actual magnetic flux axis are misaligned, Figure 4 is a speed-torque characteristic diagram of an induction motor, and Figure 5 is an induction motor diagram. Equivalent circuit diagram of electric motor,
6 to 8 are vector diagrams for explaining the principle of the vector control device according to the present invention, FIG. 9 is a block diagram showing the configuration of an embodiment of the vector control device according to the present invention, and FIG. FIG. 10 is a block diagram showing a specific configuration of the width correction circuit 21 in the vector control device shown in FIG. 9. 2... Inverter, 3... Induction motor, 8... Current vector calculation circuit, 9... Reference magnetic flux generation circuit, 12
...torque slip calculator, 14...ridge current detection circuit,
19... Voltage detection circuit, 21... Slip correction circuit,
22... Deviation calculator, 23... Multiplier. Agent Patent attorney Tatsuyuki Unuma (8) $y Z. Ku Kaya $7.3

Claims (1)

【特許請求の範囲】[Claims] 1、誘導電動機の一次電流の位相を励磁成分電流とトル
ク成分電流とに区別してすベシ周流数により制御する誘
導電動機のベクトル制御装置において、誘導電動機の一
次電流の励磁成分電流を検出し、該検出値と一次電流指
令のうちの励磁電流指令イーとの偏差に基づいてすべり
周波数を補正し、−次電流指令の基準磁束軸と実際の磁
束軸とを一致させることを特徴とする誘導電動機のベク
トル制御装置。
1. In a vector control device for an induction motor that distinguishes the phase of the primary current of the induction motor into an excitation component current and a torque component current and controls the rotation frequency, detecting the excitation component current of the primary current of the induction motor, An induction motor characterized in that the slip frequency is corrected based on the deviation between the detected value and an excitation current command E of the primary current command, and the reference magnetic flux axis of the -order current command and the actual magnetic flux axis are made to coincide. vector control device.
JP58219165A 1983-11-21 1983-11-21 Vector controller of induction motor Pending JPS60113684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58219165A JPS60113684A (en) 1983-11-21 1983-11-21 Vector controller of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58219165A JPS60113684A (en) 1983-11-21 1983-11-21 Vector controller of induction motor

Publications (1)

Publication Number Publication Date
JPS60113684A true JPS60113684A (en) 1985-06-20

Family

ID=16731217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219165A Pending JPS60113684A (en) 1983-11-21 1983-11-21 Vector controller of induction motor

Country Status (1)

Country Link
JP (1) JPS60113684A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212394A (en) * 1985-07-04 1987-01-21 Mitsubishi Electric Corp Controller of induction motor
EP0338777A2 (en) * 1988-04-18 1989-10-25 Otis Elevator Company Speed control system for elevators
JPH02133091A (en) * 1988-07-04 1990-05-22 Fuji Electric Co Ltd Slip frequency type vector controller
US5119007A (en) * 1989-09-29 1992-06-02 Yuzuku Tunehiro Inverter control apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199489A (en) * 1981-05-29 1982-12-07 Hitachi Ltd Controller for induction motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199489A (en) * 1981-05-29 1982-12-07 Hitachi Ltd Controller for induction motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212394A (en) * 1985-07-04 1987-01-21 Mitsubishi Electric Corp Controller of induction motor
JPH0584156B2 (en) * 1985-07-04 1993-12-01 Mitsubishi Electric Corp
EP0338777A2 (en) * 1988-04-18 1989-10-25 Otis Elevator Company Speed control system for elevators
JPH02133091A (en) * 1988-07-04 1990-05-22 Fuji Electric Co Ltd Slip frequency type vector controller
US5119007A (en) * 1989-09-29 1992-06-02 Yuzuku Tunehiro Inverter control apparatus

Similar Documents

Publication Publication Date Title
JP3746377B2 (en) AC motor drive control device
US6359415B1 (en) Apparatus for controlling synchronous motor
WO1987001250A1 (en) Method of controlling a three-phase induction motor
JPS5821511B2 (en) Kouriyudendo Kinoseigiyosouchi
JP2585376B2 (en) Control method of induction motor
US6300741B1 (en) Speed controlling method for induction motor
JP3637209B2 (en) Power converter using speed sensorless vector control
JPH07250500A (en) Variable speed controller for induction motor
JP4238646B2 (en) Speed sensorless vector controller for induction motor
JPS60113684A (en) Vector controller of induction motor
JPH0775399A (en) Variable speed device
JP4937766B2 (en) Voltage inverter control device
JPH08289405A (en) Control device for electric car
JPH1023800A (en) Induction motor speed control
JPS6152176A (en) Vector controlling method of induction motor
JP3555965B2 (en) Inverter control method
JPH0870599A (en) Sensorless vector control apparatus for induction motor speed
JPH0572195B2 (en)
JPH03135389A (en) Method and device for controlling voltage type inverter
JP3124019B2 (en) Induction motor control device
JPH09191700A (en) Method for controlling induction motor
JPS6084992A (en) Controlling method for induction motor
JPH07143800A (en) Vector control method and system for induction motor
JPH06319285A (en) Vector controller for induction motor
JPS6387192A (en) Vector control of induction motor