JPS6011335Y2 - Differential temperature control valve - Google Patents

Differential temperature control valve

Info

Publication number
JPS6011335Y2
JPS6011335Y2 JP7070481U JP7070481U JPS6011335Y2 JP S6011335 Y2 JPS6011335 Y2 JP S6011335Y2 JP 7070481 U JP7070481 U JP 7070481U JP 7070481 U JP7070481 U JP 7070481U JP S6011335 Y2 JPS6011335 Y2 JP S6011335Y2
Authority
JP
Japan
Prior art keywords
flow path
side flow
temperature
spring
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7070481U
Other languages
Japanese (ja)
Other versions
JPS57182668U (en
Inventor
和夫 原田
仁四郎 藤田
信夫 吉井
良規 脇山
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to JP7070481U priority Critical patent/JPS6011335Y2/en
Publication of JPS57182668U publication Critical patent/JPS57182668U/ja
Application granted granted Critical
Publication of JPS6011335Y2 publication Critical patent/JPS6011335Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Control Of Temperature (AREA)

Description

【考案の詳細な説明】 本考案は差温温調弁に関する。[Detailed explanation of the idea] The present invention relates to a differential temperature control valve.

差温温調弁とは温度調節効果を有する差温弁であって、
本考案は形状記憶合金を用いて構成簡単にこれを実現す
ることを目的とする。
A differential temperature control valve is a differential temperature valve that has a temperature regulating effect,
The present invention aims to achieve this with a simple structure using a shape memory alloy.

なお差温弁とは、弁の人出口の温度が同じ時は開状態と
なり、異なる温度の時は開状態となるような弁、または
この動作とは逆の動作をするような弁である。
Note that a differential temperature valve is a valve that is open when the temperature at the outlet of the valve is the same and is open when the temperature is different, or a valve that operates in the opposite way.

以下本考案の一実施例を図面に基づいて説明する。An embodiment of the present invention will be described below based on the drawings.

この実施例はソーラシステムの蓄熱槽に装着した場合を
示し、1は集熱系で、太陽エネルギEを吸収して高温水
を送り出す。
This embodiment shows the case where it is installed in a heat storage tank of a solar system, and 1 is a heat collection system that absorbs solar energy E and sends out high-temperature water.

2は熱利用系である。2 is a heat utilization system.

3は蓄熱槽、4は集熱系1の高温水流路5を選択するバ
ルブで、例えば熱利用系2または蓄熱槽3への流路が決
定される。
3 is a heat storage tank; 4 is a valve that selects a high temperature water flow path 5 of the heat collection system 1; for example, a flow path to the heat utilization system 2 or the heat storage tank 3 is determined;

4′は熱利用系2からの低温水の流路を選択するバルブ
で、例えば集熱系1または蓄熱槽3への流路が決定され
る。
Reference numeral 4' denotes a valve that selects the flow path of low-temperature water from the heat utilization system 2, and determines, for example, the flow path to the heat collection system 1 or the heat storage tank 3.

6.7は蓄熱槽3の流入口と流出口、8は流出ロアに連
通ずる出口側流路、9,10,11,12.13は蓄熱
槽3の槽内部14と前記出口側流路8を連通する流路、
15,16,17.18は前記流路9〜13の最上部の
流路13を除く流路9.10,11,12にそれぞれ配
設された差温温調弁である。
6.7 is an inlet and an outlet of the heat storage tank 3, 8 is an outlet side flow path communicating with the outflow lower, 9, 10, 11, 12.13 is the tank interior 14 of the heat storage tank 3 and the outlet side flow path 8. a flow path that communicates with
Reference numerals 15, 16, 17, and 18 are differential temperature control valves respectively disposed in channels 9, 10, 11, and 12 of the channels 9 to 13, excluding the uppermost channel 13.

第2図〜第4図は各差温温調弁の動作を示し、19は隔
壁20で囲まれた連通室で、該連通室19を介して槽内
部14側の入口側流路21と前記出口側流路8とが接続
されている。
2 to 4 show the operation of each differential temperature control valve. Reference numeral 19 is a communication chamber surrounded by a partition wall 20, and the communication chamber 19 is connected to the inlet side flow path 21 on the tank interior 14 side. The outlet side flow path 8 is connected.

22.23は前記隔壁20に穿設された第1、第2の連
通孔で、第1の連通孔22は連通室19と入口側流路2
1を連通し、第2の連通孔23は連通室19と出口側流
路8を連通する。
Reference numerals 22 and 23 denote first and second communication holes bored in the partition wall 20, and the first communication hole 22 connects the communication chamber 19 and the inlet side channel 2.
1, and the second communication hole 23 communicates the communication chamber 19 with the outlet side flow path 8.

24,25はそれぞれ前記第1、第2の連通孔22.2
3を閉塞可能な第1、第2の閉塞子、26.27は第1
、第2の閉塞子24.25をそれぞれ前記第11第2の
連通孔22,23を閉塞する方向へ付勢するスプリング
で、このスプリング26.27は周囲温度にかかわらず
一定の付勢力を有する。
24 and 25 are the first and second communication holes 22.2, respectively.
3 is the first and second obturator that can be occluded, 26.27 is the first obturator
, springs that bias the second obturators 24 and 25 in the direction of closing the eleventh and second communication holes 22 and 23, respectively, and the springs 26 and 27 have a constant biasing force regardless of the ambient temperature. .

28.29はそれぞれ入口側流路21と出口側流路8に
配設されたスプリングで、共に形状記憶合金から戊り、
前記第1、第2の連通孔22.23を開放する方向に第
1、第2の閉塞子24.25を付勢する。
28 and 29 are springs respectively disposed in the inlet side flow path 21 and the outlet side flow path 8, both of which are made of shape memory alloy;
The first and second obturators 24.25 are urged in a direction to open the first and second communication holes 22.23.

なお、ここでスプリング26.27と28.29とは、
スプリング28.29の変態温度よりも高い温度におい
て付勢力がスプリング26〈スプリング28、スプリン
グ27〈スプリング29に構成されている。
Note that springs 26.27 and 28.29 are
At a temperature higher than the transformation temperature of the springs 28 and 29, biasing forces are formed in the springs 26<springs 28 and 27<springs 29.

このように構成したため、バルブ4を介して高温水流路
の高温水が集熱系1から熱利用系2へ流れ、熱利用系2
で熱が余り始めると、バルブ4を切換えて、蓄熱槽3へ
高温水を流して蓄熱が始まる。
With this configuration, the high-temperature water in the high-temperature water flow path flows from the heat collection system 1 to the heat utilization system 2 via the valve 4, and the heat utilization system 2
When the heat starts to become too much, the valve 4 is switched to flow high temperature water into the heat storage tank 3 and heat storage begins.

バルブ4は、蓄熱が終了して集熱系1より高温水が送ら
れなくなると完全に蓄熱槽3側になり、蓄熱槽3から熱
利用系2へ高温水を送ることになる。
When the heat storage is completed and high temperature water is no longer sent from the heat collection system 1, the valve 4 becomes completely on the heat storage tank 3 side and sends high temperature water from the heat storage tank 3 to the heat utilization system 2.

蓄熱開始時において、蓄熱槽3の各差温温調弁15〜1
8の入口側流路21と出口側流路8は共に前記スプリン
グ28.29の変態温度以下にあるため、スプリング2
8.29は収縮して第11第2の閉塞子24.25がス
プリング26.27の付勢力によって第1、第2の閉塞
子24.25がスプリング26.27の付勢力によって
第1、第2の連通孔22,23を閉塞している〔第2図
状態〕。
At the start of heat storage, each differential temperature control valve 15 to 1 of the heat storage tank 3
Since both the inlet side flow path 21 and the outlet side flow path 8 of 8 are below the transformation temperature of the spring 28, 29, the spring 2
8.29 is contracted, and the eleventh second obturator 24.25 is compressed by the biasing force of the spring 26.27, and the first and second obturators 24.25 are contracted by the biasing force of the spring 26.27. The communication holes 22 and 23 of No. 2 are closed (state shown in Fig. 2).

この状態で蓄熱槽3に高温水が流入すると、流入した高
温水が最も低いレベルにある差温温調弁15の入口側流
路21に入ってスプリング28を変態温度T工よりも高
い温度とするため、スプリング28は伸長してスプリン
グ26の付勢力に抗して第1の閉塞子24を押し上げ、
第1の連通孔22を開状態とする。
When high-temperature water flows into the heat storage tank 3 in this state, the high-temperature water flows into the inlet side flow path 21 of the differential temperature control valve 15, which is at the lowest level, and causes the spring 28 to rise to a temperature higher than the transformation temperature T. Therefore, the spring 28 expands and pushes up the first obturator 24 against the biasing force of the spring 26.
The first communication hole 22 is opened.

しかしながらこの時にスプリング29の方は変態温度T
1よりも高い温度にならないため、第2の閉塞子25は
第2の連通孔23を閉状態としている。
However, at this time, the spring 29 has a transformation temperature T
Since the temperature does not become higher than 1, the second obturator 25 closes the second communication hole 23.

〔第3図状態〕。そのため蓄熱槽3の高温水レベルが次
第に増加し、残りの差温温調弁16,17.18も順次
第2図状態から第3図状態に移行する。
[Status shown in Figure 3]. Therefore, the high-temperature water level in the heat storage tank 3 gradually increases, and the remaining temperature difference control valves 16, 17, and 18 also gradually shift from the state shown in FIG. 2 to the state shown in FIG. 3.

そして遂に高温水レベルが最上の流路13に達すると、
流路13から出口側流路8に高温水がオーバーフローし
て出口側流路8の温度が変態温度T□以上になり、各差
温温調弁15〜18のスプリング29がスプリング27
に抗して第2の閉塞子25を持ち上げて第2の連通孔2
3が開状態となる〔第4図状態〕。
When the high temperature water level finally reaches the uppermost channel 13,
High-temperature water overflows from the flow path 13 to the outlet side flow path 8, and the temperature of the outlet side flow path 8 becomes equal to or higher than the transformation temperature T
Lift the second obturator 25 against the
3 is in the open state (state in Fig. 4).

モして流路9,10,11.12から出口側流路8に高
温水30が流れる。
The high temperature water 30 flows from the flow paths 9, 10, 11, and 12 to the outlet side flow path 8.

このようにして、蓄熱槽3から高温水を取り出して行く
と、槽内部14の下側から温度が下がってきて、下側の
差温温調弁15の第1の閉塞子24が先ず第1の連通孔
22を閉塞し、上側の差温温調弁16,17.18から
高温水が流れる。
When high-temperature water is taken out from the heat storage tank 3 in this way, the temperature drops from the bottom of the tank interior 14, and the first obturator 24 of the bottom differential temperature control valve 15 first The communication hole 22 is closed, and high-temperature water flows from the upper differential temperature control valves 16, 17, and 18.

その後、差温温調弁16.17.18も低レベルの方か
ら順に第1の連通孔22が閉塞され、再び蓄熱槽3に高
温水が溜るまで差温温調弁15〜18は開かない。
After that, the first communication holes 22 of the differential temperature control valves 16, 17, and 18 are closed in order from the lowest level, and the differential temperature control valves 15 to 18 do not open until high temperature water accumulates in the heat storage tank 3 again. .

なお、蓄熱槽3自体はなるべく温度成層(温度による密
度差で上程熱く下程冷くなる)になるように構成した方
が効果が大きい。
Note that it is more effective if the heat storage tank 3 itself is configured to have temperature stratification (the upper part is hotter and the lower part is colder due to the density difference due to temperature).

上記実施例において差温温調弁は、スプリング28.2
9を形状記憶合金として、入口側流路と出口側流路が変
態温度よりも高い時に開状態となり、一方が変態温度以
下の時に閉状態になるようにしたが、例えば第1の閉塞
子24のスプリング28を形状記憶合金とした場合には
第2の閉塞子25のスプリング27を形状記憶合金とす
ると云うように入口側流路と出口側流路で形状記憶合金
の挿入する場所を違えることにより、入口側流路と出口
側流路に温度差がある時に開状態となり、等温ないしは
変態温度T1よりも高い温度の時に閉状態となる逆動作
も可能である。
In the above embodiment, the differential temperature control valve has a spring 28.2.
9 is made of a shape memory alloy so that the inlet side flow path and the outlet side flow path are in an open state when the temperature is higher than the transformation temperature, and are in a closed state when one of them is below the transformation temperature. For example, the first obturator 24 When the spring 28 of the second obturator 25 is made of a shape memory alloy, the shape memory alloy may be inserted in different places between the inlet side flow path and the outlet side flow path, such as when the spring 27 of the second obturator 25 is made of a shape memory alloy. Therefore, a reverse operation is also possible in which the opening state occurs when there is a temperature difference between the inlet side flow path and the outlet side flow path, and the closed state occurs when the temperature is isothermal or higher than the transformation temperature T1.

また、上記実施例ではソーラシステムを例に挙げて説明
したが、廃熱を使う系であっても同様に蓄熱することが
できる。
Further, although the above embodiments have been described using a solar system as an example, heat can be stored in a similar manner even in a system that uses waste heat.

以上説明のように本考案によると、構成簡単にして差温
効果と温度調節効果を併せもった差温弁を実現でき、特
に成層型蓄熱槽を形成する場合に非常に有効である。
As described above, according to the present invention, it is possible to realize a temperature difference valve that has both a temperature difference effect and a temperature control effect with a simple structure, and is particularly effective when forming a stratified type heat storage tank.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の一実施例を示し、第1図は差温温調弁を
使用したソーラシステムの構成国、第2図〜第4図は差
温温調弁の動作を説明するための縦断面図である。 8・・・・・・出口側流路、15,16,17,18・
・・・・・差温温調弁 19・・・・・・連通室、21
・・・・・・入口側流路、22・・・・・・第1の連通
孔、23・・・・・・第2の連通孔、24・・・・・・
第1の閉塞子、25・・・・・・第2の閉塞子、28・
・・・・・スプリング〔第1のスプリング〕、29・・
・・・・スプリング〔第2のスプリング〕。
The drawings show one embodiment of the present invention, and Figure 1 shows the constituent countries of a solar system using a differential temperature control valve, and Figures 2 to 4 are longitudinal sections for explaining the operation of the differential temperature control valve. It is a front view. 8... Outlet side flow path, 15, 16, 17, 18.
...Differential temperature control valve 19...Communication chamber, 21
...Inlet side flow path, 22...First communication hole, 23...Second communication hole, 24...
First obturator, 25...Second obturator, 28.
...Spring [first spring], 29...
...Spring [second spring].

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 入口側流路と出口側流路とを隔壁で囲まれた連通室を介
して接続し、前記隔壁に連通室と入口側流路を連通ずる
第1の連通孔ならびに連通室と出口側流路を連通ずる第
2の連通孔を穿設すると共に、前記第1、第2の連通孔
をそれぞれ閉塞可能な第1、第2の閉塞子を設け、入口
側流路に形状記憶合金から戊り前記第1の閉塞子を変態
温度以下または変態温度よりも高い温度で第1の連通孔
を閉塞する方向に付勢する第1のスプリングを設け、出
口側流路に形状記憶合金から成り前記第2の閉塞子を変
態温度以下または変態温度よりも高い温度で第2の連通
孔を閉塞する方向に付勢する第2のスプリングを設けた
ことを特徴とする差温温調弁。
A first communication hole that connects the inlet side flow path and the outlet side flow path via a communication chamber surrounded by a partition wall, and communicates the communication chamber and the inlet side flow path with the partition wall, and the communication chamber and the outlet side flow path. A second communication hole is bored through which the communication holes communicate with each other, and first and second obturators that can respectively close the first and second communication holes are provided, and the inlet side flow path is hollowed out from a shape memory alloy. A first spring is provided that biases the first obturator in a direction to close the first communication hole at a temperature lower than or higher than the transformation temperature, and the outlet side flow path is provided with a first spring made of a shape memory alloy. 1. A differential temperature control valve comprising a second spring that biases the second obturator in the direction of closing the second communication hole at a temperature below the transformation temperature or higher than the transformation temperature.
JP7070481U 1981-05-16 1981-05-16 Differential temperature control valve Expired JPS6011335Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7070481U JPS6011335Y2 (en) 1981-05-16 1981-05-16 Differential temperature control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7070481U JPS6011335Y2 (en) 1981-05-16 1981-05-16 Differential temperature control valve

Publications (2)

Publication Number Publication Date
JPS57182668U JPS57182668U (en) 1982-11-19
JPS6011335Y2 true JPS6011335Y2 (en) 1985-04-15

Family

ID=29866516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7070481U Expired JPS6011335Y2 (en) 1981-05-16 1981-05-16 Differential temperature control valve

Country Status (1)

Country Link
JP (1) JPS6011335Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811168A (en) * 2021-01-22 2022-07-29 高丽电子株式会社 Proportional control valve for cooling and heating

Also Published As

Publication number Publication date
JPS57182668U (en) 1982-11-19

Similar Documents

Publication Publication Date Title
JPS6011335Y2 (en) Differential temperature control valve
US4635672A (en) Air vent
JPS6211814Y2 (en)
JP2001173891A (en) Float type drain trap
JPS5914676Y2 (en) Antifreeze device for water heater
JPH0584429B2 (en)
JP2562905Y2 (en) Pilot type steam trap
JPS5833487Y2 (en) water heater
JPS6221182Y2 (en)
JPS5869358A (en) Storage capacity switching device for water tank
JPS5930281Y2 (en) pressure regulating valve
JP2001141190A (en) Float type drain trap
JPH0451275Y2 (en)
JPS62233689A (en) Heat storage tank
KR20240036271A (en) Bypass valve for heat exchanger for considering heating and cooling performance
JPS5844288Y2 (en) solar water heater
JPS60140072A (en) Refrigerator with differential pressure open-close valve
JPS603164Y2 (en) Water stop valve
JPS585161Y2 (en) expansion valve
JPS61161396A (en) Temperature-classified heat storage tank
JPS62181773U (en)
JPS59150258A (en) Solar heat collecting apparatus
JPS6122207B2 (en)
JPH10170075A (en) Hot water storage tank of solar system
JPS6182084A (en) Controlling fluid and its device