JPS60111132A - Leakage inspecting method of tank - Google Patents

Leakage inspecting method of tank

Info

Publication number
JPS60111132A
JPS60111132A JP58218524A JP21852483A JPS60111132A JP S60111132 A JPS60111132 A JP S60111132A JP 58218524 A JP58218524 A JP 58218524A JP 21852483 A JP21852483 A JP 21852483A JP S60111132 A JPS60111132 A JP S60111132A
Authority
JP
Japan
Prior art keywords
tank
liquid
gas
leakage
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58218524A
Other languages
Japanese (ja)
Other versions
JPH0231332B2 (en
Inventor
Shiro Katakura
片倉 志朗
Hirotaka Abe
安部 碩恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Yuki Ltd
Original Assignee
Tokico Yuki Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Yuki Ltd filed Critical Tokico Yuki Ltd
Priority to JP58218524A priority Critical patent/JPS60111132A/en
Publication of JPS60111132A publication Critical patent/JPS60111132A/en
Publication of JPH0231332B2 publication Critical patent/JPH0231332B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations

Abstract

PURPOSE:To inspect quickly a leakage of an underground tank in a state that a liquid is stored without moving the liquid in the tank by mixing a inert gas for pressure reducing, and exhausting a gas in the tank. CONSTITUTION:When openings of an oiling pipe 3 and a vent pipe 8 are closed by covers 4, 9, and also a measuring port 10 is closed by a plug 12, an underground tank 1 is closed airtightly. Subsequently, when nitrogen gas of a bomb 28 is supplied to an ejector 21 by opening manual valves 25, 28 and 30, a gas such as a gasoline vapor, etc. in the tank 1 is absorbed by the ejector 21 and exhausted through a silencer 27 together with the nitrogen gas, and the inside of the tank 1 is reduced to a prescribed pressure. In this state, when a leakage hole 31, etc. exist in the tank 1, an external air is absorbed and rises in a liquid, a suction sound such as a hollow sound, etc. is generated, this suction sound is detected through a microphone 19, etc., and a leakage of the underground tank can be detected quickly in a state that the liquid is stored without moving the liquid in the tank.

Description

【発明の詳細な説明】 本発明は、タンクに漏洩個所があるか否かを検査するタ
ンクの漏洩検査方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tank leakage testing method for testing whether or not there is a leakage point in a tank.

一般に、液体を貯蔵するタンクは、該タンクからの液体
の漏洩の有無を定期的に検査する必要がンクでおる場合
には、液体の漏洩を外部から目視によって、直接検出す
ることができない。このため、従来から種々の漏洩検出
方法が採用されているO この従来技術による漏洩検査方法として検査すべきタン
ク内に通じる全ての管の開口全閉塞して該タンク内を気
密状態とし、この状態でタンク内に例えば窒素ガス等の
不活性ガスを充填して該タンク内を一定の加圧状態とし
、タンクに洩れ穴がある場合には時間の経過と共に内部
の窒素ガスが外部に漏洩するから、この圧力低下の有無
を圧力計等によシ検出することにより、当該タンクの漏
洩の有無を検査している。
In general, when it is necessary to regularly inspect a tank for storing liquid for the presence or absence of liquid leakage from the tank, liquid leakage cannot be directly detected visually from the outside. For this reason, various leakage detection methods have been adopted in the past.As a leakage detection method using this conventional technology, all the openings of all the pipes leading into the tank to be inspected are completely closed to make the inside of the tank airtight. The tank is filled with an inert gas such as nitrogen gas to maintain a constant pressure inside the tank, and if there is a leak hole in the tank, the nitrogen gas inside will leak to the outside over time. By detecting the presence or absence of this pressure drop using a pressure gauge or the like, the presence or absence of leakage from the tank is inspected.

しかし上記従来方法によるものは、タンク内に液体を貯
蔵したままで漏洩検査全行なうと、タンク内が加圧状態
となっているために万−該タンクに洩れ穴がある場合に
は、当該洩れ穴から大量の液体が外部に漏洩する。この
ため、貯蔵すべき液体が給油所におけるガソリン、軽油
等の危険物でしたシ、地下水脈に混入したりして非常に
危険な事態となる。
However, with the conventional method described above, if all leak tests are carried out with the liquid stored in the tank, the tank will be under pressure, so if there is a leak hole in the tank, the leak will be detected. A large amount of liquid leaks outside from the hole. For this reason, if the liquid to be stored is a dangerous substance such as gasoline or light oil at a gas station, it may mix into the underground water vein, resulting in a very dangerous situation.

そこで、上記従来方法によるものは、漏洩検査を実施す
る前にタンク内の液体を全部抜き取り、一時外部に保管
してタンク内を空の状態とし、然る後にタンク内に窒素
ガス等を充填して加圧状態とし、圧力計を用いて圧力低
下の有=1−検出していた。
Therefore, in the conventional method described above, before performing a leakage test, all the liquid in the tank is drained, temporarily stored outside to empty the tank, and then the tank is filled with nitrogen gas, etc. A pressure drop was detected using a pressure gauge.

ところが抜き取るべき液体が危険物であるために、抜き
取った液体を一時保管するためのタンクローリ車を予め
手配し、このタンクローリ車にタンク内の液体を全部抜
いて保管しておき、検査終了後に液体を再びタンクに戻
す作業が必要となり、作業が面倒であるばかりでなく、
タンクローり車の賃借料が必要となり、しかも準備作業
、液体の抜き取シ作業、戻し作業等に長時間必要とする
欠点があった。また、タンク内に大量の窒素ガスを充填
する必要があるから、この点からも費用的に高価となり
、一方検査終了後の窒素ガス内には危険物の蒸発ガスが
含まれているために、一時に大量の窒素ガスを放出する
ことができず、徐々に放出しなくてはならないという欠
点があった。
However, since the liquid to be extracted is a dangerous substance, a tanker truck is arranged in advance to temporarily store the extracted liquid, all the liquid in the tank is drained and stored in this tanker truck, and the liquid is removed after the inspection is completed. It is necessary to put it back into the tank, which is not only troublesome, but also
This method requires a rental fee for a tanker truck, and has the drawback of requiring a long time for preparation work, liquid draining work, and return work. In addition, it is necessary to fill the tank with a large amount of nitrogen gas, which makes it expensive. On the other hand, since the nitrogen gas after the inspection contains evaporated gas of hazardous substances, The drawback is that a large amount of nitrogen gas cannot be released at once, and must be released gradually.

前述した従来方法に上る欠点を改良するために、特公昭
57−46495号として示される如く検査すべきタン
ク内に通じる全ての管の開口を閉塞して該タンク内を気
密状態とし、眼タンク内の液体の一部を排出することに
よって該タンク内を一定の減圧状態とし、タンクに洩れ
穴がある場合には該タンク内が時間の経過と共に圧力上
昇するから、この圧力上昇の有無を圧力計等によシ検出
することによって当該タンクの漏洩の有無を検査する方
法も知られている。
In order to improve the above-mentioned drawbacks of the conventional method, as shown in Japanese Patent Publication No. 57-46495, the openings of all the pipes leading into the tank to be inspected are closed to make the tank airtight, and the inside of the eye tank is By discharging a portion of the liquid, the pressure inside the tank is maintained at a constant level. If there is a leak in the tank, the pressure inside the tank will increase over time, so use a pressure gauge to check whether this pressure has increased. There is also a known method of inspecting the tank for leakage by detecting leakage.

しかし、この従来方法もタンク内の液体の一部を吸上げ
ポンプや、給油所に設置したガソリン計量機を用いて排
出することによpl一定の減圧状態とするものであるた
め、排出した液体を一時貯蔵する容器が必要となる欠点
があった。また、検査終了後にはタンクから排出した液
体を再びタンク内に戻さなくてはならず、検査のための
段取りが煩雑となるばかりでなく、検査時間を長時間必
要とする欠点があった。
However, in this conventional method, a portion of the liquid in the tank is discharged using a suction pump or a gasoline measuring machine installed at a gas station, thereby reducing the pressure to a constant pl. The disadvantage was that a container was required for temporary storage. Further, after the inspection is completed, the liquid discharged from the tank must be returned to the tank, which not only complicates the setup for the inspection but also requires a long inspection time.

本発明は、前述した各従来方法の欠点を改良し、タンク
内の液体を全く移動させることなく、貯液状態のままで
漏洩検査を行なうことができ、もつのである。
The present invention improves the drawbacks of each of the conventional methods described above, and makes it possible to perform a leakage test while the liquid is stored in the tank without moving the liquid at all.

上記目的を達成するため、本発明に係る漏洩検査方法の
特徴は、タンク内を減圧状態とする際、該タンク内の気
体を不活性ガスによって作動するエジェクタポンプ等の
排気手段の当該不活性ガスに混入させてタンク外に排出
する構成としたことにある。
In order to achieve the above object, the leakage inspection method according to the present invention is characterized in that when the inside of a tank is brought into a reduced pressure state, an evacuation means such as an ejector pump that operates with an inert gas pumps the gas inside the tank. The reason for this is that it is configured so that it is mixed with the water and discharged outside the tank.

このように構成することにより、タンク内の液体を全く
いじることなく該タンク内)減圧状態とすることができ
る。また、排気に不活性ガスを使用することによシ、タ
ンク内で空気と混合しているガソリン蒸気等の気体は、
該不活性ガスと一緒に大気中に排出され、安全性を確保
することができる。さらに、検査終了後タンク内を大気
圧に戻す場合にも不活性ガスを送シ込むだけでよく、従
来技術の如く排出した液体を戻す場合に発生する静電気
等による不測の事故を心配する必要がない。
With this configuration, the pressure inside the tank can be brought to a reduced pressure state without tampering with the liquid in the tank at all. In addition, by using an inert gas for exhaust, gases such as gasoline vapor mixed with air in the tank can be removed.
It is discharged into the atmosphere together with the inert gas, ensuring safety. Furthermore, when returning the inside of the tank to atmospheric pressure after the inspection, it is only necessary to pump inert gas, and there is no need to worry about unexpected accidents caused by static electricity, etc. that occur when returning the discharged liquid as in the conventional technology. do not have.

以下、本発明をガソリン給油所の地下タンクに適用した
場合について、図面に示す実施例と共に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a case in which the present invention is applied to an underground tank of a gasoline filling station will be described together with embodiments shown in the drawings.

第1図は本発明の構成図を示し、図中1は給油所の地下
に埋設された地下タンクで、該地下タンク1内には所定
量の液体2が貯蔵され、液相部Aと気相部Bとに画成さ
れている。3は地下タンク1にタンクローり車等から液
体を補給する注油管の液体2を吸上げる吸上げ管で、該
吸上げ管5は制量機6内に設けられた逆止弁7によシ、
漏洩検査時にはタンク1内の圧力が負圧となるため自動
的に閉止される。8は地下タンク1内の気相部Bを大気
と連通ずる通気管で、漏洩検査時には該通気管8は蓋9
によって気密に施蓋される。
FIG. 1 shows a configuration diagram of the present invention. In the figure, 1 is an underground tank buried underground of a gas station. A predetermined amount of liquid 2 is stored in the underground tank 1, and a liquid phase part A and a gas It is defined by phase part B. Reference numeral 3 denotes a suction pipe for sucking up the liquid 2 from a lubrication pipe that replenishes liquid from a tank truck or the like to the underground tank 1. ,
At the time of leakage inspection, the pressure inside the tank 1 becomes negative, so it is automatically closed. 8 is a ventilation pipe that communicates the gas phase part B in the underground tank 1 with the atmosphere, and during leakage inspection, the ventilation pipe 8 is connected to the lid 9.
It is sealed airtight.

なお、前記計量機6は周知の如く、モータ6A。In addition, the said weighing machine 6 is a motor 6A as well-known.

逆止弁7の次段に設けられ該モータ6Aによって作動す
るポンプ6B、給油量を計測する流出側60、該流量計
60の流出側にホース6Dを介して設けられたノズル6
E等から構成される。
A pump 6B provided next to the check valve 7 and operated by the motor 6A, an outflow side 60 that measures the amount of oil supplied, and a nozzle 6 provided on the outflow side of the flowmeter 60 via a hose 6D.
Consists of E, etc.

10は地下タンク1内の液面を計測するための計量口で
、該計量口10は液面センサ11が地下タンク1内に挿
入設置され、栓12によって気密に施蓋されている。そ
して、液面センサ11は給油所事務所13内等に設けら
れた液面測定器14に信号線15を介して接続され、該
液面測定器14によυ地下タンク1ηの液面を計測表示
するようになっている。
Reference numeral 10 denotes a measuring port for measuring the liquid level in the underground tank 1. A liquid level sensor 11 is inserted into the measuring port 10 into the underground tank 1, and the measuring port 10 is airtightly covered with a stopper 12. The liquid level sensor 11 is connected via a signal line 15 to a liquid level measuring device 14 installed in a gas station office 13, etc., and the liquid level in the underground tank 1η is measured by the liquid level measuring device 14. It is designed to be displayed.

なお、以上の構成は従来技術によるガソリン給油所の構
成と実質的に変るところがない。
Note that the above configuration is substantially the same as the configuration of a gasoline filling station according to the prior art.

16は通気パイプで、該通気ieイブ16の一端は栓1
2を介して地下タンク1の気相gaに挿入され、その他
端は事務室13内に設けられ、減圧状態における地下タ
ンク1内の圧力の変化を監視する圧力計ン’(いしマノ
メータ17(以下、圧力計17という)に接続されてい
る。
16 is a ventilation pipe, and one end of the ventilation pipe 16 is connected to the stopper 1.
2 into the gas phase gas of the underground tank 1, and the other end is installed in the office 13, and a pressure gauge 17 (hereinafter referred to as a manometer) is installed in the office 13 to monitor changes in the pressure inside the underground tank 1 in a depressurized state. , pressure gauge 17).

次に、18は信号線で、該信号線18の一端は栓12を
介し−C地下タンク1の気相部B内に吊下されてその先
端には集音用−のマイクロフォン19が接続され、また
該信号線18の他端にはスピーカ、騒音計、カセットテ
ープレコーダ等の測定装置または記録装置20(以下、
測定装置20という)が接続されている。
Next, 18 is a signal line, and one end of the signal line 18 is suspended in the gas phase part B of the underground tank 1 through the stopper 12, and a microphone 19 for collecting sound is connected to the tip of the signal line 18. , and the other end of the signal line 18 is connected to a measuring device or recording device 20 (hereinafter referred to as
A measuring device 20) is connected thereto.

さらに、21は地下タンク1内を減圧するための減圧手
段としてのエジェクタで、該エジェクタ21の流入口2
1Aは配管22を介して窒素ガス?ンペ23に接続され
、該配管22の途中にはレギュレータ24、手動弁25
が設けられている。
Furthermore, 21 is an ejector as a pressure reducing means for reducing the pressure inside the underground tank 1, and the inlet 2 of the ejector 21 is
1A is nitrogen gas via piping 22? A regulator 24 and a manual valve 25 are connected to the piping 23.
is provided.

壕だ、エジェクタ21の流出口21Bは配管26を介し
てサイレンサ27と接続され、該配管26の途中には手
動弁28が設けられている。さらに、エジェクタ21の
吸引口21Cは配管′29の一端が接続され、該配管2
9の他端は栓12を介して地下タンク1の気相部Bに開
口し、その途中に手動弁30が設けられている。
The outlet 21B of the ejector 21 is connected to a silencer 27 via a pipe 26, and a manual valve 28 is provided in the middle of the pipe 26. Further, the suction port 21C of the ejector 21 is connected to one end of the piping '29, and the suction port 21C of the ejector 21 is connected to one end of the piping '29.
The other end of 9 opens into the gas phase part B of the underground tank 1 via a plug 12, and a manual valve 30 is provided in the middle.

なお、図中31は地下タンク1の気相部Bに形成された
洩れ穴、32は液体2中を上昇する気泡を示す。
In addition, in the figure, 31 indicates a leak hole formed in the gas phase part B of the underground tank 1, and 32 indicates a bubble rising in the liquid 2.

このように構成される装置を用いて漏洩検査を行なうに
は、まず、図示の如く注油li¥3、通気管8の開口を
それぞれ蓋4.9によって気密に施蓋し、かつ計量口1
0を栓12によって気密に施栓する。これによって、吸
上げ′u5も逆止弁7により閉止されているので地下タ
ンク1内は気密に閉塞される。この際、前記栓12を介
して載枠12から地下タンク1の気相部Bに向けてマイ
クロフォン19を吊下すると共に、載枠12から通気ツ
クイブ16を気相部Bに開口させる。
In order to perform a leakage test using the device configured as described above, first, as shown in the figure, the openings of the lubricating pipe 3 and the ventilation pipe 8 are each airtightly covered with the lids 4 and 9, and the measuring port 1 is closed.
0 is hermetically sealed with a stopper 12. As a result, since the suction 'u5 is also closed by the check valve 7, the inside of the underground tank 1 is airtightly closed. At this time, the microphone 19 is suspended from the mounting frame 12 to the gas phase part B of the underground tank 1 via the stopper 12, and the ventilation tube 16 is opened from the mounting frame 12 to the gas phase part B.

次に、地下タンク1内を減圧するには、手動弁25 、
28’ 、 30を全部開弁状態とし、窒素力゛スヒン
ペ23内の窒素ガスをエジェクタ21に供給する。この
際、地下タンクl内は完全に閉塞されているので、該地
下タンク1の気相部Bの空気およびガソリン蒸気からな
る気体は配管29ケ介して吸引口21Cよシエジェクタ
21に吸引きれ、9去ガスと一緒に方って配管26を介
してサイレンサ27から大気中に放出される。そして、
圧力側17で地下タンク1内の減圧状態を監視しつつ減
圧し、核地下タンクエ内が所定圧力まで減圧されたとき
、手動弁25.30′f:閉弁し、吸引を停止する。こ
の際、地下タンク1内の空気中には大量のガソリン蒸気
が混入しているが、該ガソリン蒸気は不活性ガスである
窒素ガスと一緒に大気中に放出されるから、爆発等の危
険環境を作ることはない。
Next, in order to reduce the pressure inside the underground tank 1, a manual valve 25,
All valves 28' and 30 are opened, and nitrogen gas in the nitrogen gas pump 23 is supplied to the ejector 21. At this time, since the inside of the underground tank 1 is completely closed, the gas consisting of air and gasoline vapor in the gas phase part B of the underground tank 1 is sucked into the sijector 21 through the suction port 21C through the pipes 29, and It is released into the atmosphere from the silencer 27 through the piping 26 together with the removed gas. and,
The pressure inside the underground tank 1 is reduced while monitoring the reduced pressure state on the pressure side 17, and when the inside of the nuclear underground tank is reduced to a predetermined pressure, the manual valve 25.30'f: closes and stops suction. At this time, a large amount of gasoline vapor is mixed into the air inside the underground tank 1, but this gasoline vapor is released into the atmosphere together with nitrogen gas, which is an inert gas, creating a dangerous environment such as an explosion. I never make it.

然るに、地下タンク1の液相部Aに洩れ穴31があると
きには、該地下タンク1内は減圧状態にあるために該洩
れ穴31から外部空気が吸込まれ、この吸込まれた外部
空気は気泡32となって液体2内を上昇する。この除、
気泡321drブクブク」「ボコボコ」というような吸
気音を発しつつ上昇するから、これをマイクロフォン1
9で集音し、信号線18を介して測定装置ft20で測
定することによって洩れ穴31の有無を判定し、地下タ
ンク1の漏洩を検査することができる。
However, when there is a leak hole 31 in the liquid phase part A of the underground tank 1, outside air is sucked in from the leak hole 31 because the inside of the underground tank 1 is in a reduced pressure state, and this sucked outside air becomes bubbles 32. and rises in the liquid 2. Except for this,
Air bubbles 321dr rise while emitting intake sounds such as "bubbling" and "bubbling", so this can be detected using microphone 1.
By collecting the sound at 9 and measuring it with the measuring device ft20 via the signal line 18, the presence or absence of the leak hole 31 can be determined, and leakage of the underground tank 1 can be inspected.

この検査作業に際して、エジェクタ21によって地下タ
ンク1内を減圧状態にした直後は最も減圧状態が太きい
から、測定装置20にスピーカを使用したときにはエジ
ェクタ21の停止直後において発生周期の早い大きな吸
気音を聞き取ることができる。祉た、測定装置20−騒
音計を用いit場合には所定の騒音を測定し、記録する
ことができる。さらに、測定装置20にカセットテール
コーダ?用いたときには、刻々の吸気音を記録しておキ
、後に所要の解析に使用することができる。
During this inspection work, immediately after the ejector 21 has reduced the pressure inside the underground tank 1, the reduced pressure is at its highest, so if a speaker is used in the measuring device 20, a loud intake sound with a rapid generation cycle will be heard immediately after the ejector 21 stops. I can hear it. Additionally, if a measuring device 20--a sound level meter is used--the predetermined noise can be measured and recorded. Furthermore, is there a cassette tail coder in the measuring device 20? When used, the momentary intake sound can be recorded and used later for necessary analysis.

一方、地下タンク1の気相部Bに洩れ穴があったシ、栓
12等が不完全であって外部より空気が侵入する場合に
は、該洩れ穴や不完全箇所から「シュシュ」というよう
な連続的な吸気音を発しつつ地下タンク1内に空気が牧
気さ几るから第1図に示す如く液相部Aに洩れ穴31が
ある場合の吸気音と明瞭に区別することができ、地下タ
ンク1内の気AUJ部Bの%4 thの有無についても
直ちに検出し判別することができる。
On the other hand, if there is a leak hole in the gas phase part B of the underground tank 1, or if the plug 12 or the like is incomplete and air enters from the outside, a "shushu" sound may be heard from the leak hole or the incomplete part. Since the air cools inside the underground tank 1 while emitting a continuous intake sound, it can be clearly distinguished from the intake sound when there is a leak hole 31 in the liquid phase part A as shown in Fig. 1. , the presence or absence of air AUJ part B in the underground tank 1 can be immediately detected and determined.

さらに、例えば通気管8の途中で地下タンク1より離れ
た箇所に洩れ穴がある等、マイクロフォン19によって
吸気音が検出判別しにくい地下タンク1外の箇所の洩れ
穴の有無についても、減圧時タンクl内の圧力を監視す
る圧力1t17で洩れ穴よシ侵入する空気によりタンク
1内の圧力が上昇するのを確認することができる。
Furthermore, the presence or absence of a leak hole in a location outside the underground tank 1 where intake sound is difficult to detect and distinguish using the microphone 19, such as a leak hole in a location away from the underground tank 1 in the middle of the ventilation pipe 8, is also checked. Monitoring the pressure in tank 1 At pressure 1t17, it can be confirmed that the pressure in tank 1 increases due to air entering through the leak hole.

なお、地下タンク1の洩れ穴31より地下水脈が侵入し
てきた場合は、上記音による検出、圧力による検出に加
えて、地下タンク1内に挿入設置された液面センサ11
の測定液位の変化により洩れ穴31の有無を検出できる
ことは言うまでもない。
In addition, when underground water veins enter through the leak hole 31 of the underground tank 1, in addition to the above-mentioned sound detection and pressure detection, the liquid level sensor 11 inserted into the underground tank 1 is used.
It goes without saying that the presence or absence of the leak hole 31 can be detected by changes in the measured liquid level.

次に、地下タンク1内の漏洩検査が終了したら、該地下
タンク1内を大気圧状態に復元する必要がある。このた
めに、手動弁28を閉弁、手動弁25.30に開弁する
ことによシ、窒素ガスビンペ23内の窒素ガスは配管2
2.29i介して地下タンク1に流入する。そして、圧
力計17で地下タンク1内の復元状態を監視し、大気圧
状態となったら、手動弁25を閉弁し、手動弁28 、
30を開弁ずれば、復元操作が完了する。従って、復元
時にも窒素ガスを補給するだけでよいから、従来技術の
如く排出して容器に貯えておいた液体を再び戻す方法に
比較して、操作がIAj単でアシ、かつ液体を戻すとき
に発生する静電気による4発事故等の虞れもない。
Next, after the leakage inspection inside the underground tank 1 is completed, it is necessary to restore the inside of the underground tank 1 to the atmospheric pressure state. For this purpose, by closing the manual valve 28 and opening the manual valve 25.30, the nitrogen gas in the nitrogen gas bottle 23 is released from the pipe 2.
2.29i into underground tank 1. Then, the restoration state inside the underground tank 1 is monitored with the pressure gauge 17, and when the pressure reaches atmospheric pressure, the manual valve 25 is closed, and the manual valve 28 is closed.
When the valve 30 is opened, the restoring operation is completed. Therefore, since it is only necessary to replenish nitrogen gas during restoration, the operation is simple, and when returning the liquid, compared to the conventional method of returning the liquid that has been drained and stored in a container. There is no risk of a 4-shot accident due to static electricity generated during the operation.

なお、本実施例では、マイクロフォン19は液面センサ
11と別体として設けたが、例えば液面センサとして同
軸円筒静電容量型の液面センサ1rが設けられている場
合には、第2図に示す如くこの液面センサlrの内筒1
1′a内にマイクロフォン19を固設して、内筒1ra
および外筒x1′bには吸気音を集音しやすいように孔
11′cを設けてマイクロフォン19を液面センサ11
′ト一体構造となし、漏洩検査の際はコネクタ11′d
を介して信号線18によシ測定装置20と接続する構成
としてもよい。
In this embodiment, the microphone 19 is provided separately from the liquid level sensor 11, but if a coaxial cylindrical capacitance type liquid level sensor 1r is provided as the liquid level sensor, for example, as shown in FIG. As shown in the figure, the inner cylinder 1 of this liquid level sensor lr
A microphone 19 is fixedly installed inside the inner cylinder 1'a.
A hole 11'c is provided in the outer cylinder x1'b to easily collect intake sound, and a microphone 19 is connected to the liquid level sensor 11.
The connector 11'd is integrally constructed.
It may also be configured to connect to the measuring device 20 via the signal line 18.

また、前記実施例ではマイクロフォン19は地下タンク
1内の気相部Bに設けるものとして述べたが、液相部A
または地下タンク1の外側壁面に接触させた場合にも、
地下タンク1内の気相部Bは共鳴室となっているから、
吸気音を明瞭に検出することができる。
Further, in the above embodiment, the microphone 19 was described as being installed in the gas phase part B in the underground tank 1, but the microphone 19 was provided in the liquid phase part A.
Or when it comes into contact with the outside wall of the underground tank 1,
Since the gas phase part B in the underground tank 1 is a resonance chamber,
Intake sound can be clearly detected.

さらに、エジェクタ21からの配管29f:計量口10
に栓12′ff:介して挿入するものとして述べたが、
注油管3に挿入してもよく、またマイクロフォン19、
通気パイプ16も同様に注油管3に挿入してもよい。
Furthermore, piping 29f from the ejector 21: metering port 10
Plug 12'ff: Although described as being inserted through the
It may be inserted into the oil supply pipe 3, and the microphone 19,
The ventilation pipe 16 may also be inserted into the oil supply pipe 3 in the same manner.

本発明に係るタンクの漏洩検査方法は以上詳細に述べた
如くであるから、地下タンク内の油液を排出することな
く減圧状態を得ることができ、また検量終了後の圧力の
復元も簡単に行なうことができ、しかも安全性全確保す
ることができる等の効果を萎する。
Since the tank leakage inspection method according to the present invention has been described in detail above, it is possible to obtain a reduced pressure state without discharging the oil in the underground tank, and it is also possible to easily restore the pressure after calibration. It is possible to carry out the same procedure, and furthermore, it is possible to ensure complete safety and other effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るタンク漏洩検査方法を示す構成図
、第2図はマイクロフォンと液面センサの取付形態の一
例を示す断面図である。 1・・・地下タンク、2・・・液体、3・・・注油管、
4゜0611店竺 り10.西 1Pゼ# 11;、、
、雪+士)椙隻 710.4h山4t、8・・・通気管
、10・・・計量口、11・・・液面センサ、14・・
・液面測定器、16・・・通気パイゾ、17・・・圧力
計、19・・・マイクロフォン、20・・・記録装置、
21・・・エジェクタ、22 、’2 fi 、 29
・・・配管、23・・・窒素ガスボンベ、24・・・レ
ギュレータ、25゜28.30・・・手動弁、27・・
・ヤイレンサ、31・・・洩れ穴。
FIG. 1 is a configuration diagram showing a tank leakage inspection method according to the present invention, and FIG. 2 is a sectional view showing an example of the mounting form of a microphone and a liquid level sensor. 1... Underground tank, 2... Liquid, 3... Oil supply pipe,
4゜0611 store completion 10. West 1Pze# 11;,,
, Yuki+Shi) Sugisen 710.4h mountain 4t, 8...Vent pipe, 10...Measuring port, 11...Liquid level sensor, 14...
・Liquid level measuring device, 16... Ventilation pizo, 17... Pressure gauge, 19... Microphone, 20... Recording device,
21... Ejector, 22, '2 fi, 29
...Piping, 23...Nitrogen gas cylinder, 24...Regulator, 25°28.30...Manual valve, 27...
・Yairensa, 31...Leak hole.

Claims (1)

【特許請求の範囲】[Claims] 油液が貯蔵されたタンク内を気密に閉塞し、該タンク内
の気体を該タンク外に排出して該タンク内を減圧状態と
し、該タンク内に洩れ穴がある場合に前記減圧状態にお
いて外部からタンク内に吸気される空気による吸気音の
発生、またはタンク内圧の上昇によって漏洩の有無を検
査するタンクの漏洩検査方法において、減圧状態を作る
除前記タンク内の気体を減圧用の不活性ガスに混入させ
てタンク外に排出することを特徴とするタンクの漏洩検
査方法。
The inside of the tank in which the oil liquid is stored is airtightly closed, the gas inside the tank is discharged to the outside of the tank, the inside of the tank is reduced in pressure, and if there is a leakage hole in the tank, the outside is closed in the reduced pressure state. In a tank leakage inspection method in which the presence or absence of leakage is inspected by the generation of intake noise due to the air sucked into the tank from the tank or by the increase in the tank internal pressure, the gas in the tank is removed to create a depressurized state. A tank leakage inspection method characterized by mixing the mixture with water and discharging it outside the tank.
JP58218524A 1983-11-18 1983-11-18 Leakage inspecting method of tank Granted JPS60111132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58218524A JPS60111132A (en) 1983-11-18 1983-11-18 Leakage inspecting method of tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58218524A JPS60111132A (en) 1983-11-18 1983-11-18 Leakage inspecting method of tank

Publications (2)

Publication Number Publication Date
JPS60111132A true JPS60111132A (en) 1985-06-17
JPH0231332B2 JPH0231332B2 (en) 1990-07-12

Family

ID=16721278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58218524A Granted JPS60111132A (en) 1983-11-18 1983-11-18 Leakage inspecting method of tank

Country Status (1)

Country Link
JP (1) JPS60111132A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329226A (en) * 1986-07-23 1988-02-06 Japan Metals & Chem Co Ltd Inspecting and measuring instrument for leak of underground tank
EP0359570A2 (en) * 1988-09-14 1990-03-21 TATE & LYLE PUBLIC LIMITED COMPANY Leak detecting apparatus
WO1999022214A3 (en) * 1997-10-29 1999-09-02 Carl Denby Acoustic leakage testing
US7810378B2 (en) 2007-06-21 2010-10-12 National Research Council Of Canada Monitoring of leakage in wastewater force mains and other pipes carrying fluid under pressure
CN102072408A (en) * 2009-11-23 2011-05-25 中国科学院生态环境研究中心 Leakage detecting method for urban water supply pipes
US9772250B2 (en) 2011-08-12 2017-09-26 Mueller International, Llc Leak detector and sensor
US9849322B2 (en) 2010-06-16 2017-12-26 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US9939344B2 (en) 2012-10-26 2018-04-10 Mueller International, Llc Detecting leaks in a fluid distribution system
US10283857B2 (en) 2016-02-12 2019-05-07 Mueller International, Llc Nozzle cap multi-band antenna assembly
US10305178B2 (en) 2016-02-12 2019-05-28 Mueller International, Llc Nozzle cap multi-band antenna assembly
US10539480B2 (en) 2017-10-27 2020-01-21 Mueller International, Llc Frequency sub-band leak detection
US10859462B2 (en) 2018-09-04 2020-12-08 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US11342656B2 (en) 2018-12-28 2022-05-24 Mueller International, Llc Nozzle cap encapsulated antenna system
US11473993B2 (en) 2019-05-31 2022-10-18 Mueller International, Llc Hydrant nozzle cap
US11542690B2 (en) 2020-05-14 2023-01-03 Mueller International, Llc Hydrant nozzle cap adapter

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329226A (en) * 1986-07-23 1988-02-06 Japan Metals & Chem Co Ltd Inspecting and measuring instrument for leak of underground tank
EP0359570A2 (en) * 1988-09-14 1990-03-21 TATE & LYLE PUBLIC LIMITED COMPANY Leak detecting apparatus
WO1999022214A3 (en) * 1997-10-29 1999-09-02 Carl Denby Acoustic leakage testing
US7810378B2 (en) 2007-06-21 2010-10-12 National Research Council Of Canada Monitoring of leakage in wastewater force mains and other pipes carrying fluid under pressure
CN102072408A (en) * 2009-11-23 2011-05-25 中国科学院生态环境研究中心 Leakage detecting method for urban water supply pipes
US9849322B2 (en) 2010-06-16 2017-12-26 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US10857403B2 (en) 2010-06-16 2020-12-08 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US9861848B2 (en) 2010-06-16 2018-01-09 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US10881888B2 (en) 2010-06-16 2021-01-05 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
US10175135B2 (en) 2011-08-12 2019-01-08 Mueller International, Llc Leak detector
US11680865B2 (en) 2011-08-12 2023-06-20 Mueller International, Llc Leak detection in water distribution systems using acoustic signals
US11630021B2 (en) 2011-08-12 2023-04-18 Mueller International, Llc Enclosure for leak detector
US10386257B2 (en) 2011-08-12 2019-08-20 Mueller International, Llc Enclosure for leak detector
US9772250B2 (en) 2011-08-12 2017-09-26 Mueller International, Llc Leak detector and sensor
US9939344B2 (en) 2012-10-26 2018-04-10 Mueller International, Llc Detecting leaks in a fluid distribution system
US11527821B2 (en) 2016-02-12 2022-12-13 Mueller International, Llc Nozzle cap assembly
US11652284B2 (en) 2016-02-12 2023-05-16 Mueller International, Llc Nozzle cap assembly
US11837782B2 (en) 2016-02-12 2023-12-05 Mueller International, Llc Nozzle cap assembly
US10283857B2 (en) 2016-02-12 2019-05-07 Mueller International, Llc Nozzle cap multi-band antenna assembly
US11469494B2 (en) 2016-02-12 2022-10-11 Mueller International, Llc Nozzle cap multi-band antenna assembly
US10305178B2 (en) 2016-02-12 2019-05-28 Mueller International, Llc Nozzle cap multi-band antenna assembly
US10539480B2 (en) 2017-10-27 2020-01-21 Mueller International, Llc Frequency sub-band leak detection
US10859462B2 (en) 2018-09-04 2020-12-08 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US11422054B2 (en) 2018-09-04 2022-08-23 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US11692901B2 (en) 2018-09-04 2023-07-04 Mueller International, Llc Hydrant cap leak detector with oriented sensor
US11342656B2 (en) 2018-12-28 2022-05-24 Mueller International, Llc Nozzle cap encapsulated antenna system
US11624674B2 (en) 2019-05-31 2023-04-11 Mueller International, Llc Hydrant nozzle cap with antenna
US11473993B2 (en) 2019-05-31 2022-10-18 Mueller International, Llc Hydrant nozzle cap
US11542690B2 (en) 2020-05-14 2023-01-03 Mueller International, Llc Hydrant nozzle cap adapter

Also Published As

Publication number Publication date
JPH0231332B2 (en) 1990-07-12

Similar Documents

Publication Publication Date Title
JPS60111132A (en) Leakage inspecting method of tank
US6314794B1 (en) Method and apparatus for detecting leaks in heat exchangers for motor vehicles
JPS59170739A (en) Leak inspecting method of tank
US20080307858A1 (en) Apparatus and Process for Leak-Testing and Qualification of Fluid Dispensing Vessels
US4583394A (en) Device and method for leak location
JP4037954B2 (en) Tracer gas leak detector
CN104296943A (en) Vacuum type helium detecting equipment and method thereof
JP2001511531A (en) Apparatus and method for permanently inspecting airtightness of lid of container for radioactive material
JPH09503303A (en) Improved leak detection
JP4374241B2 (en) System and method for measuring the sealability of an object
KR920003332A (en) Gas pressure monitoring devices in casks containing latent disturbance gases and methods of determining the cause of leaks detected by such devices
US8104327B1 (en) Leak detection method for a primary containment system
JP3062530B2 (en) Leak detection method and leak detection device
JPH0648373Y2 (en) Container leakage inspection device
JPH1019717A (en) Apparatus and method for inspecting pressure of tank
JP3897860B2 (en) Sealed leak test method
JPH0421088Y2 (en)
JP4271006B2 (en) Leakage inspection method and leak inspection apparatus
JPH11183301A (en) Fuel gas leakage detecting method, fuel gas compression unit for facilitating fuel gas leakage detection, and fuel tank
JPH09144998A (en) Device for checking leakage of halogenated gas
CN209979168U (en) Engine gasket sealing performance test equipment
RU2085887C1 (en) Method of detection of loss of tightness of technological line in mix of air-tight compartment
CN209673304U (en) Height pressure difference liquid-filling machine
FR2606878A1 (en) Transformer tank leak detection
JPH0262167B2 (en)