JPS61161396A - Temperature-classified heat storage tank - Google Patents

Temperature-classified heat storage tank

Info

Publication number
JPS61161396A
JPS61161396A JP60002581A JP258185A JPS61161396A JP S61161396 A JPS61161396 A JP S61161396A JP 60002581 A JP60002581 A JP 60002581A JP 258185 A JP258185 A JP 258185A JP S61161396 A JPS61161396 A JP S61161396A
Authority
JP
Japan
Prior art keywords
area
temperature
heat storage
heat
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60002581A
Other languages
Japanese (ja)
Inventor
Keiichi Yasukawa
安川 敬一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60002581A priority Critical patent/JPS61161396A/en
Publication of JPS61161396A publication Critical patent/JPS61161396A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/12Shape memory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/04Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes comprising shape memory alloys or bimetallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To make each area classified by temperature difference in a simple constitution, and to heighten the effectiveness of a heat storage tank, by a method wherein the upper half part of the heat storage tank is made in a double cylinder type, and a valve which is combined with a shape memory alloy, is attached on the upper part of said tank, and a heat source is inserted in the cylinder. CONSTITUTION:Inside of the outer frame 1 of the heat storage tank is made full of water, and a heating body 9 is raised to high temperature by supplying electric power. A plate 7 of the shape memory alloy has a bidirectional quality and when the temperature of atmosphere becomes above 60 deg.C said plate warps, and it restores to the original shape at under 40 deg.C, and a valve body 6 closes a communication hole 4 at first. When the temperature rises in a H area, it becomes independent area which is thermally closed, and the convection is generated only in the H area and when the temperature becomes higher than 60 deg.C, the plate 7 of the shape memory alloy leaves the valve body 6 from the communication hole 4, and the circulating flow is formed by the temperature difference through the H area the communication hole 4 the M area the L area the H area. The low temperature area L and the M area form the intermediate area of said two area with time and heat storage progresses, and finally the heat storage operation is finished when the temperature of the whole tank becomes near 100 deg.C, i.e. the boiling point of water.

Description

【発明の詳細な説明】 本発明は電熱又はヒートパイプ等の発熱体よりの高温熱
、或いは、太陽熱等の集熱装置よりの循環熱流体、或い
は、冷凍機等よりの冷熱等を区域側に温度別に蓄熱をな
さしめようとする装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention supplies high-temperature heat from a heating element such as electric heat or a heat pipe, circulating thermal fluid from a heat collector such as solar heat, or cold heat from a refrigerator, etc. to the area side. This relates to a device that attempts to store heat at different temperatures.

但し、ここでは熱媒体としては、一般的には水を対象と
するものとする。
However, water is generally used as the heat medium here.

水を蓄熱材とする蓄熱槽では、槽内の高温水と低温水と
を出来るだけ分離することが重要である。
In a heat storage tank that uses water as a heat storage material, it is important to separate high-temperature water and low-temperature water in the tank as much as possible.

この目的のために、槽内の水の温度差番こよる浮力を利
用した温度成層形の蓄熱槽やバランス形蓄熱槽に関する
研究が数多く行こなわれ、実用化されているものも数多
くある。
For this purpose, many studies have been conducted on temperature stratification type heat storage tanks and balance type heat storage tanks that utilize the buoyancy caused by the temperature difference of water in the tank, and many of them have been put into practical use.

又、隔離膜や仕切板等を用いて、多槽型となし。Also, by using isolation membranes, partition plates, etc., it can be made into a multi-tank type or not.

温度別に分級して、温度別の非混合の蓄熱を図る方法も
ある。
Another method is to classify heat by temperature and store heat without mixing by temperature.

いづれも一長一短ある訳であるが、蓄熱槽内を機構的に
複雑にすることは、コスト増につながり。
Each has its advantages and disadvantages, but making the inside of the heat storage tank mechanically complex leads to increased costs.

又、特に、二次的トラブルが問題視される。In addition, secondary troubles are particularly problematic.

即ち、長期間の運転によるゴミ・水垢等による機能低下
が問題となる訳である。
In other words, the problem is that the function deteriorates due to dirt, limescale, etc. due to long-term operation.

そこで本発明においては、蓄熱槽の天井に底のない円筒
をとりつけ、蓄熱槽の上半分部分を二重円筒形となし、
その円筒の上部には連通穴とその連通穴に対して開閉作
動する所の形状記憶合金と組合された弁をとりつけ、そ
して1円筒内に熱源を挿入したるもの、といった極めて
簡単な構成により、在来の蓄熱槽の概念とは異なった温
度別の各区域をつくり、蓄熱槽の有効性を高めようとす
るものである。
Therefore, in the present invention, a bottomless cylinder is attached to the ceiling of the heat storage tank, and the upper half of the heat storage tank is made into a double cylindrical shape.
With an extremely simple structure, a communicating hole and a valve combined with a shape memory alloy that opens and closes the communicating hole are attached to the top of the cylinder, and a heat source is inserted into the cylinder. This is an attempt to increase the effectiveness of heat storage tanks by creating different temperature zones, which differ from the conventional concept of heat storage tanks.

以下、主要な構成を図に示す実施例を用いて説明する。Hereinafter, the main configuration will be explained using an example shown in the drawings.

第1図は本発明における温度別蓄熱槽の断面図であり、
第2図は水平断面図、第3図は弁体部分の拡大断面図、
第4図は蓄熱媒体が集熱装置を循環する循環回路略図と
温度別蓄熱槽えの適用例の断面図である。
FIG. 1 is a sectional view of a temperature-specific heat storage tank according to the present invention,
Figure 2 is a horizontal sectional view, Figure 3 is an enlarged sectional view of the valve body part,
FIG. 4 is a schematic diagram of a circulation circuit in which a heat storage medium circulates through a heat collection device, and a sectional view of an application example of a temperature-specific heat storage tank.

蓄熱槽の形式は、いわゆる密封型と大気開放型とが考え
られるが9本発明はこのいづれにも適用される訳であり
、ここでは密封型を実施例として。
There are two types of heat storage tanks: the so-called sealed type and the atmosphere open type.9 The present invention is applicable to both types, and the sealed type will be used as an example here.

図面に基き説明する。The explanation will be based on the drawings.

蓄熱槽の外枠1は任意の形状1例えば9円筒形。The outer frame 1 of the heat storage tank has an arbitrary shape 1, for example, a cylindrical shape.

又は立方体形等のもので、よく保温された枠組であり、
外枠1の天井2より槽内に向かって、断熱性のある材質
で適当な大きさの底のない円筒3をとりつける。
Or, it has a well-insulated framework, such as a cubic shape,
A bottomless cylinder 3 of an appropriate size and made of a heat insulating material is attached from the ceiling 2 of the outer frame 1 toward the inside of the tank.

円筒3の形態は立方体形、又は円錐台形等であってもよ
く、そのとりつけ位置は外枠1の天井2の中心部でなく
ともよい。
The shape of the cylinder 3 may be a cube, a truncated cone, or the like, and its mounting position does not need to be at the center of the ceiling 2 of the outer frame 1.

そしてその円筒3の上部の天井付近には、連通穴4と通
穴5を各々の単数又は複数個以上を、開設する。
In the upper part of the cylinder 3 near the ceiling, one or more communicating holes 4 and 5 are provided.

通穴5は小さく、水位バランス、空気抜等用のものであ
り、小型の蓄熱槽の場合は必ずしも必要ではない。
The through hole 5 is small and is used for water level balance, air venting, etc., and is not necessarily necessary in the case of a small heat storage tank.

連通穴4は通穴5よりも大キく、形状記憶合金の板7と
組合された弁体6が、連通穴4に対応するように設置さ
れている。
The communication hole 4 is larger than the through hole 5, and a valve body 6 combined with a shape memory alloy plate 7 is installed so as to correspond to the communication hole 4.

形状記憶合金の板7は支点8によって円筒3の内側に固
着され、弁体6を連通穴4に見合う位置に支えている。
A shape memory alloy plate 7 is fixed to the inside of the cylinder 3 by a fulcrum 8 and supports the valve body 6 at a position corresponding to the communication hole 4.

この形状記憶合金の板7には、二方向性のものを使用す
ることが望ましい。
It is desirable to use a bidirectional shape memory alloy plate 7.

即ち、高温の雰囲気ではあらかじめ撓るような形状を記
憶させ、低温の雰囲気では元の形状に復元するような二
方向性の形状記憶合金を使用し。
In other words, a bidirectional shape memory alloy is used that memorizes a shape that bends in a high-temperature atmosphere and returns to its original shape in a low-temperature atmosphere.

高温−低温の温度変化による変態を駆動源として、弁体
6の連通穴4に対する開閉作動をなさLむる。
The valve body 6 is opened and closed with respect to the communication hole 4 using the transformation caused by the temperature change between high and low temperatures as a driving source.

一方向性の形状記憶合金の板7を使用する場合には9元
の形状に復元させるためバイアスバネと重ね合せる等の
組合せが必要となる。
When using a unidirectional shape memory alloy plate 7, a combination such as overlapping with a bias spring is required to restore the original shape.

又、形状記憶合金の板7は形状記憶合金のコイルバネを
用いてもよい。
Further, the shape memory alloy plate 7 may be a shape memory alloy coil spring.

バネ状の形状記憶合金を設定するなどして、コイルバネ
状の形状記憶合金の温度変化による伸縮の変態を駆動源
として弁体6の連通穴4に対する開閉作動をなさしめる
ようにする。
By setting a spring-like shape memory alloy, etc., the opening and closing operation of the valve body 6 with respect to the communication hole 4 is performed using the transformation of expansion and contraction due to temperature changes of the coil spring-like shape memory alloy as a driving source.

コイルバネ状の形状記憶合金を使用する場合も。In some cases, shape memory alloys in the form of coiled springs are used.

二方向性のものが望ましいが、一方向性の形状記憶合金
でもバイアスバネと組合せることにより適応させること
が出来る。
Although bidirectional shape memory alloys are preferred, unidirectional shape memory alloys can also be used in combination with bias springs.

底のない円筒3の内側の底辺部付近、又は、それより上
部の適当な位置には、電熱又はヒートパイプ等による発
熱体9等の熱源となるものを設置する。
A heat source such as a heating element 9 such as electric heat or a heat pipe is installed near the bottom of the bottomless cylinder 3 or at an appropriate position above it.

この時、この発熱体9が太陽熱、或いは、工場廃熱等を
利用する第4図に示されるような一回路式の集熱循環回
路をもつ蓄熱槽の場合は、集熱装置15より送給されて
くる熱流体を水平方向に拡散し。
At this time, if the heating element 9 is a heat storage tank with a single-circuit heat collection circulation circuit as shown in FIG. The incoming thermal fluid is spread horizontally.

静圧化させながら流入するような輻流器18を設置する
A radiator 18 is installed that allows the flow to flow while maintaining static pressure.

即ち、循環ポンプ14により蓄熱槽の底辺部番こ設置し
た道管13より取り出した用水を集熱装置15・流入管
16を経て再び蓄熱槽内に還流させる訳であるが、その
時流入管16の先端17を円筒3の内側底辺部付近まで
挿入し、先端17には二枚の円板が水平に平行に適当な
距離を保りている輻流器18を設置し、送給されくる熱
流体を等方向に次第に静圧化させながら円筒3内の底辺
部付近に拡散流入させるような構成とする。
That is, the water taken out from the pipe 13 installed at the bottom of the heat storage tank by the circulation pump 14 is returned to the heat storage tank via the heat collector 15 and the inflow pipe 16. The tip 17 is inserted to near the inner bottom of the cylinder 3, and a radiator 18 is installed at the tip 17, in which two discs are horizontally parallel to each other and kept at an appropriate distance. The structure is such that it diffuses and flows into the vicinity of the bottom of the cylinder 3 while gradually increasing the static pressure in the same direction.

この時所望によりては、輻流器18の上の円板と。At this time, if desired, a disk on top of the radiator 18.

下の円板とに別々に、熱伝導性のよい薄い板の内環状帯
19と内環状帯茄とを上下に立壁面状に設定し、さらに
、熱伝導性のよい薄い板の外環状帯21を内環状帯19
・20と適当な距離を保って平行にとり巻くように設定
し、そして、輻流器18の上・下の円板を貫通して筒状
の抜穴ηを単数又は複数個以上を輻流器18に付加設置
することにより1円筒3の内側区域のより早急な温度の
立上りを図かることが出来る。
Separately from the lower disc, an inner annular band 19 made of a thin plate with good thermal conductivity and an inner annular band 19 are set vertically vertically, and an outer annular band made of a thin plate with good thermal conductivity is provided. 21 to inner annular band 19
・The radiator 18 is set so as to surround it in parallel with the radiator 18 at an appropriate distance, and one or more cylindrical holes η are inserted through the upper and lower disks of the radiator 18. By additionally installing the cylinder 18, the temperature of the inner area of the cylinder 3 can be raised more quickly.

蓄熱された温水を利用するための汲出管12を円筒3の
内側の天井を貫通して挿入する。
A pumping pipe 12 for utilizing the stored hot water is inserted through the ceiling inside the cylinder 3.

給水管11は外枠1の底辺部付近に設置する。The water supply pipe 11 is installed near the bottom of the outer frame 1.

以上のように1水温度別蓄熱槽は、任意の形状でよく保
温された外枠の内に、適当な大きさと形態をもった底の
ない円筒等を外枠の天井にとりつけ。
As described above, a heat storage tank for each water temperature is constructed by attaching a bottomless cylinder or the like of an appropriate size and shape to the ceiling of the outer frame, which has an arbitrary shape and is well insulated.

円筒等の天井付近には、連通穴及び通穴を各々の単数又
は複数個以上を開設し、連通穴には形状記憶合金の板又
はコイルバネと組合された弁体を設定し9円筒等の内側
の底辺部付近又はそれより上部の適当な位置には、電熱
又はヒートパイプ等の発熱体、或いは、集熱装置より送
給されてくる熱流体が拡散し静圧化されながら流入する
ような輻流器等の熱源となるものを設置したることを特
徴とする所の蓄熱槽である。
Near the ceiling of the cylinder, etc., one or more of each of the communication holes and through holes are provided, and a valve body combined with a shape memory alloy plate or a coil spring is set in the communication hole. At the appropriate position near the bottom of the bottom, the heating body such as the heat or heat pipe, or the thermal flow from the heat collection device is spreading and flowing in inflammation. This is a heat storage tank for a place that is characterized by installing something that serves as a heat source, such as a sink.

そしてこれによって、各区域別に温度別の蓄熱をなさし
めようとするものである。
This is intended to allow heat to be stored at different temperatures in each area.

上記の構成を有する温度別蓄熱槽の作動は次の通りであ
る。
The operation of the temperature-specific heat storage tank having the above configuration is as follows.

実施例として、第1〜第3図にもとづぎ、密封型で発熱
体9が電熱である場合について説明する。
As an example, based on FIGS. 1 to 3, a case will be described in which the heating element 9 is of a sealed type and is electrically heated.

先づ、給水口11より上水道又は井戸水等を一旦。First, pour tap water or well water, etc., from the water supply port 11.

シスタンクに送り込む方法などにより用水を圧送し、蓄
熱槽の外枠1内を満水状態とする。
Water is pumped into the systank, and the outer frame 1 of the heat storage tank is filled with water.

ここで説明の便宜のために9円筒3で囲われている内側
区域をH域9円筒3の外側と外枠lの内側に出来る環状
の区域をM域9円筒3の底面部より下に出来る区域をH
域、と呼称することとする。
Here, for convenience of explanation, the inner area surrounded by the cylinder 3 in the H area 9 and the annular area formed on the outside of the outer frame l can be made below the bottom of the cylinder 3 in the M area 9. Area H
We will call it the area.

電力の投入により1発熱体9は高温状態となる。When power is applied, the first heating element 9 is brought into a high temperature state.

この時、形状記憶合金の板7が二方向性のものであり、
雰囲気の温度が60’C以上では撓り、40℃以下にな
ると元の形状に復元するような性格のものが設定されて
おり、当初はその形状記憶合金の板7により支えられた
弁体6が連通穴4を閉じているものとすれば、そして、
H域は温度上昇すれば。
At this time, the shape memory alloy plate 7 is bidirectional,
The valve body 6 is designed to bend when the temperature of the atmosphere exceeds 60'C and restore its original shape when the temperature drops below 40°C. If it is assumed that the communication hole 4 is closed, then,
In the H region, if the temperature rises.

L域番こ対して温度成層を形成するのであるから。This is because temperature stratification is formed in the L region.

円筒3には底がなくとも、H域は熱的には閉ざされた独
立の区域となり9発熱体9よりの発熱は。
Even though the cylinder 3 does not have a bottom, the H region is a thermally closed and independent area, and the heat generated by the heating element 9 is generated.

H域に対してのみ対流をおこし、熱の交換がおこなわれ
温度上昇をする。
Convection occurs only in the H region, heat is exchanged, and the temperature rises.

そして、H域の温度上昇がω°Cより高かくなると支点
8に支えられている形状記憶合金の板7は撓ることにな
り、弁体6は連通穴4より離脱し、弁体6と連通穴4の
間には間隙を生ずる。
Then, when the temperature rise in the H region becomes higher than ω°C, the shape memory alloy plate 7 supported by the fulcrum 8 will bend, and the valve body 6 will separate from the communication hole 4, and the valve body 6 and A gap is created between the communicating holes 4.

その時、H域は高温であり、M−H域は低温であるから
、H域とM域との間には開状態となっている連通穴4を
通して温度差によるH域→連通穴4→M域→L域→H域
の循環流を形成することになる。
At that time, the H area is high temperature and the M-H area is low temperature, so the communication hole 4 which is in an open state is passed between the H area and the M area due to the temperature difference.H area→Communication hole 4→M This results in the formation of a circulating flow of area→L area→H area.

そして9M域からH域にかけて高さ方向に温度勾配が生
じ、温度成層を形成しながら、上方から経過時間と共に
順次蓄熱されていくことになる。
Then, a temperature gradient occurs in the height direction from the 9M region to the H region, and heat is accumulated sequentially from above with elapsed time while forming temperature stratification.

但し、H域は循環流の直接の影響をうける部分はごく浅
く、残りの部分は熱の伝達によって高温化していく。
However, in region H, the part directly affected by the circulating flow is very shallow, and the remaining part becomes hotter due to heat transfer.

したがって、経時的にみるならば、H域は高温域。Therefore, if you look at it over time, the H range is a high temperature range.

H域は低温域9M域は両者の中間温域を形成して蓄熱が
進行していることになる。
The H region forms a low temperature region, and the 9M region forms an intermediate temperature region between the two, where heat storage is progressing.

最終的には、槽全体が水の沸点である100℃近くにな
れば、蓄熱作業は終了したことになる。
Eventually, when the temperature of the entire tank reaches around 100°C, which is the boiling point of water, the heat storage work is complete.

蓄熱された温水の利用は、給水口11よりの用水の圧送
による押出型によりなされる。
The stored hot water is utilized by an extrusion mold that pumps water through the water supply port 11.

給水の冷い水の成層面が次第に下より上昇してきて、汲
出口12より温水を送り出す訳であるが、H域とM域を
仕切っている円筒3には底がないのであるから、H域・
M域が同温度であるとすれば給水口11よりの圧送によ
る下より上昇してくる冷水の成層面は、H域・H域に同
じに働らく。
The stratified surface of the cold water in the supply water gradually rises from below, and warm water is sent out from the outlet 12. However, since the cylinder 3 that separates the H area and the M area has no bottom, the H area・
Assuming that the temperature in the M region is the same, the stratified surface of the cold water rising from below due to pressure feeding from the water supply port 11 acts on the H region and the H region in the same way.

但し、汲出量と連通穴4の大きさ、抵抗値等が適当な範
囲であらねばならない。
However, the pumping amount, the size of the communication hole 4, the resistance value, etc. must be within appropriate ranges.

したがって1M域の温水は連通穴4を通ってH域に流入
し共に汲出される。
Therefore, hot water in the 1M region flows into the H region through the communication hole 4 and is pumped out together.

そして、上昇してくる冷水の成層面が形状記憶合金の板
7を浸し、40℃以下の温度になれば、板7は元の形状
に復元し、連通穴4を弁体6が閉にもっていく。
The stratified surface of the rising cold water soaks the shape memory alloy plate 7, and when the temperature reaches 40 degrees Celsius or less, the plate 7 restores its original shape, and the valve body 6 closes the communication hole 4. go.

その時は蓄熱槽内の有用な温水は殆んど汲出されたこと
(こなる。
At that time, most of the useful hot water in the heat storage tank had been pumped out.

この時、温水の使用側において、引続いて、温水の供給
を望む時には、電力を再投入すれば、H域のω°C迄の
高温化は短時間で出来るため、電気温水器内の貯湯残を
気にLながら使う必要はなくなる。
At this time, if the hot water user wishes to continue supplying hot water, the temperature can be raised to ω°C in the H range in a short time by turning on the power again, so the hot water can be stored in the electric water heater. There is no need to worry about the rest while using it.

即ち、底のない円筒3Gこより作られているH域の容積
は結果的に小さく構成されているのであり。
That is, the volume of the H region made from the bottomless cylinder 3G is made small as a result.

連通穴4は弁体6でω℃迄は閉状態にあるのであるから
9発熱体9の電力の再投入による発熱は。
Since the communication hole 4 is closed by the valve body 6 until ω°C, no heat is generated when the power to the heating element 9 is turned on again.

短時間でH域のみを高温化していくことになる。Only the H region will be heated up in a short period of time.

従来の電気温水器においては、この様な追焚を必要とす
る場合は、槽内の上下二ケ所に発熱体を設けて、これに
対処していたものを、この様に一ケ所の発熱体で全て賄
えることになる。
In conventional electric water heaters, when additional heating like this was required, heating elements were installed in two places, the top and bottom of the tank, to deal with this, but now we have installed a heating element in one place. This will cover everything.

これは特に、深夜電力利用の電気温水器を考える場合9
通常電力による立上りの早い追焚が妓少費用で任意に出
来ることになる。
This is especially true when considering electric water heaters that use electricity late at night9.
Reheating with a quick start-up using normal electric power can be done at a reasonable cost.

又9円筒3には底がないのであるから、ゴミ、水垢等に
よる二次的トラブルの発生の可能性はなく。
Also, since the cylinder 3 does not have a bottom, there is no possibility of secondary troubles caused by dirt, limescale, etc.

さらに、H酸部分は結果的に多重断熱となるのであるか
ら、H域の高温の温存には有利(こ働く等の利点が生ず
る。
Furthermore, since the H acid portion results in multiple insulation, it is advantageous in preserving the high temperature in the H region.

又、第4図のように、太陽熱工庫ルギー等を集熱する場
合、変温人力となる可能性が存する。
Furthermore, as shown in Figure 4, when collecting heat using a solar thermal power plant or the like, there is a possibility that variable temperature manual power will be used.

H域より高温の熱流体が集熱装置15より送給されてく
れば、浮力によりH域との混合形となり、H域の温度上
昇をもたらり、 H域が60℃より高かくなれば、連通
穴4と弁体6との間は開となり、H域よりH域へ開状態
の連通穴4を通して、循環・流出し1M域からH域にか
けて温度成層をつくりながら、蓄熱作業を進行させるこ
とは前述の通りである。
If a thermal fluid with a higher temperature than the H region is sent from the heat collecting device 15, it will mix with the H region due to buoyancy, causing a temperature rise in the H region, and if the H region becomes higher than 60°C. The space between the communication hole 4 and the valve body 6 is opened, and the heat is circulated and flows from the H area to the H area through the open communication hole 4, creating temperature stratification from the 1M area to the H area, and progressing the heat storage work. This is as stated above.

H域より低温の熱流体が供給されれば、浮力は生ぜず、
H域との混合形となり、H域にのみ影響を与えることに
なる。
If a thermal fluid with a temperature lower than the H region is supplied, buoyancy will not occur,
It becomes a mixed type with the H range, and affects only the H range.

したがって、変温入力の場合にも、H域=高温域・M域
=中温域・L域=低温域を形成し、各区域別の温度別の
蓄熱が出来ることになる。
Therefore, even in the case of variable temperature input, the H region = high temperature region, the M region = medium temperature region, and the L region = low temperature region are formed, and heat can be stored at different temperatures in each region.

冷熱の場合も同一概念で処理出来るが、蓄熱槽の天地を
逆対称形としなければならない。
The same concept can be used in the case of cold and heat, but the top and bottom of the heat storage tank must be reversely symmetrical.

この様に1氷温度別蓄熱槽は (1)  蓄熱槽の外枠の天井に、底のない円筒をとり
つける。          \ (2)  円筒の上部には連通穴を設ける。
In this way, a heat storage tank with one ice temperature is constructed as follows: (1) A bottomless cylinder is attached to the ceiling of the outer frame of the heat storage tank. \ (2) Provide a communication hole at the top of the cylinder.

(3)形状記憶合金の板又はコイルバネと組合された弁
体を連通穴に対応して設置する。
(3) A valve body combined with a shape memory alloy plate or coil spring is installed corresponding to the communication hole.

(4)  円筒の底辺部付近には1発熱体等の熱源とな
るものを設置する。
(4) Install a heat source such as a heating element near the bottom of the cylinder.

という極めて簡単な構成により、各区域別の温度別蓄熱
、特に1円筒の内側区域の短時間での立上りの早い高温
化が可能であり、二次的トラブルの発生もない合理的な
蓄熱槽となる。
With this extremely simple configuration, it is possible to store heat in each zone at different temperatures, and in particular to raise the temperature quickly in a short period of time in the inner zone of one cylinder, making it possible to create a rational heat storage tank that does not cause secondary troubles. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明における温度別蓄熱槽の断面図である
。 第2図は、水平断面図である。 第3図は、弁体部分の拡大断面図である。 第4図は、蓄熱媒体が集熱装置を循環する循環回路略図
と温度別蓄熱槽えの適用例の断面図である。 1・−−−一一−−蓄熱槽の外枠    2−・−・−
外枠の天井3−−−−−一底のない円筒    4−−
−〜−−−一連通穴6−−−−−一弁体       
 7−−−−−−−一形状記憶合金の板8−・−−−−
−一支点         9−−−−−一発熱体等の
熱源i3(何
FIG. 1 is a sectional view of a heat storage tank according to temperature according to the present invention. FIG. 2 is a horizontal sectional view. FIG. 3 is an enlarged sectional view of the valve body portion. FIG. 4 is a schematic diagram of a circulation circuit in which a heat storage medium circulates through a heat collection device, and a sectional view of an application example of a temperature-specific heat storage tank. 1.---11--Outer frame of heat storage tank 2----
Outer frame ceiling 3---Cylinder with no bottom 4---
−〜−−−Series through hole 6−−−−−One valve body
7--------Plate of shape memory alloy 8-----
- One fulcrum 9 ---- One heat source such as a heating element i3 (what

Claims (1)

【特許請求の範囲】[Claims] 任意の形状でよく保温された外枠の内に、適当な大きさ
と形態をもった底のない円筒等を外枠の天井にとりつけ
、円筒等の天井付近には、連通穴及び通穴を各々の単数
又は複数個以上を開設し、連通穴には形状記憶合金の板
又はコイルバネと組合された弁体を設定し、円筒等の内
側の底辺部付近又はそれより上部の適当な位置には、電
熱又はヒートパイプ等の発熱体、或いは、集熱装置より
送給されてくる熱流体が拡散し静圧化されながら流入す
るような輻流器等の熱源となるものを設置したることを
特徴とする所の蓄熱槽。
Inside a well-insulated outer frame of any shape, attach a bottomless cylinder or the like of an appropriate size and shape to the ceiling of the outer frame, and make communication holes and through holes near the ceiling of the cylinder, etc. A valve body combined with a shape memory alloy plate or a coil spring is set in the communicating hole, and at an appropriate position near the bottom or above the inside of the cylinder, etc. It is characterized by the installation of a heat source such as a heating element such as an electric heater or a heat pipe, or a heat source such as a radiator in which the thermal fluid sent from the heat collecting device is diffused and flows in while being made static pressure. A heat storage tank in a place where
JP60002581A 1985-01-10 1985-01-10 Temperature-classified heat storage tank Pending JPS61161396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60002581A JPS61161396A (en) 1985-01-10 1985-01-10 Temperature-classified heat storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60002581A JPS61161396A (en) 1985-01-10 1985-01-10 Temperature-classified heat storage tank

Publications (1)

Publication Number Publication Date
JPS61161396A true JPS61161396A (en) 1986-07-22

Family

ID=11533339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60002581A Pending JPS61161396A (en) 1985-01-10 1985-01-10 Temperature-classified heat storage tank

Country Status (1)

Country Link
JP (1) JPS61161396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190738A (en) * 2007-02-01 2008-08-21 Toyota Motor Corp Heat storage device
CN103994683A (en) * 2014-05-21 2014-08-20 武汉理工大学 High-temperature smoke waste heat recycling and storing device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190738A (en) * 2007-02-01 2008-08-21 Toyota Motor Corp Heat storage device
JP4657226B2 (en) * 2007-02-01 2011-03-23 トヨタ自動車株式会社 Heat storage device
US8991476B2 (en) 2007-02-01 2015-03-31 Toyota Jidosha Kabushiki Kaisha Thermal storage device
CN103994683A (en) * 2014-05-21 2014-08-20 武汉理工大学 High-temperature smoke waste heat recycling and storing device and method

Similar Documents

Publication Publication Date Title
US4363221A (en) Water heating system having a heat pump
JP2017523378A (en) Apparatus and method for storing thermal energy
JPH06100351B2 (en) Electric storage heat storage type cooling and heating device and cooling and heating method
US4139055A (en) Solar heating (cooling)
US4082143A (en) Solar energy
CN105972839B (en) Hierarchical phase-change heat storage water tank
CN110006090A (en) A kind of phase-transition heat-storage heating installation
JPH07117290B2 (en) Water heater
JPS61161396A (en) Temperature-classified heat storage tank
JP4444446B2 (en) Heating and cooling structure of structure using heat storage layer
US4242766A (en) Heat transfer bed assemblies
CN208952423U (en) A kind of conduction oil electric heater pressure regulation tank arrangement
JPH0454862B2 (en)
JPH0356770Y2 (en)
CN2329903Y (en) Constant temp water storage type water heater
JP2002364924A (en) Power-saving quick-heating electric water-heater
JPS6091155A (en) Hot water supplying device
JP2756853B2 (en) Midnight electric water heater using solar heat
JPS59176536A (en) Hot water feeding device
JP4156383B2 (en) Thermal storage system and structure provided with the thermal storage system
JP2556853B2 (en) Non-azeotropic mixture working medium type heat pump type heat storage tank
CN2378681Y (en) Power-saving water heater
JP4045349B2 (en) In-tank flow control device for water storage tank
JPH0648269Y2 (en) Water heater
JP2011047554A (en) Water heater, cooling water heater and heating water heater