JPS60112639A - Bushing for forming fiber - Google Patents

Bushing for forming fiber

Info

Publication number
JPS60112639A
JPS60112639A JP22050883A JP22050883A JPS60112639A JP S60112639 A JPS60112639 A JP S60112639A JP 22050883 A JP22050883 A JP 22050883A JP 22050883 A JP22050883 A JP 22050883A JP S60112639 A JPS60112639 A JP S60112639A
Authority
JP
Japan
Prior art keywords
fins
cooling
nozzles
pipe
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22050883A
Other languages
Japanese (ja)
Other versions
JPS6310102B2 (en
Inventor
Takeshi Watanabe
毅 渡辺
Hironobu Yamamoto
博信 山本
Takashi Nara
奈良 喬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuriki Honten Co Ltd
Nitto Boseki Co Ltd
Original Assignee
Tokuriki Honten Co Ltd
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuriki Honten Co Ltd, Nitto Boseki Co Ltd filed Critical Tokuriki Honten Co Ltd
Priority to JP22050883A priority Critical patent/JPS60112639A/en
Publication of JPS60112639A publication Critical patent/JPS60112639A/en
Publication of JPS6310102B2 publication Critical patent/JPS6310102B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/0203Cooling non-optical fibres drawn or extruded from bushings, nozzles or orifices
    • C03B37/0209Cooling non-optical fibres drawn or extruded from bushings, nozzles or orifices by means of a solid heat sink, e.g. cooling fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain fins for cooling having durability and causing no brittle rupture when bushing for forming inorg. fibers is manufactured, by coating Ag fins for cooling with Pd or a Pd alloy so as to form a composite material. CONSTITUTION:Plural nozzles 2 are projected in lines from the bottom plate of the body 1 of a vessel for storing a starting material for fibers, and fins 3 for cooling connected to a pipe 4 for water cooling are placed among the lines of the nozzles 2 without bringing the fins 3 into contact with the nozzles 2 and the body 1. A round Ag bar is fixed in a Pd or Pd alloy pipe, and diffusion treatment is carried out in gaseous N2 so as to form a diffusion layer of >=3mum thickness between Ag and Pd and to leave a Pd layer of >=about 2mum thickness. The Ag bar and the Pd pipe united to one body are plastically worked to a prescribed shape and subjected to strain relief annealing. The fins 3 are made of the resulting composite material. The fins 3 for cooling do not cause warping deformation due to the difference in coefft. of thermal expansion between Ag as the core material and Pd as the shell material.

Description

【発明の詳細な説明】 本発明は、溶融ガラス等の無機質繊維原料全多数のノズ
ルから吐出させて紡糸するために用いる繊維形成用ブッ
シングに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber-forming bushing used for spinning inorganic fiber raw materials such as molten glass by discharging them from a number of nozzles.

kR維影形成用ブッシング溶−している繊維原料を入れ
るPtもしくはPt合金製でろって通常第゛1図から第
4図に示すような構造をしている。第1図は紡糸状態を
示す全体側面図、第2図は繊維形成用ブッシングの底面
からの部分斜視図、第3図は部分底面図、第4図はノズ
ルと冷却用フィンの状態を示す部分拡大図であり、図に
おいて、1は切頭長方角↑li[H状の繊維原料の貯蔵
容器本体、2は貯蔵容器本体1の底板に突設させたノズ
ノペ3はノズル2から吐出される無機質繊維を冷却する
冷却用フィンであり、第3図に示す如くノズル20列の
間にノズル2および貯蔵容器本体1に触れないように配
置されており、熱伝導性の良い材料としてAgが用いら
れている。4は冷却用フィン3を冷却させる水冷用パイ
プであり、この水冷用パイプ4によって冷却用フィン3
は一連に連続されている。5は加熱用電極で貯蔵容器本
体1内の繊維原料を溶融状態の温度に保っている。
The kR fiber forming bushing is made of Pt or Pt alloy and contains the melted fiber raw material, and usually has a structure as shown in FIGS. 1 to 4. Figure 1 is an overall side view showing the spinning state, Figure 2 is a partial perspective view from the bottom of the fiber forming bushing, Figure 3 is a partial bottom view, and Figure 4 is a part showing the state of the nozzle and cooling fins. This is an enlarged view. In the figure, 1 is the main body of the storage container for the truncated rectangular ↑li [H-shaped fiber raw material, and 2 is the nozzle 3 protruding from the bottom plate of the storage container main body 1 is the inorganic material discharged from the nozzle 2. These cooling fins cool the fibers, and are arranged between 20 rows of nozzles so as not to touch the nozzles 2 and the storage container body 1, as shown in Fig. 3.Ag is used as a material with good thermal conductivity. ing. 4 is a water cooling pipe that cools the cooling fins 3; this water cooling pipe 4 cools the cooling fins 3;
are consecutive. A heating electrode 5 keeps the fiber raw material in the storage container body 1 at a temperature in a molten state.

6は無機質繊維、7は繊維春眠装置である。6 is an inorganic fiber, and 7 is a fiber sleeping device.

以上のような繊維形成用ブッシングによって無機質繊維
は紡糸さ九るが、従−来より紡糸される無機質繊維の直
径(fC対する許容度は非常に小さく、特に近時、電子
工業の発達に伴ない無機質繊維の需要は急激に増加する
と共に品質については更に直径など寸法精度の高さが要
求されるようになった。
Inorganic fibers are spun using the fiber-forming bushing described above, but the tolerance for the diameter (fC) of spun inorganic fibers has traditionally been very small, especially with the recent development of the electronic industry. Demand for inorganic fibers has increased rapidly, and in terms of quality, high dimensional accuracy such as diameter has become required.

そこで、上記の高い精度を満すためには原料組成、電流
加熱するときの電気的条件、繊維形成用ブッシングの機
械的精度および耐火材等と組合せたときの取付状態、溶
融原料の保持温度などの安定化を計る必要かあり、これ
等がノズルから吐出されるときの浴−繊維原料の適正粘
度を保つ条件になる。
Therefore, in order to meet the above-mentioned high accuracy, the composition of the raw material, the electrical conditions for current heating, the mechanical precision of the fiber-forming bushing, the mounting condition when combined with refractory materials, etc., the holding temperature of the molten raw material, etc. These are the conditions for maintaining the appropriate viscosity of the bath-fiber raw material when it is discharged from the nozzle.

そこで、ノズルから惨微細な無機質繊維を安定して連続
的に吐出させるために従来から冷却用フィン3が配置さ
れている。
Therefore, cooling fins 3 have been conventionally disposed in order to stably and continuously discharge extremely fine inorganic fibers from the nozzle.

この冷囚」用フィン3は吐出個D[周囲を囲むことによ
って風や塵埃等の外的影響から守ると共にノズル2と吐
出される無機質繊維を瞬間的に冷却するためであり、従
ってその材質は上記した如く金属中で最も熱伝導かすぐ
れているAgが一般に用いられている。この冷却用フィ
ン3′(il−水冷用バイブ4に連結することによって
ノズル近傍の熱を効率的に吸収している。
This cold prisoner fin 3 surrounds the discharge unit D [to protect it from external influences such as wind and dust, and also to instantaneously cool the nozzle 2 and the inorganic fibers being discharged. As mentioned above, Ag, which has the best thermal conductivity among metals, is generally used. By connecting these cooling fins 3' (IL--to the water cooling vibe 4), heat near the nozzle is efficiently absorbed.

無機質繊維を溶融ガラスとした場合一般にその温度は1
200℃〜1400℃程度に保持されているため、ノズ
ル2の至近距離に配置しである冷却用フィン3の温度も
かなり高温にさらされる。
When inorganic fibers are made into molten glass, the temperature is generally 1
Since the temperature is maintained at about 200° C. to 1400° C., the temperature of the cooling fins 3 disposed close to the nozzle 2 is also exposed to a considerably high temperature.

第5図は設置後140時間を経過したときの厚さ1、2
 ramのAgによる冷却用フィンの+Qr面組成を示
す写真であり二結晶粒は厚さとほぼ同じ大きさに1で成
長している。このことからも冷却用フィンが如何に高温
にさらされているかが解かる。
Figure 5 shows the thickness 1 and 2 after 140 hours have passed since installation.
This is a photograph showing the +Qr plane composition of a cooling fin made of Ag for RAM, and the two crystal grains have grown to a size of 1 approximately equal to the thickness. This also shows how the cooling fins are exposed to high temperatures.

!、た、CLI も熱伝導にすぐれるし、安価であるが
、高温における酸化が激しく、ノズル近傍の冷却効果が
充分に期待できなくなる。従って冷却フィンの材料とし
てはAgが用いられているものであるが、Agは周知の
如く硫黄との化合物をつくり易く1.大気中に存在する
極〈微量の硫黄分にさえ侵される。従って、浴融ガラス
の原材料に存在する少なからぬ懺黄分は冷却フィンに大
きな悪影響をおよぼしている。
! CLI also has excellent heat conductivity and is inexpensive, but oxidation is severe at high temperatures and a sufficient cooling effect in the vicinity of the nozzle cannot be expected. Therefore, Ag is used as the material for the cooling fins, but as is well known, Ag easily forms compounds with sulfur. It is attacked by even the smallest amount of sulfur present in the atmosphere. Therefore, a considerable amount of yellowish content present in the raw material of bath molten glass has a large adverse effect on the cooling fins.

つ捷り、ノズルから吐出された半溶融状態のガラス繊維
から発生した硫化性ガスは高温に維持されたAgの冷却
用フィンと極めて容易に反応して主として結晶粒界に硫
化Ag f生成してしまう。
The sulfuric gas generated from the semi-molten glass fibers discharged from the nozzle reacts extremely easily with the Ag cooling fins maintained at high temperatures, producing sulfuric Ag f mainly at the grain boundaries. Put it away.

これは時間の経過とともに表面から内部に向って進行し
て脆化し、層状に欠落損耗を起すことになる。
As time passes, this progresses from the surface toward the inside and becomes brittle, causing layer-like chipping and wear.

このような硫化Agによる冷却用フィン内部の欠陥は、
熱伝導度を低下させ、加−えて欠落損耗によるボリウム
の減少は冷却効率を著しく低下させて、正常なガラス繊
維が得られないことになる。
Such defects inside the cooling fins due to Ag sulfide are
In addition to lowering the thermal conductivity, the volume reduction due to chipping and wear significantly lowers the cooling efficiency, making it impossible to obtain normal glass fibers.

また、高温に保持されたpi−またはpt金合金繊維形
成用ブッシングの表面に冷却用フィンであるAgが接触
すると、AgはPL−jたはPi合金の粒界に急速に侵
出腰ある応力が加わると瞬時にImp !IE破壊を起
す。すなわち、冷均用フィンは繊維形成用ブッシングお
よびノズルと至近距離に配置されているために冷却用フ
ィンの移動によって上記のような事故が発生する。
In addition, when the cooling fins (Ag) come into contact with the surface of the pi- or pt gold alloy fiber-forming bushing held at high temperature, the Ag rapidly leaks into the grain boundaries of the PL-j or Pi alloy, causing a certain stress. Imp! Causes IE destruction. That is, since the cooling fins are disposed close to the fiber forming bushing and the nozzle, the above-mentioned accident occurs due to movement of the cooling fins.

この冷却用フィンの移動原因は以下のような要因による
。その第1は繊維形成用ブッシング内の溶融原料の重量
に起因する変形などによる冷却用フィンとの直接接触、
第2は吐出した無機質繊維と冷却用フィンとの接触など
による極部的な揮発Agの付漸、第3は硫化Agの惇元
→分jli!l!などによるAgの自然堆(★等がある
が現在これ等に対する決定的な防市策は無い。
The causes of this movement of the cooling fins are as follows. The first is direct contact with cooling fins due to deformation due to the weight of the molten raw material in the fiber-forming bushing;
The second is the accumulation of localized Ag by contact with the discharged inorganic fibers and cooling fins, and the third is the gradual buildup of Ag sulfide. l! There are natural deposits of Ag (such as ★), but there are currently no definitive city prevention measures against them.

さらに、Agの放射率は金属中で最も小さい元素の1つ
であり、このためノズル近憎の熱を反射し易く、冷却効
率が非常に悪い。
Furthermore, the emissivity of Ag is one of the smallest elements among metals, and therefore it tends to reflect heat from the vicinity of the nozzle, resulting in very poor cooling efficiency.

そこで、熱の放射率がAgより犬きくかつ耐硫化性に富
み、しかもPtやPL合金と接触してもさしたる悪い影
響をおよぼさない元素でAgを抜うことが考えられる。
Therefore, it is conceivable to replace Ag with an element that has a higher thermal emissivity than Ag and is more resistant to sulfidation, and which does not have a significant adverse effect even when it comes into contact with Pt or PL alloy.

それらの元素としてはAu、 Pd。These elements include Au and Pd.

P [+ W+ +p i + Zr lN 1等があ
る。しかしNi、W、TiおよびZr(or4全4金檎
冒温状態での耐酸化性が著しく劣るために1史用するこ
とができないことがわかつ/こ。
There are P [+ W+ +p i + Zr lN 1, etc. However, it was found that Ni, W, Ti, and Zr (or 4 metals) could not be used for a single period of time because their oxidation resistance at elevated temperatures was extremely poor.

そこで本発明は上記した諸欠点を解決することを目[1
9とし、Ag i PdもしくはPd合金で梳うことに
より上記の欠点を解決するもので、PdもしくはPd合
金によってパイプを作り、このパイプ中にノ\g丸悴e
&合し、N2ガス中で拡散処理してAgとPdもしくは
Pd合金の間に3μ以上の拡散層を形成すると共にPd
もしく[Pd合金の/I!#’に2μ以上に形成して一
体とすることにより、温度勾配の搬しい冷却用フィンと
して用いて芯材のAgと外皮のIFdもしくはi)d合
金の熱膨張率の違いからくる(9り変形を無くして、耐
久性がありしかも脆性破壊等の無い冷却用フィンとした
ことを特徴とする。
Therefore, the present invention aims to solve the above-mentioned drawbacks [1]
9, and the above drawbacks are solved by combing with Ag i Pd or Pd alloy.A pipe is made of Pd or Pd alloy, and a hole is inserted into the pipe.
& is combined and subjected to diffusion treatment in N2 gas to form a diffusion layer of 3μ or more between Ag and Pd or Pd alloy, and Pd
Or [/I of Pd alloy! #' is formed to have a thickness of 2μ or more and is integrated, so that it can be used as a cooling fin with a large temperature gradient, and it can be used as a cooling fin with a large temperature gradient. The cooling fin is characterized by eliminating deformation, being durable, and free from brittle fracture.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

第1笑7If!1例 外径φ]、 5 am 、内径φ14.11+111.
長さ500 amのPdのパイプに直径14.35mm
、長さ700 ramのAgの丸棒を挿入嵌合し、14
9韻の直径を有する丸ダイスにて引抜いてpc+パイプ
とAg丸棒とを密着せしめて複合材とする。
1st laugh 7If! 1 exception diameter φ], 5 am, inner diameter φ14.11+111.
A Pd pipe with a length of 500 am and a diameter of 14.35 mm.
, insert and fit an Ag round bar with a length of 700 ram, and
The PC+ pipe and Ag round bar are brought into close contact by drawing with a round die having a diameter of 9 rhymes to form a composite material.

この密着した複合材をN2ガス中で900℃にて2時間
加熱して予備加熱を行なった。次に、直径14.8間の
ダイスによって再び引抜き、N2ガス中920℃にて2
時間の拡散処理を行なった。
This closely adhered composite material was preheated by heating at 900° C. for 2 hours in N2 gas. Next, it was drawn again using a die with a diameter of 14.8 mm and heated at 920°C in N2 gas for 2 hours.
A time diffusion process was performed.

その後にリボンロールによって厚さ1.2mm、中10
+sに加工して長さ5Q′mmで切断し、600℃の歪
取り焼鈍を行なって短冊状の複合材による冷却用フィン
を作成した。
After that, roll the ribbon to a thickness of 1.2 mm, medium 10
+s, cut to a length of 5Q'mm, and subjected to strain relief annealing at 600°C to produce cooling fins made of strip-shaped composite material.

このようにしたPdとAgの複合材による冷却用フィン
によると、熱伝導性のすぐれたAgの周面を耐硫化性、
耐脆弱性抄よび熱吸収性にすぐれているPdで榎い、そ
の工程を嵌合→予備拡散→塑性加工→拡散処理→塑性加
工→歪取り焼鈍の一連の製造工程を経てA−gとPd0
間に3μ以上の拡散j曽を形成して一体としである。
According to this cooling fin made of a composite material of Pd and Ag, the circumferential surface of Ag, which has excellent thermal conductivity, has sulfidation resistance and
Pd, which has excellent brittleness resistance and heat absorption, is coated, and A-g and Pd0 are formed through a series of manufacturing processes: fitting → preliminary diffusion → plastic working → diffusion treatment → plastic working → strain relief annealing.
A diffusion j of 3μ or more is formed between them to form an integral structure.

この拡散層を形成した意戦を以下に述べる。The will and war that formed this diffusion layer will be described below.

冷却用フィン3の冷却パイプ4と接合τきれた部分どそ
の反対方向の端部1でおよび冷却用フィン3の上E’1
i3aおよび下+flS3b等の谷個所における温度勾
配が倣しいため、もし全く拡散層が在任しない場合には
芯拐のAgと外皮のPdとの熱膨り艮率の遅いから生じ
る撮り変形が大きく、厳格な寸法規格に合致する無機質
繊維を引出すことができない。壕だ、]Fdの膨張率は
Agの膨張率の2分の18度であるために急速な拡散処
理を行なうと複合材として均一性に欠けるため、予備拡
散を経て本拡散処理を行なった。このように拡散層の形
成は欠くことのできない要件となる。
At the end 1 of the cooling fin 3 in the opposite direction from the part where the joint τ with the cooling pipe 4 broke, and at the top E'1 of the cooling fin 3.
Since the temperature gradients at the valleys such as i3a and lower +flS3b are similar, if there is no diffusion layer at all, the thermal deformation caused by the slow rate of thermal expansion between Ag in the core and Pd in the outer skin will be large; It is not possible to extract inorganic fibers that meet strict dimensional specifications. The expansion rate of Fd is 18 degrees, half that of Ag, so if rapid diffusion treatment is performed, the composite material will lack uniformity, so the main diffusion treatment was performed after preliminary diffusion. Formation of a diffusion layer thus becomes an indispensable requirement.

第2実施例 外径φ15龍、内径φ14.41#lIn+長さ500
’mtnの05Pd−、[rのパイプに直径1.4.3
5rx、長さ700關のAgの丸(拳を挿入嵌合し、1
4.9mmの直径を有する丸ダイスにて引抜いて95P
(1−IrパイプとAg丸偉とを密着せしめて複合材と
する。
Second implementation exception diameter φ15 dragon, inner diameter φ14.41 #lIn + length 500
'mtn 05Pd-, [r pipe diameter 1.4.3
5rx, length 700cm Ag circle (insert and fit fist, 1
95P is drawn using a round die with a diameter of 4.9mm.
(1-Ir pipe and Ag roundweed are brought into close contact to form a composite material.

この密着せしめた複合材全N2ガス中900℃にて2時
間加熱して予備加熱を行なった。次に、直径148離の
ダイスによって再び引抜き、N2ガス中920℃にて2
時間の拡散処理を行なった。
This tightly adhered composite material was preheated by heating at 900° C. for 2 hours in N2 gas. Next, it was drawn again using a die with a diameter of 148 mm and heated at 920°C in N2 gas for 2 hours.
A time diffusion process was performed.

その欽にリボンロールによって厚さ1.2mm、巾10
龍に刀ロエして長さ50酊で切1訂し、600℃の止取
り焼鈍を行なって短…1状の複合材による冷却用フィン
を作成した。
Then roll the ribbon to a thickness of 1.2 mm and a width of 10 mm.
A cooling fin made of a composite material in the shape of a short piece was created by cutting the piece to a length of 50 mm and annealing it at 600°C.

同様の方法で59 pd−Au 、 30 Pd −R
t+ 、 95Pd−PtのそれぞれのパイプとAgの
丸棒による複合材による冷却用フィンを作り、実装テス
トを行なった。
59 pd-Au, 30 Pd-R in a similar manner
Cooling fins were made from a composite material of t+ and 95Pd-Pt pipes and Ag round rods, and a mounting test was conducted.

その実装テストの結果、Agだけによる冷却用フィンは
第6図の写真に示す如く硫化が進行して欠落損耗が非常
に激しく使用初期の厚さの半分程度に減耗している。
As a result of the mounting test, as shown in the photograph of FIG. 6, the cooling fin made only of Ag had progressed to sulfurization and suffered from very severe chipping and wear, and was reduced to about half its initial thickness.

これに対し、複合材による冷却用フィンは第7図の写真
に示す如く伏黄などの腐食性物質に侵されることなく健
全な状態を保っていた。
On the other hand, the cooling fins made of composite material remained in a healthy state without being attacked by corrosive substances such as yellowing, as shown in the photograph in FIG.

なお、Pd合金の使用可能の合金率はPd−1,r(0
,0i〜30%) PdfL−Au (0,01〜60
 %) 、 Pd−1Lu (,0,(l ]〜20%
) 、 Pd−1,lt (0,01〜50%)である
The usable alloy ratio of Pd alloy is Pd-1,r(0
,0i~30%) PdfL-Au (0,01~60
%), Pd-1Lu (,0,(l) ~20%
), Pd-1,lt (0.01-50%).

以上の如く1本発明によると熱伝A9性にすぐれるAg
の周面を耐硫化性、向4脆弱性および熱吸収性にすぐれ
るIJdもしくはP(1合金で覆い、しかもAgとPd
もしくはPd合金との間に拡散)ftt形成して複合材
としたことにより、熱伝導性を落すことなく耐久性のあ
る冷却用フィンとすることができる。
As described above, according to the present invention, Ag having excellent heat conductivity A9
The surrounding surface is covered with IJd or P (1 alloy), which has excellent sulfidation resistance, anti-4 brittleness, and heat absorption, and is coated with Ag and Pd.
Alternatively, by forming a composite material by forming (diffusion) ftt with a Pd alloy, a durable cooling fin can be obtained without reducing thermal conductivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は紡糸状態を示す全体側面図、第2図は繊維形成
用ブッシングの底面からの部分斜視図、第3図は部分底
面図、第4図はノズルと冷却用フィンの状態を示す部分
拡大図、第51図はAg冷却用フィンの断面組織を示す
写真、第6図はAgにによる冷却用フィンの入洛損耗状
態を示す写真、第7図は本発明の複合材による冷却用フ
ィンの状態を示す写真である。 1・・・貯蔵容器本体 2・・・ノズル 3・・・冷却
用フィン 4・・・水冷用パイプ 特許出願人 味式会社徳力本店 日東紡績株式会社 代理人升埋士 金 倉 命 二 @1声
Figure 1 is an overall side view showing the spinning state, Figure 2 is a partial perspective view from the bottom of the fiber forming bushing, Figure 3 is a partial bottom view, and Figure 4 is a part showing the state of the nozzle and cooling fins. An enlarged view, FIG. 51 is a photograph showing the cross-sectional structure of the Ag cooling fin, FIG. 6 is a photograph showing the state of wear and tear of the cooling fin due to Ag, and FIG. 7 is a photograph showing the cooling fin made of the composite material of the present invention. This is a photo showing the condition. 1...Storage container body 2...Nozzle 3...Cooling fin 4...Water cooling pipe Patent applicant Ajishiki Company Tokuriki Head Office Nittobo Co., Ltd. Agent Masuji Mikoto Kanakura 2 @ 1 voice

Claims (1)

【特許請求の範囲】[Claims] 1 繊維原料の貯蔵容器本体の底板に複数のノズル20
列して突設させ、そのノズル列の間にノズルおよび貯蔵
容器本体に触れないように水冷用パイプに連結した冷却
用フィンを配置した繊維形成用ブッシングにおいて、冷
却用フィンとしてAgの周面にl)dもしくはPd肝金
を3μ以上の拡散Jliを形成して一体化し、塑性加工
により所定形状にした後に歪取シ焼鈍を行なった複合材
を用いることを特徴とする繊維形成用ブッシング。
1 A plurality of nozzles 20 are installed on the bottom plate of the fiber raw material storage container body.
In a fiber forming bushing in which cooling fins are protruded in rows and connected to a water cooling pipe between the nozzle rows so as not to touch the nozzles and the storage container body, the cooling fins are placed on the circumferential surface of Ag. l) A fiber-forming bushing characterized by using a composite material in which d or Pd liver metal is integrated by forming a diffusion Jli of 3μ or more, formed into a predetermined shape by plastic working, and then subjected to strain relief annealing.
JP22050883A 1983-11-25 1983-11-25 Bushing for forming fiber Granted JPS60112639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22050883A JPS60112639A (en) 1983-11-25 1983-11-25 Bushing for forming fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22050883A JPS60112639A (en) 1983-11-25 1983-11-25 Bushing for forming fiber

Publications (2)

Publication Number Publication Date
JPS60112639A true JPS60112639A (en) 1985-06-19
JPS6310102B2 JPS6310102B2 (en) 1988-03-03

Family

ID=16752123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22050883A Granted JPS60112639A (en) 1983-11-25 1983-11-25 Bushing for forming fiber

Country Status (1)

Country Link
JP (1) JPS60112639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124833A (en) * 1991-04-04 1993-05-21 Manville Service Corp Improved device for glass filament manufacturing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335854A (en) * 1976-09-13 1978-04-03 Tecumseh Products Co Balllanddsocket joint and method of manufacturing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335854A (en) * 1976-09-13 1978-04-03 Tecumseh Products Co Balllanddsocket joint and method of manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124833A (en) * 1991-04-04 1993-05-21 Manville Service Corp Improved device for glass filament manufacturing

Also Published As

Publication number Publication date
JPS6310102B2 (en) 1988-03-03

Similar Documents

Publication Publication Date Title
Meshcheryakov et al. Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation
JP3186492B2 (en) Bushing base plate and manufacturing method thereof
US4375426A (en) Catalytic fibre packs for ammonia oxidation
JPS60112639A (en) Bushing for forming fiber
US2688781A (en) Self-eliminating core wire and core
TWI718656B (en) Bushing for producing glass fibers
US4941904A (en) Method and apparatus for forming hollow fibers
US3159460A (en) Composite material
JPS60112640A (en) Bushing for forming fiber
JPS60112641A (en) Bushing for forming fiber
JPS60112642A (en) Bushing for forming fiber
CA1335158C (en) Reinforced glass fiber forming bushing and tips
JPH03294440A (en) Alloy composition for cooling fin
BRPI0508751B1 (en) Mold for Cast Iron Casting and Process of Making an Object by Casting
US4159198A (en) Method of making a nozzle plate for spinning glass fibers made of special alloy and resulting nozzle plate
US20090107179A1 (en) Glass passage and method of manufacturing molded product of optical glass using the passage
CN118043287A (en) Method for manufacturing device for producing glass or basalt fiber
CN2507587Y (en) Mould structure for hot continuous casting
WO2023204733A1 (en) Method for manufacturing a device for producing glass or basalt fibre
JP2002283010A (en) Method for casting good strip with single roll method
JPS61129257A (en) Manufacture of continuous casting mold
KR850001126A (en) Glass fiber manufacturing method
CN100582032C (en) Cavity of moulded glass lens
JPH0769658A (en) Roll for producing float glass
CN105908013A (en) Method for manufacturing CuZnAl or CuZn alloy continuous fiber through cold drawing