JPS60112930A - Method of building vibration-proof foundation - Google Patents
Method of building vibration-proof foundationInfo
- Publication number
- JPS60112930A JPS60112930A JP21767083A JP21767083A JPS60112930A JP S60112930 A JPS60112930 A JP S60112930A JP 21767083 A JP21767083 A JP 21767083A JP 21767083 A JP21767083 A JP 21767083A JP S60112930 A JPS60112930 A JP S60112930A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- vibration
- board
- rubber
- vibration absorbing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 7
- 229920001971 elastomer Polymers 0.000 claims abstract description 47
- 239000005060 rubber Substances 0.000 claims abstract description 47
- 239000004567 concrete Substances 0.000 claims abstract description 45
- 238000010276 construction Methods 0.000 claims abstract description 11
- 239000002985 plastic film Substances 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 abstract description 7
- 229920000573 polyethylene Polymers 0.000 abstract description 7
- 239000011491 glass wool Substances 0.000 abstract description 6
- -1 polyethylene Polymers 0.000 abstract description 6
- 238000009434 installation Methods 0.000 abstract description 4
- 230000003014 reinforcing effect Effects 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 2
- 239000011383 glass concrete Substances 0.000 abstract 1
- 230000003068 static effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 239000011490 mineral wool Substances 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D27/00—Foundations as substructures
- E02D27/32—Foundations for special purposes
- E02D27/34—Foundations for sinking or earthquake territories
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Foundations (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Floor Finish (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は機器設置基礎、放送スタジオの防振浮床、集合
住宅の床衝撃音防止浮床等の防振基礎工法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for constructing foundations for installing equipment, vibration-proof floating floors in broadcasting studios, floating floors to prevent floor impact noise in apartment buildings, and the like.
従来、上記機器設置基礎等の防振基礎工法としては、鉄
筋コンクリートのスラブに配置された防振ゴムの上に架
台を組んでコンクリートを打設する工法が知られている
が、架台の組立並びにスラブの不陸をスラブと防振ゴム
との間あるいは防振ゴムと架台との間で調節する作業に
多大な手間及び工費が掛かる欠点があった。Conventionally, as a vibration-proof foundation construction method such as the above-mentioned equipment installation foundation, a method is known in which a pedestal is assembled on top of anti-vibration rubber placed on a reinforced concrete slab and concrete is poured. The disadvantage is that it takes a lot of time and effort to adjust the unevenness between the slab and the anti-vibration rubber or between the anti-vibration rubber and the frame.
また、集合住宅の床衝撃音防止浮床の構築工法としては
、グラスウール、ロックウール等をばね材としてスラブ
に敷設しその上にコンクリートを打設する工法が知られ
ているが、グラスウール。In addition, as a construction method for floating floors that prevent floor impact noise in apartment buildings, a method is known in which glass wool, rock wool, etc. is laid on a slab as a spring material, and concrete is poured on top of it.Glass wool.
ロックウール等の静的ばね定数にばらつきが多く、正確
な防振設計が困難であり、しかも水の浸入によりへたっ
てばね力が滅失したり、コンクリートのアルカリ性によ
り劣化して耐久性が低下す、る等の欠点があった。The static spring constant of rock wool and other materials varies widely, making it difficult to design an accurate anti-vibration design.Furthermore, the spring force may be lost due to weakening due to water intrusion, or the alkaline nature of concrete may cause deterioration and reduce durability. There were drawbacks such as:
本発明は、まず基礎床に防振ゴムとこれよりも厚く柔軟
で静的ばね定数の小さいボードとを敷き詰めてそれらの
上にプラスチックシートを敷設し、さらにその上にコン
クリートを、その荷重によってボードが防振ゴムよりも
薄くならない厚さに打設し、そのコンクリートの荷重の
大部分をボードにより支えて養生する。In the present invention, first, vibration-proof rubber and boards that are thicker, more flexible, and have a smaller static spring constant are laid on the foundation floor, and then a plastic sheet is laid on top of them. The concrete is poured to a thickness that is not thinner than the anti-vibration rubber, and most of the concrete load is supported by the boards for curing.
次に、上記コンクリートが架台あるいはコンクリート打
設用の型枠底板として使用できるように硬化した後、そ
の上にコンクリートをさらに所要の厚さに打設し一体化
させることにより防振基礎を構築できるようにしたもの
である。Next, after the concrete has hardened to the point where it can be used as a frame or the bottom plate of a form for pouring concrete, a vibration-proof foundation can be constructed by pouring concrete on top of it to the required thickness and integrating it. This is how it was done.
以下には図示した機器設置基礎を構築する実施例につい
て説明する。An example of constructing the illustrated equipment installation foundation will be described below.
まず、基礎床たる鉄筋コンクリート建物のスラブlの所
定の場所に形成した横長矩形の浅く平らな窪み2に防振
ゴム3を28個互いに所定の間隔をあけて縦横に配列し
、適宜の接着剤でスラブ1に接着した後、各防振ゴム3
以外のところには、グラスウール、ロックウールあるい
は発泡プラスチック等で形成したボード4を敷き詰める
。First, 28 anti-vibration rubbers 3 are arranged vertically and horizontally at a predetermined distance from each other in a horizontally oblong rectangular shallow flat depression 2 formed at a predetermined location on a slab l of a reinforced concrete building serving as a foundation floor, and then glued with an appropriate adhesive. After adhering to slab 1, each anti-vibration rubber 3
All other areas are covered with a board 4 made of glass wool, rock wool, foamed plastic, or the like.
次に、上記防振ゴム3及びボード4の上に、それら全面
を覆うようにポリエチレンシート5を敷き込むとともに
、窪み2の縁に沿ってコンクリート打設用の型枠6を設
立して鉄筋(図示してない)を配置する。そしてポリエ
チレンシート5の上にコンクリート7を、その荷重によ
ってボード4が防振ゴム3よりも薄くならない厚さに打
設し、その荷重の大部分をボード4により支えて養生す
る。Next, a polyethylene sheet 5 is laid on the vibration isolating rubber 3 and the board 4 so as to cover the entire surface thereof, and a formwork 6 for concrete pouring is established along the edge of the depression 2, and reinforcing bars ( (not shown). Then, concrete 7 is cast on the polyethylene sheet 5 to a thickness that does not make the board 4 thinner than the vibration-proof rubber 3 due to its load, and most of the load is supported by the board 4 for curing.
上記養生により、コンクリート7が、架台あるいはコン
クリート打設用の型枠底板として使用できるように硬化
した後、その上にさらにコンクリート8を所要の厚さま
で打設してコンクリート7と一体化させる。これにより
機器設置基礎が構築されるものである。After the concrete 7 is cured by the above-mentioned curing so that it can be used as a frame or a bottom plate of a form for pouring concrete, concrete 8 is further poured on top of it to a required thickness to be integrated with the concrete 7. This will establish the foundation for installing the equipment.
今、仮想単位面積150 c+nx45cmについて、
防振ゴムとボードの負担荷重とたわみ量を計算してみる
。この仮想単位面積内には、厚さ3cm、縦横12.6
cm X 12,6CI11.静的ばね定数KR= 4
370 kg / cmの防振ゴム1個が配置され、残
りの部分には、48kg / n? 、厚さ5cm、静
的ばね定数KG = 417 kg / cmのグラス
ウールボードが敷き詰められ、これらの上に敷設するポ
リエチレンシート5の厚さが0.15鶴であるとする。Now, regarding the virtual unit area 150 c + n x 45 cm,
Let's calculate the load and deflection of the anti-vibration rubber and board. Within this virtual unit area, there is a thickness of 3 cm and a length and width of 12.6 cm.
cm x 12,6CI11. Static spring constant KR=4
One anti-vibration rubber with a weight of 370 kg/cm is placed, and the remaining parts have a weight of 48 kg/n? Assume that glass wool boards with a thickness of 5 cm and a static spring constant KG = 417 kg/cm are laid, and the thickness of the polyethylene sheet 5 laid on top of these is 0.15 mm.
また、第1回目のコンクリート7を厚さ10cmに打設
すると、上記仮想単位面積のコンクリート重量は155
.25kgであるとする。このときのボード4の負担荷
重WGは、
wG=155.25x ((45x150−12.6x
12.6)÷(45X150 ) ) #151.6
kgこのときのボード4の静的だわみδ、Gは、δG
=151.6÷417 = 0.36CI11防振ゴム
3の負担荷重−Rは、
WR=155、−151.6 =3.4 kgそのとき
の防振ゴム3の静的たわみδRは、δR=3.4 +4
370=0.00078 amである。In addition, when the first concrete 7 is poured to a thickness of 10 cm, the weight of the concrete in the above virtual unit area is 155
.. Assume that the weight is 25 kg. The load WG on the board 4 at this time is wG=155.25x ((45x150-12.6x
12.6) ÷ (45X150 ) ) #151.6
kg The static deflection δ,G of board 4 at this time is δG
= 151.6 ÷ 417 = 0.36 The load -R of the CI11 anti-vibration rubber 3 is: WR = 155, -151.6 = 3.4 kg The static deflection δR of the anti-vibration rubber 3 at that time is δR = 3.4 +4
370=0.00078 am.
従って、コンクリート7の打設に↓り防振ゴム3の厚さ
は殆ど変わらず、ボード4の厚さは約4.6 amにな
るが、いまだ防振ゴム3よりも厚くなっている。Therefore, the thickness of the anti-vibration rubber 3 remains almost the same as the concrete 7 is poured, and the thickness of the board 4 becomes approximately 4.6 am, which is still thicker than the anti-vibration rubber 3.
次に、第2回目のコンクリート8を厚さ80cmに打設
すると、その厚さ80傭の仮想単位面積のコンクリート
の重量は1242kgである。このとき防振ゴム3とボ
ード4をあわせた静的ばね定数Kが、K =KR十KG
=4370+417 =4787kg/cmこのときの
両者のたわみδは、
δ= 1242÷4787 = 0.26cmである。Next, when the second concrete 8 is cast to a thickness of 80 cm, the weight of the concrete of virtual unit area with a thickness of 80 cm is 1242 kg. At this time, the static spring constant K of the anti-vibration rubber 3 and the board 4 is K = KR0KG
=4370+417 =4787kg/cm The deflection δ of both at this time is δ=1242÷4787=0.26cm.
′
そしてボード4の総たわみ量δTGは、δTG=0.3
6+0.26=0.62cmそのときのボード4の負担
荷重WT’Gは、WTG =417 Xo、62=25
8.5 kgである。'The total deflection amount δTG of board 4 is δTG=0.3
6+0.26=0.62cm The load WT'G on board 4 at that time is WTG = 417 Xo, 62=25
It weighs 8.5 kg.
また、防振ゴム3の総たわみ量δTRは、δTR=0.
26+0.00078 #0.26cmそのときの防振
ゴム3の負担荷重WTRは、WTR=4370X0.2
6=1136.2kgである。Further, the total amount of deflection δTR of the vibration isolating rubber 3 is δTR=0.
26+0.00078 #0.26cm At that time, the load WTR borne by the vibration isolating rubber 3 is WTR=4370X0.2
6=1136.2 kg.
従って、総荷重に対する防振ゴム3の分担比率は、
1136.2÷ (1136,2+258.5 > −
0,815で約81%、同じく総荷重に対するボード4
の分担比率は、
258.5÷(1136,2+258.5 ) =0.
185で約19%になる。Therefore, the share ratio of the vibration isolating rubber 3 to the total load is 1136.2÷ (1136,2+258.5 > −
Approximately 81% at 0,815, also board 4 for the total load
The sharing ratio is 258.5÷(1136,2+258.5) =0.
185 is about 19%.
この分担比率によれば、ばね定数にばらつきの多いボー
ド4の影響が僅少であるから、ばね定数の安定な防振ゴ
ム3に基づく正確な防振設計による防振効果を期待でき
る。According to this sharing ratio, since the influence of the board 4, which has a large variation in spring constant, is slight, a vibration damping effect can be expected due to an accurate vibration damping design based on the vibration isolating rubber 3 having a stable spring constant.
また、仮に上記第1回目のコンクリート7の打設の際に
、ボード4がこのコンクリ−1・7の荷重により防振ゴ
ム3よりも薄くなってコンクリート7が防振ゴム3にか
ぶさり、すなわち防振ゴム3の上端部がコンクリート7
にめり込んだ状態になると、防振効果が著しく低減する
ので、ボード4が防振ゴム3よりも薄くならないように
、第1回目のコンクリート7をできるだけ薄く打設し、
最終的に総荷重に対する防振ゴムの分担比率を大きくす
ることが望ましい。Furthermore, when the concrete 7 is placed for the first time, the board 4 becomes thinner than the vibration isolating rubber 3 due to the load of the concrete 1 and 7, and the concrete 7 covers the vibration isolating rubber 3. The upper end of the swinging rubber 3 is made of concrete 7
If it sinks into the board, the vibration-proofing effect will be significantly reduced, so the first concrete 7 is cast as thinly as possible so that the board 4 does not become thinner than the vibration-proof rubber 3.
Ultimately, it is desirable to increase the share ratio of the vibration isolating rubber to the total load.
さらに、上記の如く、総荷重に対する防振ゴム3の分担
比率が極めて大きいので、構築後にボード4が浸水によ
りへたった場合にも、それによる防振効果の減少は僅少
で殆ど無視できる。Furthermore, as mentioned above, since the share ratio of the vibration isolating rubber 3 to the total load is extremely large, even if the board 4 collapses due to water intrusion after construction, the decrease in the vibration isolating effect is so small that it can be almost ignored.
なお、上記実施例では、スラブに防振ゴムを先に接着し
それ以外のところにボードを敷き詰めた場合について説
明したが、これに限らず、先にボードを敷き詰めておい
てから防振ゴムを配置するところを切除し、そこに防振
ゴムを嵌合してスラブに接着するようにしてもよい。In addition, in the above example, a case was explained in which the anti-vibration rubber was bonded to the slab first and the boards were laid on the other parts, but the invention is not limited to this. Alternatively, the area to be placed may be cut out, and a vibration-proof rubber may be fitted there and adhered to the slab.
以上述べたところから明らかなように本発明によれば、
防振ゴム及びボードの上にプラスチックシートを敷設し
、その上にコンクリートを打設して養生後に、このコン
クリートを架台あるいは型枠底板として使用するので、
従来の如く防振ゴムの上に架台を組む作業を行わなくて
もよいから、その分工費の節減及び工期の短縮を図るこ
とができる。As is clear from the above description, according to the present invention,
A plastic sheet is laid on top of the anti-vibration rubber and board, concrete is poured on top of it, and after curing, this concrete is used as a pedestal or formwork bottom plate.
Since there is no need to assemble the pedestal on the anti-vibration rubber as in the past, it is possible to reduce construction costs and shorten the construction period.
また、上記ボードを防振ゴムよりも厚(し、第1回目の
コンクリートをその荷重によってボードが防振ゴムより
も薄くならないように打設して養生し、硬化したこのコ
ンクリートの上にさらにコンクリートを所要の厚さに打
設して、これらコンクリートの総荷重の殆どを防振ゴム
によって負担させるから、ばね定数にばらつきの多いボ
ードの影響が僅少で、ばね定数の安定した防振ゴムに基
づく正確な防振設計による防振効果を有する防振基礎を
構築できる。In addition, the board is thicker than the anti-vibration rubber, and the first concrete is cast and cured so that the board does not become thinner than the anti-vibration rubber due to the load, and then concrete is poured on top of the hardened concrete. is cast to the required thickness, and most of the total load of the concrete is borne by the vibration isolating rubber, so the influence of boards with widely varying spring constants is minimal, and the concrete is based on vibration isolating rubber with a stable spring constant. It is possible to construct a vibration-proof foundation with a vibration-proofing effect through accurate vibration-proofing design.
図面は本発明工法を機器設置基礎の構築に適用した実施
例を示し、第1図はスラブに形成した窪みに防振ゴムを
配置した状態を示した平面図、第2図は上記窪みに防振
ゴムとボードを敷き詰めた状態を示した要部の縦断面図
、第3図は上記防振ゴム及びボードの上にポリエチレン
シートを敷設し、その上に第1回目のコンクリートを打
設した状態を示した要部の縦断面図、第4図は上記第1
回目のコンクリートの上に第2回目のコンクリートを打
設した状態を示した要部の縦断面図、第5゜6図は本発
明工法により構築した機器設置基礎の縦断面図及び平面
図である。
1・・・基礎床たるスラブ、3・・・防振ゴム、4・・
・ボード、5・・・ポリエチレンシート、7.8・・・
コンクリート。
尤7図
/v2図
矛3画The drawings show an example in which the construction method of the present invention is applied to the construction of a foundation for installing equipment. Fig. 1 is a plan view showing the state in which anti-vibration rubber is placed in a depression formed in a slab, and Fig. 2 is a plan view showing the state in which anti-vibration rubber is placed in the depression formed in the slab. A vertical cross-sectional view of the main part showing the state in which the vibration-proof rubber and boards are spread, and Figure 3 shows the state in which a polyethylene sheet is laid on the vibration-proof rubber and boards, and the first concrete is poured on top of it. Fig. 4 is a longitudinal sectional view of the main part showing the
A vertical sectional view of the main part showing the state in which the second concrete is poured on top of the first concrete, and Figure 5-6 is a vertical sectional view and a plan view of the equipment installation foundation constructed by the method of the present invention. . 1... Foundation floor slab, 3... Anti-vibration rubber, 4...
・Board, 5...Polyethylene sheet, 7.8...
concrete. 7 illustrations/v2 illustrations 3 strokes
Claims (1)
所定の間隔をあけて配置し、その所定の場所の防振ゴム
以外のところには、この防振ゴムよりも厚く柔軟で静的
ばね定数が小さいボードを敷き詰める工程と、上記防振
ゴム及びボードの上にプラスチックシートを敷設し、こ
の上にコンクリートを、その荷重によって上記ボードが
防振ゴムよりも薄くならない厚さに打設して養生する工
程と、上記養生後のコンクリートの上にさらにコンクリ
ートを所要の厚さに打設する工程とからなることを特徴
とする防振基礎工法。1. Place multiple pieces of anti-vibration rubber at predetermined locations on the foundation floor at a predetermined distance from each other. The process of laying boards with a small spring constant, and laying a plastic sheet on top of the vibration-proof rubber and board, and pouring concrete on top of this to a thickness that does not make the board thinner than the vibration-proof rubber due to the load. A vibration-proof foundation construction method comprising the steps of: curing the concrete; and pouring concrete to a desired thickness on top of the curing concrete.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21767083A JPH0229827B2 (en) | 1983-11-21 | 1983-11-21 | BOSHINKISOKOHO |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21767083A JPH0229827B2 (en) | 1983-11-21 | 1983-11-21 | BOSHINKISOKOHO |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60112930A true JPS60112930A (en) | 1985-06-19 |
JPH0229827B2 JPH0229827B2 (en) | 1990-07-03 |
Family
ID=16707876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21767083A Expired - Lifetime JPH0229827B2 (en) | 1983-11-21 | 1983-11-21 | BOSHINKISOKOHO |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0229827B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1002903A1 (en) * | 1998-11-19 | 2000-05-24 | Nakamura Bussan Co., Ltd. | Base structure of building and construction method thereof |
JP2007146419A (en) * | 2005-11-25 | 2007-06-14 | Jsp Corp | Base-isolation foundation structure of building, and construction method for base-isolation foundation |
JP2016524060A (en) * | 2013-06-11 | 2016-08-12 | ファビオ・パロディFabio PARODI | Formwork whose thickness is reduced by the load of on-site cast slab |
-
1983
- 1983-11-21 JP JP21767083A patent/JPH0229827B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1002903A1 (en) * | 1998-11-19 | 2000-05-24 | Nakamura Bussan Co., Ltd. | Base structure of building and construction method thereof |
JP2007146419A (en) * | 2005-11-25 | 2007-06-14 | Jsp Corp | Base-isolation foundation structure of building, and construction method for base-isolation foundation |
JP2016524060A (en) * | 2013-06-11 | 2016-08-12 | ファビオ・パロディFabio PARODI | Formwork whose thickness is reduced by the load of on-site cast slab |
Also Published As
Publication number | Publication date |
---|---|
JPH0229827B2 (en) | 1990-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60112930A (en) | Method of building vibration-proof foundation | |
JP2002138597A (en) | Structure for partitioning wall | |
JP3477072B2 (en) | Building floor structure | |
WO2000026485A1 (en) | Acoustic insulating material and floating floor provided with such material | |
JPH0613947Y2 (en) | Compound sound insulation floor structure | |
KR100474132B1 (en) | The method of sound and vibration proof in concrete structure | |
JP2000273997A (en) | Compound floor slab made of structural steel | |
KR20090113031A (en) | A structure of floor comprising a elastic cork layer | |
KR200357992Y1 (en) | Double Slab Structure of Building | |
JPH01315556A (en) | Floor joist pad and sound insulation construction utilizing same | |
JP3184453B2 (en) | Floor structure of flexible structures | |
JPH0755240Y2 (en) | Seismic isolation column | |
JPH037468Y2 (en) | ||
KR102476740B1 (en) | Structure of noise reduction between floors for apartment houses | |
JPH035623Y2 (en) | ||
JPH02136465A (en) | Constructing paneled floor | |
JP2000073482A (en) | Vibration-damping floor | |
JPS6313287Y2 (en) | ||
JPH09287228A (en) | Floor board | |
JP3952879B2 (en) | Formation method of crack prevention slit of concrete plate | |
JP3167926B2 (en) | Floor slab structure | |
JPH09228613A (en) | Form material for floating floor | |
JPH01268922A (en) | Construction of machine base | |
KR20030087702A (en) | Floating floor structure for reducing floor shock sound | |
JP2017008668A (en) | Floor panel and floor structure |