JPS60113018A - Internal-combustion engine with supercharger - Google Patents

Internal-combustion engine with supercharger

Info

Publication number
JPS60113018A
JPS60113018A JP21960183A JP21960183A JPS60113018A JP S60113018 A JPS60113018 A JP S60113018A JP 21960183 A JP21960183 A JP 21960183A JP 21960183 A JP21960183 A JP 21960183A JP S60113018 A JPS60113018 A JP S60113018A
Authority
JP
Japan
Prior art keywords
engine
valve
cooling water
intake valve
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21960183A
Other languages
Japanese (ja)
Inventor
Takashi Fujii
敬士 藤井
Shunichi Aoyama
俊一 青山
Manabu Kato
学 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP21960183A priority Critical patent/JPS60113018A/en
Publication of JPS60113018A publication Critical patent/JPS60113018A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/50Temperature using two or more temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/06Using intake pressure as actuating fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

PURPOSE:To prevent the occurrence of overheating during high load operation resulting from increase in a speed and an output, by a method wherein the opening time of a suction valve is controlled to the lag side in order to prevent the occurrence of knocking, and cooling water is increased in a circulating amount. CONSTITUTION:In an engine with a supercharger, the engine is constituted such that a high and low speed cam and a low speed cam of cams for a suction valve are switched by a controller when the rotation speed of an engine is increased or decreased to about 2,000-3,000rpm serving as boundary. In linkage with such control, a 3-way electromagnetic valve 59 is switched to the surge tank 60 side, a valve body 56 is moved leftward by means of a diaphragm 51, and cooling water is caused to flow in the radiator side through the both main and auxiliary cooling water passages 31A and 31B.

Description

【発明の詳細な説明】 く技術分野〉 本発明は機関運転条件に応じて吸気弁の作動時期を変え
ることにより出方向上を図る吸気弁作動制御装置を備え
ると共に、吸気弁作動の変化に応じて機関冷却水の循環
量を変える装置を備えた過給機付内燃機関に関する。
[Detailed Description of the Invention] [Technical Field] The present invention includes an intake valve operation control device that improves the intake direction by changing the operation timing of the intake valve according to engine operating conditions, and also includes an intake valve operation control device that changes the operation timing of the intake valve according to engine operating conditions. The present invention relates to a supercharged internal combustion engine equipped with a device that changes the amount of engine cooling water circulated.

く背景技術〉 排気ターボ過給機等、吸入空気をコンプレ・ノサで機関
に過給することにより機関の吸入空気量を増大させ高出
力を発生させる過給機付内燃機関にあっては、現今の性
能改善の結果、過給能力の面よりもノッキング防止の面
から出力が抑制されるようになっている。
BACKGROUND TECHNOLOGY> At present, internal combustion engines with a supercharger, such as an exhaust turbo supercharger, increase the amount of intake air in the engine and generate high output by supercharging intake air into the engine with a compressor. As a result of improved performance, output is now being suppressed to prevent knocking rather than to improve supercharging capacity.

ここで、ノンキングに関しては、第1図に示すように圧
縮比が高い程、更には圧縮温度が高い程、発生率が高い
という傾向を示すことがわかっている。
Regarding non-king, as shown in FIG. 1, it has been found that the higher the compression ratio and furthermore the higher the compression temperature, the higher the incidence of non-king.

そこで、従来から過給機付内燃機関の圧縮比を若干低め
にとり、点火タイミングを遅らせる方策を採っている。
Therefore, conventional measures have been taken to set the compression ratio of a supercharged internal combustion engine slightly low and to delay the ignition timing.

このように点火タイミングを遅らせると、排気温度が上
昇するから、これを防止するため混合気の空燃比を濃化
するが、これにより燃費が悪化するのはやむを得ないと
いう判断である。
If the ignition timing is delayed in this way, the exhaust temperature will rise, so in order to prevent this, the air-fuel ratio of the air-fuel mixture is enriched, but the decision has been made that it is unavoidable that this will worsen fuel efficiency.

しかし、排気ターボ過給機のように低速低負荷等の部分
負荷時には過給能力がなくなり又は小さくなるから、上
記方策は過給が効かない領域でかえってマイナス要因と
なり、出力ダウン、燃費悪化を招いてしまう。そこで、
圧縮比を可変制御することが望まれるがこれは難しい。
However, as with an exhaust turbo supercharger, the supercharging capacity disappears or decreases during partial loads such as low speeds and low loads, so the above measures have a negative effect in areas where supercharging is not effective, leading to reduced output and worsened fuel efficiency. I'll be there. Therefore,
Although it is desirable to variably control the compression ratio, this is difficult.

ところで、吸気弁の閉時期を遅らせると、実質的な圧縮
比(以下実圧縮比とする)が変化する。
By the way, when the closing timing of the intake valve is delayed, the actual compression ratio (hereinafter referred to as the actual compression ratio) changes.

その結果、第1図に示すようにノッキングゾーンが高過
給圧倒にスライドしてノッキングを発生しにくくすると
共に、高過給圧化を図ることができる。但し、吸気弁の
開時期を変化させて排気弁とのオーバーラツプを大きく
すると、第2図に示すように排気ターボ過給機では排圧
が吸気圧力(過給圧)よりも大幅に増大するため、排気
逆流現象が生じて充填効率、掃気効率が低下して出力ダ
ウンを招くし、ルーツブロア等による過給機では、逆に
排気抵抗が小さいため排圧があまり上昇せず過給圧が上
昇するから、オーバーランプ期間に混合気が排気系に吹
き抜けてしまうことになり好ましくない。この点、特開
昭56−77516号のものが、吸気弁の閉弁時期を進
遅制御しても排気弁の開閉時期並びに吸気弁の開弁時期
をも大きく変えて、機関高速時のオーバーランプ量を増
大していることは不都合である。
As a result, as shown in FIG. 1, the knocking zone slides to an overwhelmingly high level of supercharging, making it difficult for knocking to occur and achieving high supercharging pressure. However, if the opening timing of the intake valve is changed to increase the overlap with the exhaust valve, the exhaust pressure in an exhaust turbocharger will increase significantly more than the intake pressure (supercharging pressure), as shown in Figure 2. , an exhaust gas backflow phenomenon occurs, reducing charging efficiency and scavenging efficiency, leading to a decrease in output. On the other hand, in a supercharger using a Roots blower, etc., the exhaust resistance is small, so the exhaust pressure does not increase much and the supercharging pressure increases. Therefore, the air-fuel mixture will blow through into the exhaust system during the overramp period, which is undesirable. In this regard, Japanese Patent Laid-Open No. 56-77516 discloses that even if the intake valve closing timing is advanced or retarded, the exhaust valve opening/closing timing and the intake valve opening timing are also greatly changed, resulting in overflow during engine high speeds. Increasing the amount of lamps is disadvantageous.

また、吸気弁を吸気が燃焼室に入った時点を見計らって
閉じるように可変制御することは、吸気の慣性を利用し
て充填効率を向上させることとなる。然もこの慣性過給
は、特徴的なことに、過給機による外部仕事を受けない
点で昇温しない利点がある。この結果、第1図に示すよ
うにノンキングゾーンが更に高過給圧倒にスライドして
ノッキングの発生を避けると共に、高過給圧化が図れる
ようになる。
Furthermore, variable control of the intake valve to close the intake valve at the time when the intake air enters the combustion chamber improves the charging efficiency by utilizing the inertia of the intake air. However, this inertial supercharging has the advantage that it does not receive any external work from the supercharger and therefore does not cause temperature rise. As a result, as shown in FIG. 1, the non-king zone slides even further to a higher level of supercharging, thereby preventing knocking and achieving higher supercharging pressure.

このようにしてノッキング余裕度を向上させれば、点火
時期を進ませることが可能となるから、出力の増大と共
に排温の低下が見込まれ、これに伴って空燃比の濃化を
軽減することができ、燃費向上を図ることができる。
If the knocking margin is improved in this way, it will be possible to advance the ignition timing, so it is expected that the exhaust temperature will decrease as the output increases, and the enrichment of the air-fuel ratio can be reduced accordingly. This makes it possible to improve fuel efficiency.

しかしながら、このように吸気弁閉時期を遅くして機関
の高速高出力化を促進した場合、従来と同じ冷却水経路
や水量の機関冷却装置をそのまま用いると、高負荷時の
冷却水不足を招き易く、機関のオーバーヒート、焼きつ
き等を起し易くなる。
However, when the intake valve closing timing is delayed in this way to promote high engine speed and high output, if the engine cooling system with the same cooling water route and water volume is used as before, it is likely to lead to a shortage of cooling water at high loads. , the engine is more likely to overheat, seize up, etc.

また、ノッキングも発生し易くなる。Additionally, knocking is more likely to occur.

〈発明の目的〉 本発明は上記従来の過給機付内燃機関の不都合に鑑み、
吸気弁の閉弁時期の進遅制御を行って実圧縮比を可変と
し、これに伴う慣性過給を行うことにより昇温のない過
給を可能としてノッキング余裕度を大きくする。また、
吸気弁の開時期を大略同一としてオーバーランプ増大を
防止することで前記ノンキング余裕代の中で充填効率ひ
いては過給効果を高め、出方向上を図る。そして、この
ようにして機関の高速・高出力化を図った上で、吸気弁
作動に応じて機関冷却水の循環量を変化させることによ
り機関冷却性能を確保し、機関のオーバーヒート焼きつ
き及びノッキング等の発生を抑制するようにする。
<Object of the invention> In view of the above-mentioned disadvantages of the conventional internal combustion engine with a supercharger, the present invention has been made to
The actual compression ratio is made variable by advancing or retarding the closing timing of the intake valve, and by performing inertia supercharging in conjunction with this, supercharging without temperature rise is possible and the knocking margin is increased. Also,
By keeping the opening timings of the intake valves approximately the same to prevent an increase in overramp, the charging efficiency and the supercharging effect are increased within the non-king margin, and the output direction is improved. In addition to increasing the speed and output of the engine in this way, engine cooling performance is ensured by changing the amount of engine cooling water circulated according to the operation of the intake valve, preventing engine overheating and knocking. etc., to prevent such occurrences.

〈発明の概要〉 このため本発明は、機関の吸気系に設けた過給機のコン
プレッサにより吸入空気を機関に過給する過給機付内燃
機関において、吸気弁の開閉作動装置に作用して吸気系
の閉弁時期を可変調整すると共に、吸気弁の開弁時期を
前記閉弁時期の変化より小さく調整する弁作動制御装置
を設け、かつ吸気弁の閉時期が遅れ側に制御される時に
機関冷却水の循環量を増大させる装置を設けた構成とす
る。
<Summary of the Invention> For this reason, the present invention provides an internal combustion engine with a supercharger that supercharges intake air to the engine by a compressor of a supercharger installed in the intake system of the engine. A valve operation control device is provided that variably adjusts the valve closing timing of the intake system and adjusts the valve opening timing of the intake valve to be smaller than the change in the valve closing timing, and when the closing timing of the intake valve is controlled to the delayed side. The configuration includes a device that increases the amount of engine cooling water circulated.

〈実施例〉 以下本発明の詳細な説明する。<Example> The present invention will be explained in detail below.

第3図〜第6図は本発明における弁作動制御装置の1実
施例を示す。
3 to 6 show one embodiment of the valve actuation control device according to the present invention.

第3図〜第5図において、4気筒内燃機関1のロッカル
ーム2内には、カムシャフト3が回転自由に軸支されて
おり、その上方位置にロッカシャフト4が固定支持され
ている。カムシャフト3には#1〜#4の各気筒毎に一
対の吸気弁作動用カム5A、5Bと排気弁作動用カム6
とが形成される。吸気弁作動用のカムの一方5Aは高速
用であり、他方5Bは低速用である。
3 to 5, a camshaft 3 is rotatably supported in a locker room 2 of a four-cylinder internal combustion engine 1, and a rocker shaft 4 is fixedly supported above the camshaft 3. The camshaft 3 has a pair of intake valve operating cams 5A and 5B and an exhaust valve operating cam 6 for each cylinder #1 to #4.
is formed. One of the cams 5A for operating the intake valve is for high speed, and the other cam 5B is for low speed.

ロッカシャフト4には、各気筒#1〜#4毎に吸気弁を
作動するロッカアーム7が回動並びに軸方向にスライド
自由に軸支されており、また排気弁を作動するロッカア
ーム8が回動自由に軸支されていて、吸気弁用ロッカア
ーム7はその軸方向スライドにより高速用若しくは低速
用の一方のカム5八又は5Bに選択的に係合し、排気弁
用のロッカアーム8は排気弁作動用のカム6に係合する
A rocker arm 7 that operates the intake valve for each cylinder #1 to #4 is supported on the rocker shaft 4 so that it can freely rotate and slide in the axial direction, and a rocker arm 8 that operates the exhaust valve is freely rotatable. The rocker arm 7 for the intake valve selectively engages one of the high-speed or low-speed cams 58 or 5B by sliding in the axial direction, and the exhaust valve rocker arm 8 is for operating the exhaust valve. It engages with the cam 6 of.

本実施例の場合、点火順序又は噴射順序が#1−#3−
#4−#2であるとすると、弁作動切換装置は、#1気
筒及び#2気筒に対応する吸気弁用の2つのロッカアー
ム7.7を一体的に保持するホルダ9と、#3気筒及び
#4気筒に対応する吸気弁用の2つのロッカアーム7.
7を一体的に保持するホルダ10とを有し、これらホル
ダ9,1゜を夫々第1及び第2アクチュエータ11.1
2により軸方向に切換シフトし、ロッカアーム7夫々を
対応する高速用カム5Aか低速用カム5Bの一方に選択
的に係合させるようになっている。前記第1及び第2ア
クチュエータ11.12は、夫々前記ホルダ9,10に
連結されたピストンを正又は逆方向に移動させるための
作動油出入口であるA、B及びC,Dボートを有してお
り、これは第6図に示された制御装置としての油圧作動
回路に接続され、同じく制御装置としての電子制御装置
20によって切換制御される。
In the case of this embodiment, the ignition order or injection order is #1-#3-
#4-#2, the valve operation switching device includes a holder 9 that integrally holds two rocker arms 7.7 for intake valves corresponding to the #1 cylinder and #2 cylinder, and a holder 9 that integrally holds two rocker arms 7.7 for the intake valves corresponding to the #3 cylinder and #2 cylinder. Two rocker arms for intake valves corresponding to #4 cylinder7.
7, and these holders 9 and 1° are connected to the first and second actuators 11.1, respectively.
2, the rocker arms 7 are selectively engaged with either the high-speed cam 5A or the low-speed cam 5B. The first and second actuators 11.12 have A, B, C, and D boats that are hydraulic oil inlets and outlets for moving the pistons connected to the holders 9 and 10 in the forward or reverse direction, respectively. This is connected to a hydraulic operating circuit as a control device shown in FIG. 6, and is switched and controlled by an electronic control device 20, which also serves as a control device.

即ち、第6図において、第1アクチユエータ11のA、
Bボートは電磁方向切換弁13を介して、また第2アク
チユエータ12のC,Dポートは電磁方向切換弁14を
介して、夫々アキュムレータ15とオイルタンク16と
に切換自由に接続されている。前記アキュムレータ15
には、内燃機関1により又は別置モーフ17により駆動
されるオイルポンプ18によって、オイルタンク16か
ら汲み上げた潤滑油が導入される。19はオイルポンプ
18の吐出圧を制御するリリーフバルブである。前記電
磁方向切換弁13、14はマイクロコンピュータ等の電
子制御装置20を介して機関運転状態の検出信号に応し
て若しくは手動切換スイッチにより切換制御される。電
子制御装置20の機関運転状態の入力信号としては、機
関回転速度、車速、吸気圧、過給圧、トランスミソシコ
ンギヤ位置2槻関冷却水温、油温、電装部品の電気負荷
等の各信号を選ぶことができるが、本実施例では機関回
転速度(クランク角)信号。
That is, in FIG. 6, A of the first actuator 11,
The B boat is connected to an accumulator 15 and an oil tank 16 via an electromagnetic directional switching valve 13, and ports C and D of the second actuator 12 are connected to an accumulator 15 and an oil tank 16 via an electromagnetic directional switching valve 14, respectively. The accumulator 15
Lubricating oil pumped up from an oil tank 16 is introduced into the engine 1 by an oil pump 18 driven by the internal combustion engine 1 or by a separate morph 17 . 19 is a relief valve that controls the discharge pressure of the oil pump 18. The electromagnetic directional control valves 13 and 14 are controlled in response to a detection signal of the engine operating state via an electronic control device 20 such as a microcomputer or by a manual changeover switch. Input signals of the engine operating state of the electronic control device 20 include various signals such as engine rotation speed, vehicle speed, intake pressure, boost pressure, transmission gear position 2, cooling water temperature, oil temperature, electrical load of electrical components, etc. However, in this example, the engine rotation speed (crank angle) signal is selected.

クランク角基準信号を入力させている。A crank angle reference signal is input.

これら電磁方向切換弁13.14の夫々の切換作動によ
り、アキュムレータ15内に油を第1及び第2アクチュ
エータ11.12のいずれか一方のボート(A又はB、
C又はD)に供給してピストンを一方向に移動させ、も
って吸気弁用ロッカアーム7を軸方向に移動して、高速
用カム5A若しくは低速用カム5Bのいずれか一方と係
合させ、吸気弁の開閉時期を制御する。
By the switching operation of each of these electromagnetic directional control valves 13.14, oil is transferred into the accumulator 15 from one of the boats (A or B) of the first and second actuators 11.12.
C or D) to move the piston in one direction, thereby moving the intake valve rocker arm 7 in the axial direction to engage either the high speed cam 5A or the low speed cam 5B, and the intake valve Controls the timing of opening and closing.

ここで、高速用カム5Aは第7図(Al、 fi+に示
すように吸気弁の閉時期を大きく遅らせ(例えば下死点
後50°〜80°)、低速用カム5Bは第7図(C)。
Here, the high-speed cam 5A greatly delays the closing timing of the intake valve (for example, 50° to 80° after bottom dead center) as shown in FIG. ).

(Dlに示すように吸気弁の閉時期を上記より早める(
例えば同じくO°〜30°)カム形状とする。また、排
気弁とのオーバーラツプ量を決定する吸気弁の開時期は
例えば上死点前0°〜10°程度に略等しくして、排気
弁とのオーバーランプ量を小さいものとしている。尚、
このとき排気弁の開時期は下死点前40°〜50°、閉
時期は上死点fS、10°〜20°の一定値となってい
る。
(As shown in Dl, the closing timing of the intake valve is earlier than the above (
For example, it has a cam shape (also 0° to 30°). Further, the opening timing of the intake valve, which determines the amount of overlap with the exhaust valve, is made approximately equal to, for example, about 0° to 10° before top dead center, so that the amount of overlap with the exhaust valve is small. still,
At this time, the opening timing of the exhaust valve is 40° to 50° before the bottom dead center, and the closing timing is a constant value of 10° to 20° before the top dead center fS.

次に第8図に、このように構成された弁作動制御装置に
よる吸気弁の弁作動切換に応して機関冷却水の循環量を
変える冷却装置の1実施例を示す。
Next, FIG. 8 shows an embodiment of a cooling device that changes the amount of circulating engine cooling water in response to switching of the valve operation of the intake valve by the valve operation control device configured as described above.

図において、機関1の冷却水出口とラジェータの冷却水
入口とを結ぶ冷却水路31の一部を拡大し、この拡大部
に仕切壁32を設けて略2分割し、主冷却水路31Aと
副冷却水路31Bとを並列形成する。
In the figure, a part of the cooling water channel 31 connecting the cooling water outlet of the engine 1 and the cooling water inlet of the radiator is enlarged, and a partition wall 32 is provided in this enlarged part to roughly divide it into two parts, and the main cooling water channel 31A and the sub-cooling water channel 31A are divided into two parts. The water channel 31B is formed in parallel.

そして主・副冷却水路31A、31Bに、冷却水温度に
応してラジェータに流れる水量を制御するサーモスタッ
ト33を夫々介装する。
A thermostat 33 is installed in each of the main and sub-cooling waterways 31A and 31B to control the amount of water flowing to the radiator according to the temperature of the cooling water.

前記サーモスタット33はワックスタイプで、ワックス
ケース36内には固形ワックスと弾性体であるゴム、こ
のゴム中央にピストン35が組込まれ、ピストン35の
一端はフランジ37に固定されており、冷却水の温度上
昇によりワックスが固体から液体への相変化に伴い体積
変化をおこして膨張すると、ピストン35が固定されて
いるためワンクスケース36が図で下方に押し下げられ
るようになっている。
The thermostat 33 is of a wax type, and a wax case 36 includes solid wax and elastic rubber, and a piston 35 is installed in the center of this rubber. One end of the piston 35 is fixed to a flange 37, and the temperature of the cooling water is adjusted. When the wax undergoes a volume change due to the phase change from solid to liquid due to the rise and expands, the wax case 36 is pushed down as shown in the figure because the piston 35 is fixed.

従って、ワックスケース36.ピストン35がら熱応動
部材34が構成される。
Therefore, wax case 36. The piston 35 constitutes a thermally responsive member 34.

ワックスケース36の周囲に一体に固定された弁体38
はスプリングシート39内のスプリング4oにより上方
に付勢されて弁座41に着座し、サーモスタット33を
閉弁するが、温度上昇によりワックスケース36が図で
下方に押し下げられるため、ワックスケース36に一体
の弁体38が、弁座41がら図示の如く離れてサーモス
タット33を開弁するようになっている。
A valve body 38 is integrally fixed around the wax case 36.
is urged upward by the spring 4o in the spring seat 39 and seats on the valve seat 41, closing the thermostat 33.However, as the wax case 36 is pushed downward in the figure due to the temperature rise, the wax case 36 is integrated with the The valve element 38 is separated from the valve seat 41 as shown in the figure to open the thermostat 33.

そして、このサーモスタット33の下流側において、主
冷却水路31Aと副冷却水路31Bとは合流している。
Further, on the downstream side of this thermostat 33, the main cooling water channel 31A and the sub-cooling water channel 31B merge.

また、主・副冷却水路31A、31Bを仕切る仕切壁3
2のサーモスタット32より上流側部分に、再冷却水路
31A、31Bを連通ずる開口部32aを設け、これを
冷却水路31の外壁に装着したダイアフラム式の制御弁
50により開閉するようになっている。
Also, a partition wall 3 that partitions the main and sub-cooling waterways 31A and 31B.
An opening 32a that communicates the recooling channels 31A and 31B is provided at the upstream side of the second thermostat 32, and is opened and closed by a diaphragm control valve 50 mounted on the outer wall of the cooling channel 31.

前記制御弁50はダイアフラム51により負圧室52と
大気室53に画成され、大気室53は開孔54を介して
常時大気に開放されている。前記ダイアフラム51には
、ロッド55を介して前記開口部32aを開閉するため
の弁体56が連結している。57は冷却水が漏出するの
を防ぐシール部材、58はダイアフラムスプリングであ
る。
The control valve 50 is defined by a diaphragm 51 into a negative pressure chamber 52 and an atmospheric chamber 53, and the atmospheric chamber 53 is always open to the atmosphere through an opening 54. A valve body 56 for opening and closing the opening 32a is connected to the diaphragm 51 via a rod 55. 57 is a sealing member that prevents cooling water from leaking, and 58 is a diaphragm spring.

そして、この制御弁50の負圧室52は三方電磁弁59
を介してサージタンク60に接続しており、前記サージ
タンク60は逆止弁61を介して機関吸気管部に接続さ
れ、吸気管からの負圧が導入されて貯えられる。前記三
方電磁弁59は電子制御装置20からの信号により、高
速用カム5Aに切換わった時には負圧室52をサージタ
ンク6oに接続し、低速用カム5Bに切換わった時には
負圧室52を大気に開放するよう切換作動するようにな
っている。
The negative pressure chamber 52 of this control valve 50 is connected to a three-way solenoid valve 59.
The surge tank 60 is connected to an engine intake pipe section via a check valve 61, and negative pressure from the intake pipe is introduced and stored therein. The three-way solenoid valve 59 connects the negative pressure chamber 52 to the surge tank 6o when switching to the high-speed cam 5A, and connects the negative pressure chamber 52 to the surge tank 6o when switching to the low-speed cam 5B, according to a signal from the electronic control device 20. It is designed to be switched to open to the atmosphere.

次に本実施例の作用を述べる。Next, the operation of this embodiment will be described.

今吸気弁用カムのうち、高速用カムと低速用カムとでは
機関回転速度的2,000〜3.00Orpmを境界と
して機関の出力トルクが異なるようにカム形状を形成し
たとする。
Now, it is assumed that among the intake valve cams, the cam shapes are formed so that the output torque of the engine is different between the high-speed cam and the low-speed cam with the boundary between 2,000 and 3.00 Orpm in terms of engine rotational speed.

機関回転速度が約2.000〜3.OOOrpm以下の
低速回転領域では、電子制御装置20が電磁方向切換弁
13、14を第6図中左方へ移動させるよう切換信号を
出力する。このため、アキュムレータ15のオイルは第
1及び第2アクチユエータのB及びDポートに導入され
、ピストンを作動してホルダ9,1゜を介し吸気弁用ロ
ッカアーム7を第4図で右方向に移動させて、低速用カ
ム5Bと係止される。これにより、吸気弁の開時期はほ
ぼ変らないが、閉時期を下死点方向に進ませ、機関ピス
トンの有効ストロークを増大して実圧縮比を大きくする
The engine rotation speed is approximately 2.000~3. In a low-speed rotation region of OOOrpm or less, the electronic control unit 20 outputs a switching signal to move the electromagnetic directional switching valves 13 and 14 to the left in FIG. Therefore, the oil in the accumulator 15 is introduced into the B and D ports of the first and second actuators, actuating the pistons to move the intake valve rocker arm 7 to the right in FIG. 4 through the holders 9 and 1°. Then, it is locked with the low speed cam 5B. As a result, the opening timing of the intake valve remains almost the same, but the closing timing is advanced toward the bottom dead center, increasing the effective stroke of the engine piston and increasing the actual compression ratio.

従って、当該運転領域では過給圧力はさほど上がらない
が、過給機付機関特有の比較的小さな圧縮比であっても
実圧縮比が他の運転領域よりも増大するから、出力の低
下、燃費の悪化を招くことを防止できる。
Therefore, although the supercharging pressure does not increase much in this operating range, the actual compression ratio increases more than in other operating ranges, even though the compression ratio is relatively small, which is typical of supercharged engines, resulting in a decrease in output and fuel consumption. This can prevent deterioration of the condition.

また、かかる低速用カム5Bとの係合時は、電子制御装
置20からの信号により三方電磁弁59が大気開放位置
となって制御弁50の負圧室52が大気に連通ずる。こ
のため、仕切壁32の開口部32aは弁体56により閉
鎖され、機関から流出された冷却水はサーモスタット3
3の開動作により主冷却水路31Aのみを通ってラジェ
ータ側に流れ、従来と同様の循環量で冷却が行われる。
Further, when engaged with the low speed cam 5B, the three-way solenoid valve 59 is set to the atmosphere open position in response to a signal from the electronic control device 20, and the negative pressure chamber 52 of the control valve 50 is communicated with the atmosphere. Therefore, the opening 32a of the partition wall 32 is closed by the valve body 56, and the cooling water flowing out from the engine is directed to the thermostat 3.
3, the cooling water flows to the radiator side through only the main cooling water channel 31A, and cooling is performed with the same circulation amount as in the conventional case.

即ち、吸気弁閉時期が進み側に制御される低速時には機
関出力が小さく、従来と同様の冷却水循環量でも十分な
冷却を行うことができるので、循環量を増大させず機関
が過冷却とならないようにしている。
In other words, at low speeds when the intake valve closing timing is controlled to the advanced side, the engine output is small and sufficient cooling can be achieved with the same amount of circulating water as before, so the engine does not become overcooled without increasing the amount of circulating water. That's what I do.

また、機関回転速度が約2.000〜3.000rpm
以上の高速回転領域では、排気エネルギが増大して過給
効果が増大しノッキングが発生し易くなり、かつ、排気
温度が上昇する。このとき、電子制御装置20が高速回
転信号を入力して電磁方向切換弁13゜14が第6図示
の位置を選択するよう切換信号を出力する。このため、
アキュムレータ】5のオイルは今度は第1及び第2アク
チユエータのA及びCポートに導入され、吸気弁用ロッ
カアーム7を図で左方向に移動させることにより高速用
カム5Aと当接させる。これにより、吸気弁の閉時期は
下死点から離れて遅れ、機関ピストンの有効ストローり
が減じて実圧縮比が低下する。このため、第1図に示す
ように、ノンキング領域に入るための過給圧が高くなり
、この分過給圧を増大して出方向上を図ることができる
ようになる。
In addition, the engine rotation speed is approximately 2.000 to 3.000 rpm.
In the above high-speed rotation range, exhaust energy increases, the supercharging effect increases, knocking becomes more likely to occur, and the exhaust temperature increases. At this time, the electronic control unit 20 inputs a high speed rotation signal and outputs a switching signal so that the electromagnetic directional switching valves 13 and 14 select the position shown in FIG. For this reason,
The oil in the accumulator 5 is then introduced into the A and C ports of the first and second actuators, and the intake valve rocker arm 7 is moved leftward in the figure to come into contact with the high-speed cam 5A. As a result, the closing timing of the intake valve is delayed away from bottom dead center, the effective stroke of the engine piston is reduced, and the actual compression ratio is lowered. Therefore, as shown in FIG. 1, the supercharging pressure required to enter the non-king region becomes high, and by increasing the supercharging pressure by this amount, it becomes possible to aim for an upward exit direction.

ここにおいて、上記過給圧の増大化は過給機によっても
なされるが、吸気弁の閉時期が遅れることにより、慣性
に基づく吸気流のクランク角度に対する遅れ分を吸気弁
閉時期直前にシリンダ内に送り込む、いわゆる慣性に基
づく過給によってもなされ、この慣性過給は過給機等外
部の仕事を受けてなされるのではないから、シリンダ内
に送り込まれた即ち圧縮開始時の吸気温度を上昇させる
ことがない。従って、第1図に点線で示すようにノンキ
ング領域は更に高過給圧側に存在することになり、より
十分な過給圧を得ることができる。
Here, the boost pressure is increased by the turbocharger, but by delaying the closing timing of the intake valve, the delay in the intake air flow due to inertia with respect to the crank angle is absorbed into the cylinder just before the intake valve closing timing. This is also achieved by so-called inertia-based supercharging, which is fed into the cylinder and is not performed by external work such as a supercharger, so it increases the temperature of the intake air fed into the cylinder at the start of compression. I have nothing to do. Therefore, as shown by the dotted line in FIG. 1, the non-king region exists further on the high boost pressure side, and a more sufficient boost pressure can be obtained.

この結果、実圧縮比の低下分を十分な過給圧増大により
補償することができ、もって出力の低下を防止しつつ燃
費悪化を防ぐことができる。
As a result, the decrease in the actual compression ratio can be compensated for by a sufficient boost pressure increase, thereby preventing a decrease in output and deterioration in fuel efficiency.

このように機関そのものの圧縮比を可変とするものでは
ないが、実圧縮比を変えることにより圧縮比可変と同効
を奏することができるのである。
In this way, although the compression ratio of the engine itself is not made variable, by changing the actual compression ratio it is possible to achieve the same effect as a variable compression ratio.

上記作用において、吸・排気弁の開弁時期のオーバーラ
ンプ量は吸気弁の開時期及び排気弁の閉時期が変らない
ため略一定である。このため、該オーバーラソプ期間に
おいて、排気圧力が過給圧よりも高いこと(第2図)に
よる排気の吹き返しを招くことがない。これにより、充
填効率が増大して上記実圧縮比低下を補償するために必
要な過給圧上昇を確保することができる。
In the above-mentioned operation, the overramp amount of the opening timing of the intake and exhaust valves is substantially constant because the opening timing of the intake valve and the closing timing of the exhaust valve do not change. Therefore, during the overlap period, the exhaust gas does not blow back due to the exhaust pressure being higher than the supercharging pressure (FIG. 2). This increases the charging efficiency and makes it possible to secure an increase in supercharging pressure necessary to compensate for the decrease in the actual compression ratio.

又、かかる高速用カム5Aとの保合時には、電子制御装
置20からの出力により三方電磁弁59がサージタンク
側に切換ねり、制御弁50の負圧室52にサージタンク
60内の負圧が導入される。これにより、ダイアフラム
51がダイアフラムスプリング58の弾性力に抗して図
中右方へ変位し、これに伴う弁体56の移動により仕切
壁32の開口部32aが開放されて、主・副冷却水路3
1A、31Bを連通状態とする。従って、機関から流出
した冷却水は両サーモスタット33の開動作により主・
副冷却水路31Δ。
Furthermore, when the high-speed cam 5A is engaged, the three-way solenoid valve 59 is switched to the surge tank side by the output from the electronic control device 20, and the negative pressure in the surge tank 60 is transferred to the negative pressure chamber 52 of the control valve 50. be introduced. As a result, the diaphragm 51 is displaced to the right in the figure against the elastic force of the diaphragm spring 58, and the accompanying movement of the valve body 56 opens the opening 32a of the partition wall 32, allowing the main and sub-cooling channels to be opened. 3
1A and 31B are brought into communication. Therefore, the cooling water flowing out from the engine is transferred to the main engine by the opening operation of both thermostats 33.
Sub-cooling waterway 31Δ.

31Bの両方を介してラジェータ側に流れ込むことにな
る。これにより、冷却水温度は従来通り(約82℃)に
制御したまま単位時間当りの循環量が増大し、冷却水の
熱容量の増大を図ることができる。
31B to the radiator side. As a result, the circulation amount per unit time is increased while the cooling water temperature is controlled as before (approximately 82° C.), and the heat capacity of the cooling water can be increased.

即ち、吸気弁閉時期が遅れ側に制御される高速時には、
機関出力が増大して機関が高温となるので、冷却水の循
環量を増大させることによって機関の過剰な温度上昇を
防止する。
In other words, at high speeds when the intake valve closing timing is controlled to the delayed side,
Since the engine output increases and the engine becomes hot, an excessive rise in temperature of the engine is prevented by increasing the amount of circulating cooling water.

これにより、機関高速時におりる機関のオーバーラン1
− 、焼きつきを防止し、またノッキングの発生を防止
できる。
As a result, engine overrun 1 that occurs at high engine speed
− It can prevent seizure and also prevent the occurrence of knocking.

又、吸気弁の高速用カムと低速用カムとの機関運転中の
切換制御は、第9図の如きタイミングをとって行う。ロ
ッカアーム7と吸気弁用カム(5A5B)とが接触中は
、ロッカアーム7の切換が不可能であるから、第9図f
Al、 (Blに示すように各気筒#1〜#4のロッカ
アーム7の切換可能な領域が限定される。#1と#2.
#3と#4のロッカアーム7は夫々−組となっているか
ら#1. #2のロッカアームの共通の移動可能域及び
#3. #4の同じく共通の移動可能域において、電子
制御装置20がタイミングをとって切換制御しなければ
ならない。従って、第9図[C1に示すように、第1ア
クチユエータ11による#1.#2のロッカアーム移動
時間と第2アクチユエータ12による#3. #4のロ
ッカアーム移動時間とではずれが生じるのは止むを得な
い。この化ホルダのレイアラI・が可能ならば、共通の
十分な移動可能域のある#1と#3及び#2と#4のロ
ッカアーム一体動する組み合わせも可能である。
Further, switching control between the high-speed cam and the low-speed cam of the intake valve during engine operation is performed at the timing shown in FIG. Since it is impossible to switch the rocker arm 7 while the rocker arm 7 and the intake valve cam (5A5B) are in contact with each other, the rocker arm 7 cannot be switched.
Al, (As shown in Bl, the switchable range of the rocker arms 7 of each cylinder #1 to #4 is limited. #1 and #2.
Since the rocker arms 7 of #3 and #4 are in pairs, respectively, the rocker arms 7 of #1. Common movable area of rocker arm #2 and #3. In #4, which is also a common movable area, the electronic control unit 20 must perform switching control in a timely manner. Therefore, as shown in FIG. 9 [C1], #1 by the first actuator 11. #3 due to the rocker arm movement time of #2 and the second actuator 12. It is unavoidable that there will be a discrepancy with the rocker arm movement time of #4. If the layerer I of this conversion holder is possible, it is also possible to combine the rocker arms of #1 and #3 and #2 and #4, which have a common and sufficient movable area, so that the rocker arms move together.

また、電磁方向切換弁13.14の切換信号として電子
制御装置20を用いずに手動スイッチを用いて行うこと
もできる。しかし機関に負荷がかかっている間はロッカ
アームの移動速度、タイミングとも要求が高いものであ
るから、例えば高速道路に入る直前のフィトリング状態
若しくは低速回転領域を狙って、低速から高速用カムへ
の切換えを行うようにする。このようにすれば、低速、
高速用カムのベースサークルとロッカアーム端部とが対
面している間に、異なるカムへのロッカアームの切換を
行うことができる。
It is also possible to use a manual switch as the switching signal for the electromagnetic directional control valves 13, 14 without using the electronic control device 20. However, while the engine is under load, there are high demands on the movement speed and timing of the rocker arm, so for example, if you are aiming for the fitting state just before entering the expressway or the low-speed rotation area, you can change the movement from low-speed to high-speed cam. Make sure to switch. In this way, low speed,
The rocker arm can be switched to a different cam while the base circle of the high-speed cam and the end of the rocker arm are facing each other.

〈発明の効果〉 以上述べたように本発明によれば、過給機付内燃機関の
吸気弁閉時期を可変にしたから、実圧縮比を可変にする
ことができると共に、慣性過給を利用して昇温のない過
給を一部行うことができる。
<Effects of the Invention> As described above, according to the present invention, since the intake valve closing timing of a supercharged internal combustion engine is made variable, the actual compression ratio can be made variable, and inertial supercharging can be utilized. Partial supercharging can be performed without temperature rise.

これら2つの効果が相乗的に作用して出力低下なく、ノ
ッキングの発生しにくい領域で十分な過給を行って機関
を運転することができる。
These two effects act synergistically, and the engine can be operated with sufficient supercharging in a region where knocking is less likely to occur, without any reduction in output.

また、バルブオーバーランプ期間が比較的小さくなるよ
うに吸気弁開時期の変化を小さく (0を含めて)し、
もって充填効率の向上を図ったので、上記効果を更に助
長することができる。
In addition, the change in intake valve opening timing is made small (including 0) so that the valve over-ramp period becomes relatively small,
Since the filling efficiency is thereby improved, the above effects can be further promoted.

更に、吸気弁閉時期が遅れ側にある運転領域では、機関
の冷却水の循環量を増大するようにしたため、機関の冷
却性能を良好に保持でき機関のオーバーヒート、焼きつ
きが防止できると共に、ノンキングの発生を抑制でき、
もって、機関性能の向上を図ることができる。
Furthermore, in operating regions where the intake valve closing timing is delayed, the amount of engine cooling water circulated is increased, which maintains good engine cooling performance and prevents engine overheating and seizure. can suppress the occurrence of
As a result, engine performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は過給機付内燃機関の圧縮比、過給圧及びノッキ
ング領域の関係を示すグラフ、第2図は過給圧と排圧と
の関係を示すグラフ、第3図〜第5図は本発明の1実施
例に係る吸気弁開閉作動装置と弁開閉時期調整装置の一
部を示し、第3図はロッカルーム内の平面図、第4図は
吸気弁開閉作動装置の横断面図、第5図は同上の吸気弁
用ロッカアームとカムとの関係を示す要部平面図、第6
図は本発明の1実施例に係る弁開閉時期調整装置の油圧
回路図、第7図は吸・排気弁の開弁時期を示し、IAI
は高速用吸気弁の開閉時期を示すグラフ、(B)は高速
用吸気弁と排気弁との弁開特性を示すグラフ、[C1は
低速用吸気弁の開閉時期を示すグラフ、+Dlは低速用
吸気弁と排気弁との弁開特性を示すグラフ、第8図は本
発明の1実施例に係る機関冷却装置の要部構成図、第9
図は各気筒のロッカアーム移動可能タイミングを示し、
IAIは吸気弁リフト特性図、(Blはロッカアーム移
動可能な領域を示すタイムチャート、tc)はカムリフ
ト特性を示すグラフである。 ■・・・4気筒内燃機関 5A・・・吸気弁作動用カム
(高速用) 5B・・・吸気弁作動用カム(低速用) 
7・・・ロッカアーム 9・・・ボルダ11・・・第1
アクチユエータ 12・・・第2アクチユエータ 13
.14・・・電磁方向切換弁 2o・・・電子制御装置
 31A・・・主冷却水路 31B・・・副冷却水路 
32・・・仕切壁 32a・・・開口部 33・・・サ
ーモスタット50・・・制御弁 59・・・三方電磁弁
60・・・サージタンク 61川逆止弁特許出願人 日
産自動車株式会社 代理人 弁理士 笹 島 冨二雄
Figure 1 is a graph showing the relationship between the compression ratio, boost pressure and knocking area of a supercharged internal combustion engine, Figure 2 is a graph showing the relationship between boost pressure and exhaust pressure, Figures 3 to 5 3 shows a part of an intake valve opening/closing actuating device and a valve opening/closing timing adjusting device according to an embodiment of the present invention, FIG. 3 is a plan view of the inside of a locker room, and FIG. 4 is a cross-sectional view of the intake valve opening/closing actuating device. , FIG. 5 is a plan view of the main part showing the relationship between the intake valve rocker arm and the cam, and FIG.
The figure is a hydraulic circuit diagram of a valve opening/closing timing adjusting device according to one embodiment of the present invention, and FIG. 7 shows the opening timing of intake and exhaust valves,
is a graph showing the opening/closing timing of the high-speed intake valve, (B) is a graph showing the valve opening characteristics of the high-speed intake valve and exhaust valve, [C1 is a graph showing the opening/closing timing of the low-speed intake valve, +Dl is the graph for low-speed FIG. 8 is a graph showing the valve opening characteristics of the intake valve and the exhaust valve; FIG.
The figure shows the timing at which the rocker arm of each cylinder can be moved.
IAI is an intake valve lift characteristic diagram, (Bl is a time chart showing the range in which the rocker arm can move, and tc is a graph showing cam lift characteristics. ■...4-cylinder internal combustion engine 5A...Cam for intake valve operation (for high speed) 5B...Cam for intake valve operation (for low speed)
7...Rocker arm 9...Boulder 11...1st
Actuator 12...Second actuator 13
.. 14...Electromagnetic directional control valve 2o...Electronic control device 31A...Main cooling waterway 31B...Subcooling waterway
32... Partition wall 32a... Opening 33... Thermostat 50... Control valve 59... Three-way solenoid valve 60... Surge tank 61 River check valve patent applicant Nissan Motor Co., Ltd. agent Patent attorney Fujio Sasashima

Claims (1)

【特許請求の範囲】[Claims] 機関吸気系に設けた過給機のコンプレッサにより吸入空
気を機関に過給する過給機付内燃機関において、吸気弁
開閉作動装置に作用して吸気弁の閉弁時期を可変調整す
ると共に、吸気弁の開弁時期を前記閉弁時期の変化より
小さく調整する弁作動制御装置を設け、かつ吸気弁の閉
時期が遅れ側に制御される時に機関冷却水の循環量を増
大させる装置を設けたことを特徴とする過給機付内燃機
関。
In a supercharged internal combustion engine in which intake air is supercharged to the engine by a supercharger compressor installed in the engine intake system, the intake valve closing timing is variably adjusted by acting on the intake valve opening/closing device. A valve operation control device is provided that adjusts the valve opening timing to be smaller than the change in the valve closing timing, and a device is provided that increases the circulation amount of engine cooling water when the intake valve closing timing is controlled to the delayed side. An internal combustion engine with a supercharger.
JP21960183A 1983-11-24 1983-11-24 Internal-combustion engine with supercharger Pending JPS60113018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21960183A JPS60113018A (en) 1983-11-24 1983-11-24 Internal-combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21960183A JPS60113018A (en) 1983-11-24 1983-11-24 Internal-combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JPS60113018A true JPS60113018A (en) 1985-06-19

Family

ID=16738084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21960183A Pending JPS60113018A (en) 1983-11-24 1983-11-24 Internal-combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JPS60113018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3608403A1 (en) * 1985-09-26 1987-04-02 Nippon Kodoshi Corp WATER CONTENT AND INFORMATION SYSTEM FOR A DISPOSABLE DIAPER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3608403A1 (en) * 1985-09-26 1987-04-02 Nippon Kodoshi Corp WATER CONTENT AND INFORMATION SYSTEM FOR A DISPOSABLE DIAPER

Similar Documents

Publication Publication Date Title
RU2689130C1 (en) Internal combustion engine system and control method for internal combustion engine
JPS60113007A (en) Control device of intake and exhaust valve in internal- combustion engine
EP0360408A2 (en) Engine induction system and method
JP2018131982A (en) Control device for internal combustion engine
JPH0545770B2 (en)
CA3035775C (en) Temperature control throttle device
US7011056B2 (en) Variable timing device for reciprocating engines, engines comprising same and distribution and turbocharging method
JPH0754678A (en) Operating method of engine and four stroke engine
JP6544363B2 (en) Control device for internal combustion engine
JPS60113018A (en) Internal-combustion engine with supercharger
JP3550428B2 (en) Open / close control device of intake valve for Miller cycle engine
JPH10220256A (en) Intake valve controller of internal combustion engine with turbosupercharger and method for controlling it
JP2566232B2 (en) Valve timing controller for engine with supercharger
JPS60116823A (en) Actuating device of suction valve of internal-combustion engine with supercharger
JPS60166717A (en) Internal-combustion engine with exhaust turbosupercharger
JPH0525004B2 (en)
JPH073200B2 (en) Variable valve timing engine control method
JPS6093137A (en) Internal-combustion engine with supercharger
EP0262769A2 (en) Internal combustion engine having two intake valves per cylinder
JP2004019554A (en) Control device of internal combustion engine
JPS60204922A (en) Intake valve operating device of internal-combustion engine with supercharger
CN111630264B (en) Method for controlling internal combustion engine and control device for internal combustion engine
JPS60116822A (en) Suction valve actuating device of internal-combustion engine
JP3165242B2 (en) Intake control device for supercharged engine
JP6607530B2 (en) Engine control device