JPS6011239A - Manufacture of optical fluoride fiber - Google Patents

Manufacture of optical fluoride fiber

Info

Publication number
JPS6011239A
JPS6011239A JP58112934A JP11293483A JPS6011239A JP S6011239 A JPS6011239 A JP S6011239A JP 58112934 A JP58112934 A JP 58112934A JP 11293483 A JP11293483 A JP 11293483A JP S6011239 A JPS6011239 A JP S6011239A
Authority
JP
Japan
Prior art keywords
fluoride
starting materials
sublimation
refined
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58112934A
Other languages
Japanese (ja)
Other versions
JPS6241184B2 (en
Inventor
Nariyuki Mitachi
成幸 三田地
Yukio Terunuma
照沼 幸雄
Shiro Takahashi
志郎 高橋
Yasutake Oishi
泰丈 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58112934A priority Critical patent/JPS6011239A/en
Publication of JPS6011239A publication Critical patent/JPS6011239A/en
Publication of JPS6241184B2 publication Critical patent/JPS6241184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01268Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by casting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/042Fluoride glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To manufacture an optical fluoride fiber with a very small loss by removing transition metals as impurities from starting materials for an optical fluoride fiber in a quartz pipe, melting the refined starting materials by heating, and carrying out drawing. CONSTITUTION:Starting materials for an optical fluoride fiber are refined. In case of a fluoride having <=1,300 deg.C b.p. under ordinary pressure, it is refined by sublimation under reduced pressure in a quartz pipe lined optionally with a platinum plate or a gold plate. In case of a fluoride having >=1,300 deg.C b.p. under ordinary pressure, it is put in said quartz pipe and heated to >=1,000 deg.C under reduced pressure to remove transition metals as impurities by sublimation. The refined starting materials are charged into crucibles 18, 19 from tanks 14 through weighing pipes 15 and a rotating stirring pipe 17. The crucibles 18, 19 are moved to an electric furnace 21 with a sliding plate 20, and the starting materials are melted by heating. This melt is cast in a casting mold to form a preform for an optical fiber, and the perform is drawn to obtain an optical fluoride fiber.

Description

【発明の詳細な説明】 本発明は超低損失光ファイノ(材料として有望視されて
いるフッ化物光ファイバの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing ultra-low loss optical fibers (fluoride optical fibers that are considered promising as materials).

5in2を主構成原料とする従来の光ファイバでは、現
在までに0.2 C1f3/Kmという理論限界に匹敵
する低損失値が実現されている。この低損失値を決定し
ているのは、紫外吸取端、赤外吸収端、レーリー散乱損
失であり、これらの本質的損失要因は除去し得ないもの
である。このために、さらに低損失な光ファイバを実現
するには、レーリー散乱損失のより低い長波長で透明な
材料を用いる必要があった。
Conventional optical fibers whose main constituent material is 5in2 have so far achieved a low loss value of 0.2 C1f3/Km, which is comparable to the theoretical limit. This low loss value is determined by the ultraviolet absorption edge, infrared absorption edge, and Rayleigh scattering loss, and these essential loss factors cannot be removed. Therefore, in order to realize an optical fiber with even lower loss, it was necessary to use a material that is transparent at long wavelengths and has lower Rayleigh scattering loss.

こういった観点から、赤外域で透明な材料としてフッ化
物ガラスが注目され、10〜1O−3(iB/Kmとい
う低損失値が期待されている。
From this point of view, fluoride glass has attracted attention as a material that is transparent in the infrared region, and is expected to have a low loss value of 10 to 1 O-3 (iB/Km).

従来のフッ化物原料には数ppm以上のye、au等の
連接金属イオンが含まnlこのために1μm付近のこれ
らの吸取に起因する吸取端の影響が2〜8μmに現われ
、低損失化の大きな妨害になっていた。
Conventional fluoride raw materials contain several ppm or more of connected metal ions such as ye, au, etc. Therefore, the effect of the blotting edge caused by these blotting around 1 μm appears at 2 to 8 μm, making it possible to significantly reduce loss. It was a hindrance.

フッ化物原料は一般に辞意が1000℃付近またはそれ
以上の高温であるので、これらの原料と遷移金属フッ化
物とを気相で分離することは、極めて困難であった。ま
たこれらの精製原料を用い、不純物の混入を避けながら
ファイバ母材を作製する工程の手法もなかった。
Since fluoride raw materials generally die at a high temperature of around 1000° C. or higher, it has been extremely difficult to separate these raw materials and transition metal fluorides in a gas phase. Furthermore, there was no method for producing a fiber base material using these purified raw materials while avoiding contamination with impurities.

本発明は従来成功していなかったフッ化物光フアイバ用
フッ化物原料より、昇華精製によって遷移金属を除去し
、これを連続的に精浄雰囲気下で秤量、混合、溶融する
ことを特徴とし、その目的は超低損失なフッ化物光ファ
イバの作製にある。
The present invention is characterized by removing transition metals from fluoride raw materials for fluoride optical fibers by sublimation purification, which has not been successful in the past, and then continuously weighing, mixing, and melting the metals in a purified atmosphere. The aim is to create ultra-low loss fluoride optical fibers.

以下、実施例について本発明を説明するが、実施例によ
って本発明は何ら制約を受けるものではない。
The present invention will be described below with reference to Examples, but the present invention is not limited in any way by the Examples.

第1図は昇華精製装置の例を示し、1は原料のz rF
、、2は昇華ZrF4.8は電気炉、傷はArN2はK
OH脱水管、6は液体窒素トラップ、7は真空ポンプ、
8はテフ四ンパイプ、9は三方コック、10は石英管で
ある。これを用いてZrF、の昇華精製を次のようにし
て行った。
Figure 1 shows an example of a sublimation purification apparatus, where 1 indicates the raw material z rF.
,,2 is sublimation ZrF4.8 is electric furnace, scratch is ArN2 is K
OH dehydration pipe, 6 is liquid nitrogen trap, 7 is vacuum pump,
8 is a Teflon pipe, 9 is a three-way cock, and 10 is a quartz tube. Using this, sublimation purification of ZrF was carried out as follows.

市販のZrF、を第1図に示すような昇華精製装置内ニ
設置し、9oo℃で1〜3 mm Hgの乾燥アルゴン
雰囲気中で昇華精製した。昇華速度は0.8 g/mi
n。
Commercially available ZrF was placed in a sublimation purification apparatus as shown in FIG. 1, and purified by sublimation at 90° C. in a dry argon atmosphere of 1 to 3 mm Hg. Sublimation rate is 0.8 g/mi
n.

出発原料1501から100gの昇華精製ZrF、を得
た。
100 g of sublimation-purified ZrF was obtained from starting material 1501.

実施例2 第2図に示すように、金板を打張りした昇華精製装置(
11は金板内張り)内に、25gのAIF。
Example 2 As shown in Fig. 2, a sublimation purification apparatus (
11 is gold plate lining), 25g of AIF.

を導入し、950℃で1〜8 mm Hgの乾燥アルゴ
ン雰囲気下で昇華精製し、7J9の昇華AlF3を得た
was introduced and purified by sublimation at 950° C. under a dry argon atmosphere of 1 to 8 mm Hg to obtain sublimated AlF3 of 7J9.

実施例8 BaF、・GdF3については、白金を打張りした第3
図に示すような昇華精製装M(12は白金内張り)内で
、1100’Cで5時間1〜8mm l(gの乾燥アル
ゴン雰囲気中で処理し、含まれている78F8゜0uF
2+ NiF2等のM移金属不純物18を昇華除去した
Example 8 For BaF, ・GdF3, the third plate plated with platinum was used.
In a sublimation purification apparatus M (12 is lined with platinum) as shown in the figure, the mixture was treated in a dry argon atmosphere of 1 to 8 mm l (g) at 1100'C for 5 hours, and the contained 78F8°0uF
M transfer metal impurities 18 such as 2+ NiF2 were removed by sublimation.

実施例4 NH,F −HFについては第2図に示す昇華精製装置
により、1〜8 mm Hgで200’CGC加熱し、
200gのNH,F−・IFから150#の昇華NH,
li’ −HFを得た。
Example 4 NH,F-HF was heated for 200'CGC at 1 to 8 mm Hg using the sublimation purification apparatus shown in FIG.
200g NH,F-IF to 150# sublimated NH,
li'-HF was obtained.

実施例5 SbF、については第2図に示す昇華精製装置により、
1〜8闘Hgで300℃に加熱し、200gのSbF。
Example 5 For SbF, the sublimation purification apparatus shown in Fig. 2 was used.
Heat to 300°C at 1-8% Hg and 200g of SbF.

から125gの昇華5bF8を得た。125 g of sublimed 5bF8 was obtained from

実施例6 実施例1〜5によって得られた原料の中でNH,F −
)IFや5bF8はFeF3.0uF2等の遷移金属と
は沸点が大きく異なるので、精製は十分に行われること
が期待できる。
Example 6 Among the raw materials obtained in Examples 1 to 5, NH, F −
) Since the boiling point of IF and 5bF8 is significantly different from that of transition metals such as FeF3.0uF2, it can be expected that the purification will be carried out satisfactorily.

表−1にフッ化物の融点と沸点を示す。Table 1 shows the melting points and boiling points of fluorides.

表−1,フッ化物の融点と沸点(単位二℃)(注)Sは
昇華点である。また沸点はNH4・HFだけが1〜8 
mm Hgの場合で、他は’160闘Hgの場合を示す
Table 1: Melting point and boiling point of fluoride (unit: 2°C) (Note) S is the sublimation point. Also, only NH4 and HF have a boiling point of 1 to 8.
mm Hg, and the others are '160 mm Hg.

一万、BaF、 l GdF3は遷移金属フッ化物より
も沸点や昇華点が高く、そのために遷移金属を昇華除去
する必要があった。AlF3は遷移金属フッ化物に沸点
が近く、昇華分留する際に注意深く行う必要があった。
10,000, BaF, lGdF3 have higher boiling points and sublimation points than transition metal fluorides, and therefore it was necessary to remove the transition metals by sublimation. Since AlF3 has a boiling point close to that of transition metal fluorides, it was necessary to carefully perform sublimation fractional distillation.

ZrF4は低温昇華するために、十分遷移金属とは分離
可能である。
Since ZrF4 sublimates at a low temperature, it can be sufficiently separated from transition metals.

BaF @GtiF 、 ZrF4* AIF8につい
て、昇華精8 製の効果を見るために、12%HCt溶液により遷移金
属フッ化物の抽出を行った。この抽出溶液の紫外スペク
トルを測定し、またFeF3の定置的な紫外スペクトル
との比較より、各精製原料中の不純物含有鈑を測定した
。比較のため精製前の出発原料についても測定結果を表
−2に示す。
Regarding BaF@GtiF and ZrF4*AIF8, transition metal fluoride was extracted using a 12% HCt solution in order to examine the effect of sublimation. The ultraviolet spectrum of this extracted solution was measured, and by comparison with the stationary ultraviolet spectrum of FeF3, impurity-containing plates in each purified raw material were determined. For comparison, the measurement results for the starting material before purification are also shown in Table 2.

表−2フン化物中のFe8+濃度(1)pm)ZrF、
ではn5AIF8では富に各kFf9”濃度は減少して
おり、昇華精製の効果が十分に発揮されていることがわ
かった。
Table-2 Fe8+ concentration in fluoride (1) pm) ZrF,
In n5AIF8, the concentration of each kFf9'' was significantly reduced, indicating that the effect of sublimation purification was fully exhibited.

実施例7 第4図は本発明の製造方法に用いる連続ガラス溶融装置
の構成図を示し、14は原料タンク、】5は秤蓋菅、1
6はコック、17は回転攪はん管、18はクラッド用金
るつぼ、19はコア用金るつPi’ 、2 oはスライ
ド板、21は電気炉、22は石英反応管、28は回転攪
はん管駆動モータである。これを用い、光フアイバ用プ
リフォームを作製するために、以下のような手順で行っ
た。
Embodiment 7 FIG. 4 shows a block diagram of a continuous glass melting apparatus used in the manufacturing method of the present invention, in which 14 is a raw material tank, ]5 is a scale lid tube, and 1
6 is a cock, 17 is a rotary stirrer tube, 18 is a metal crucible for cladding, 19 is a metal crucible for core Pi', 2o is a slide plate, 21 is an electric furnace, 22 is a quartz reaction tube, 28 is a rotary stirrer This is a tube drive motor. Using this, the following procedure was performed to produce an optical fiber preform.

まず第4図の原料タンク14に実施例1〜6の精製原料
を充てんし、あらがじめその重量と容短との関係を把握
しておく。それぞれ原料について表−8に示した相戊比
に従って、秤量管15内の原料の移動量を計測しながら
コック】6にて充てん量を調節し、金るつぼ18.19
内に充てんする0 表−8コアとクラッドの組成(モル%)この際、駆動モ
ータ23で駆動さnた回転攪はん管17を通じて攪拌し
ながら金るつぼ18.19にそnぞれクラッドm1コア
用の組成のJJA料を投入する。このとき、原料のZr
F + BaF2+ GdF3*AjF8の表面につい
ているZrFa(OH) 、ZrF2(OH)2等の酸
化物を完全にフッ素化するために、NH4F−HFも併
せて所定1(10〜15g)投入する。
First, the raw material tank 14 shown in FIG. 4 is filled with the refined raw materials of Examples 1 to 6, and the relationship between its weight and volume is determined in advance. According to the phase ratio shown in Table 8 for each raw material, while measuring the amount of movement of the raw material in the weighing tube 15, adjust the filling amount with the cock 6, and place the metal crucible 18.19.
Table 8 Composition of core and cladding (mol%) At this time, the cladding m1 was poured into the metal crucibles 18 and 19 while stirring through the rotary stirrer tube 17 driven by the drive motor 23. Inject the JJA material with the composition for the core. At this time, the raw material Zr
In order to completely fluorinate oxides such as ZrFa(OH) and ZrF2(OH)2 attached to the surface of F + BaF2+ GdF3*AjF8, a predetermined amount (10 to 15 g) of NH4F-HF is also added.

次にスライド板20の移動によって、金るつぼ18.1
9を電気炉21内に移動させ、2時間加熱溶融し、予加
熱した中空の円筒形の黄銅製鋳型にクラッド融液なキャ
スティングし、即座に固化していがい中心部を流し田し
た。生じた中空のガラス管の中心部にコア融液をキャス
ティングして作製した母材(9闘φ×100鰭)にテフ
四ンFEP管を被覆し、帯溶融により185mの光ファ
イバを得た。
Next, by moving the slide plate 20, the gold crucible 18.1
9 was moved into an electric furnace 21, heated and melted for 2 hours, and the clad melt was cast into a preheated hollow cylindrical brass mold, where it immediately solidified and the center of the insulator was poured. A base material (9 diameter x 100 fins) prepared by casting core melt into the center of the resulting hollow glass tube was coated with a Teflon FEP tube, and a 185 m optical fiber was obtained by band melting.

このようにして得られた光ファイバの伝送損失スペクト
ルと不純物要因分析の結果を第5図に示す。第5図にお
いて2点鎖線で示したファイバの散乱損失カーブは、O
,e3μmでのガラスロンド散乱損失の実測値を基に波
長の二乗の逆数に比例するとして近似した。比較のため
、精製原料を用いたフッ化物光ファイバの伝送損失カー
ブAと未精製原料を用いた光ファイバの伝送損失カーブ
Bも併せて示した。
The transmission loss spectrum of the optical fiber thus obtained and the results of impurity factor analysis are shown in FIG. The scattering loss curve of the fiber shown by the two-dot chain line in FIG.
, e3 μm, and was approximated as being proportional to the reciprocal of the square of the wavelength. For comparison, a transmission loss curve A of a fluoride optical fiber using a purified raw material and a transmission loss curve B of an optical fiber using an unrefined raw material are also shown.

昇華精製によって1μm帯での不純物ピークは580 
dB/Kmから150 dB/Kmへと大きく減少し、
特にその中でもFe B+の含有値が大きく減少したた
め最低損失値は2.12μmで8.5 aB、/xmと
なっている。
Due to sublimation purification, the impurity peak in the 1 μm band is 580
significantly decreased from dB/Km to 150 dB/Km,
In particular, the content value of Fe B+ decreased significantly, so that the lowest loss value was 8.5 aB,/xm at 2.12 μm.

表−4に未精製原料を用いた場合と精製原料を用いた場
合の光フアイバ中の推定不純物含有貝を示す。
Table 4 shows the estimated impurity-containing shellfish in the optical fiber when using unrefined raw materials and when using purified raw materials.

表−4推定不純物含有m (ppm) これによると、Fe2+の含有賃は−近くにまで減0 少できていることがわかる。Table-4 Estimated impurity content m (ppm) According to this, the content of Fe2+ decreases to nearly -0 You can see that it's a little done.

NH,F −HFの替わりに5bF8を用いても同様の
低損失光ファイバが得らn1昇華精製による原料の高純
度化の有効性が明らかとなった。
Even when 5bF8 was used instead of NH,F-HF, a similar low-loss optical fiber was obtained, demonstrating the effectiveness of purifying raw materials by n1 sublimation purification.

以上説明したように、フッ化物光フアイバ用原料の高純
度化において、本発明のように各フッ化物の沸点に応じ
た昇華精製法を施し、かつ清浄雰囲気下で連続的に秤量
、混合、攪はんすることにより、遷移金属不純物と原料
との分離が可能となり、その結果、本発明のフッ化物光
フアイバ製造方法は、低損失光ファイバ作製上、極めて
重要な技術であると言うことができる。
As explained above, in order to highly purify raw materials for fluoride optical fibers, as in the present invention, a sublimation purification method is applied according to the boiling point of each fluoride, and continuous weighing, mixing, and stirring are performed in a clean atmosphere. By doing so, it becomes possible to separate the transition metal impurities and the raw material, and as a result, the method for producing a fluoride optical fiber of the present invention can be said to be an extremely important technology for producing a low-loss optical fiber. .

またこの手法はフッ化物光ファイバの製造のみならず、
広く光学ガラス用の原料精製にも応用できる利点がある
In addition, this method is not only applicable to the production of fluoride optical fibers.
It has the advantage of being widely applicable to refining raw materials for optical glass.

【図面の簡単な説明】[Brief explanation of drawings]

第1.図ないし第8図は本発明の実施例に用いた際の昇
華精製装置の模式図、 第4図は本発明の一実施例である連続ガラス溶融装置の
構成図、 第5図は本発明の一実施例で得られたフッ化物光ファイ
バの伝送損失スペクトルを示す図である。 1・Ji料ZrF 1’ ・・・原料AlF3.11 
、、・jix料BaF、、4〜 2・・・昇華ZrF、、2′・・・昇華AlF3.8・
・・電気炉、4・・・Ar (アルゴン)、5・・・K
OH脱水管、6・・・液体窒素トラップ、?・・・真空
ポンプ、8・・・テフロンパイプ、9・・・三方フック
、】0・・・石英管、11・・・金板内張り、12・・
・白金内張り、18・・・遷移金属不純物、14・・・
原料タンク、15・・・秤社管、16・・・フック、1
7・・・同転攪はん管、18・・・クラッド用金るつぼ
、19・・・コア用金るつぼ、20・・・スライド板、
21・・・電気炉滓、22・・・石英反応管、23・・
・回転攪はん管駆動モータ、A・・・精製原料を用いた
フッ化物光ファイバの伝送損失カーブ、B・・・未精製
原料を用いたフン化物光ファイバの伝送損失カーブ。 特許出願人 日本電信電話公社
1st. Figures 8 through 8 are schematic diagrams of a sublimation purification apparatus used in an embodiment of the present invention, Figure 4 is a block diagram of a continuous glass melting apparatus which is an embodiment of the present invention, and Figure 5 is a schematic diagram of a continuous glass melting apparatus which is an embodiment of the present invention. FIG. 3 is a diagram showing a transmission loss spectrum of a fluoride optical fiber obtained in one example. 1.Ji material ZrF 1'...Raw material AlF3.11
,,・Jix material BaF, 4~ 2...Sublimated ZrF, 2'...Sublimated AlF3.8・
...Electric furnace, 4...Ar (argon), 5...K
OH dehydration pipe, 6...liquid nitrogen trap, ? ...Vacuum pump, 8...Teflon pipe, 9...Three-way hook, ]0...Quartz tube, 11...Gold plate lining, 12...
・Platinum lining, 18...Transition metal impurities, 14...
Raw material tank, 15... Scale pipe, 16... Hook, 1
7... Simultaneous stirring tube, 18... Metal crucible for cladding, 19... Metal crucible for core, 20... Slide plate,
21... Electric furnace slag, 22... Quartz reaction tube, 23...
- Rotating stirrer tube drive motor, A...Transmission loss curve of fluoride optical fiber using purified raw material, B...Transmission loss curve of fluoride optical fiber using unrefined raw material. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] L フッ化物光ファイノ(用原料を、沸点が常圧テ1 
a o o℃より低いフッ化物では、石英管中または白
金板もしくは金板で裏打ちされた石英管中で減圧下にお
いて昇華精製し、沸点が常圧で1800℃以上のフッ化
物では、石英管中または白金板で裏打ちされた石英管中
にフッ化物を設置し、減圧下において1.000℃以上
に加熱して、遷移金属不純物を昇華除去する工程と、前
記の工程により精製された原料を閉管系内で連続的に秤
量混合して加熱溶融し、キャスティングして光ファイノ
(用プリフォームを得る工程と、それを線引きしてフッ
化物光ファイバを作製する工程と力)らなることを特徴
とするフッ化物光ファイノくの製造方法。
L Fluoride optical fiber (raw material for which the boiling point is normal pressure 1
Fluorides with a boiling point below 1800°C at normal pressure are purified by sublimation in a quartz tube or a quartz tube lined with a platinum or gold plate under reduced pressure. Alternatively, fluoride is placed in a quartz tube lined with a platinum plate, heated to 1.000°C or higher under reduced pressure to sublimate and remove transition metal impurities, and the raw material purified by the above process is closed in the tube. It is characterized by the process of continuously weighing, mixing, heating and melting in the system, and casting to obtain an optical fiber (preform), and drawing it to create a fluoride optical fiber. A method for producing fluoride optical fibers.
JP58112934A 1983-06-24 1983-06-24 Manufacture of optical fluoride fiber Granted JPS6011239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58112934A JPS6011239A (en) 1983-06-24 1983-06-24 Manufacture of optical fluoride fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58112934A JPS6011239A (en) 1983-06-24 1983-06-24 Manufacture of optical fluoride fiber

Publications (2)

Publication Number Publication Date
JPS6011239A true JPS6011239A (en) 1985-01-21
JPS6241184B2 JPS6241184B2 (en) 1987-09-01

Family

ID=14599146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58112934A Granted JPS6011239A (en) 1983-06-24 1983-06-24 Manufacture of optical fluoride fiber

Country Status (1)

Country Link
JP (1) JPS6011239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629587A1 (en) * 1993-06-18 1994-12-21 Sumitomo Electric Industries, Ltd. Process and apparatus for producing fluoride glass
JP2005255516A (en) * 2004-02-23 2005-09-22 Schott Ag METHOD FOR MANUFACTURING LARGE-VOLUME CaF2 SINGLE CRYSTAL HAVING LOW SCATTERING PROPERTY AND HIGH LASER STABILITY, CRYSTAL MANUFACTURED BY THE METHOD, AND USE OF THE CRYSTAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629587A1 (en) * 1993-06-18 1994-12-21 Sumitomo Electric Industries, Ltd. Process and apparatus for producing fluoride glass
JP2005255516A (en) * 2004-02-23 2005-09-22 Schott Ag METHOD FOR MANUFACTURING LARGE-VOLUME CaF2 SINGLE CRYSTAL HAVING LOW SCATTERING PROPERTY AND HIGH LASER STABILITY, CRYSTAL MANUFACTURED BY THE METHOD, AND USE OF THE CRYSTAL

Also Published As

Publication number Publication date
JPS6241184B2 (en) 1987-09-01

Similar Documents

Publication Publication Date Title
NL8302204A (en) METHOD FOR MANUFACTURING AN ELECTRONIC GLASS BODY WITH HOMOGENEOUS DISTRIBUTION INDEX.
JPS60246240A (en) Manufacture of fluorine glass optical fiber and optical element and device for carrying out same
US5334232A (en) Method for the preparation of halide glass articles
US3338694A (en) Manufacture calcium aluminate optical glass
JPS6011239A (en) Manufacture of optical fluoride fiber
JPH034491B2 (en)
JPS6363500B2 (en)
JPH0510286B2 (en)
US5746801A (en) Process of producing fluoride glass
US4872894A (en) Method for rapid preparation of halide glasses
RU2263637C1 (en) Method of production of fluoride glass
JPS6320773B2 (en)
US4842631A (en) Method of making carbon dioxide and chlorine free fluoride-based glass
EP0502569B1 (en) Method of manufacturing a heavy metal fluoride glass composition
JPS596821B2 (en) Method for manufacturing multicomponent glass fiber
SU929316A1 (en) Method of producing metallic calibration specimens
RU2237030C1 (en) Method of manufacturing high-clean as-s system glasses for core and envelop of monomode and low-aperture multimode light guides
Hansen et al. Chromium enriched peraluminous glasses: Incorporation limit, crystalline phase equilibrium and impact of chromium on the rheological properties of the glass
JPS6351978B2 (en)
JPS60251147A (en) Process and device for preparing halide glass
Coon et al. Effects of Melt History on the Stability and Quality of ZBLAN Glasses
JPS63218521A (en) Production of chalcogenide glass
AL OCT UNCLASSIFIED RADC-TR-82-264 F9628-81-K-0010 F/112 N
SU910348A1 (en) Casting production method
JPS6086054A (en) Production of fluoride glass for transmission of infrared ray