JPS60111092A - Cooling method of compressed gas in gas compressor plant equipped with power recovering apparatus - Google Patents

Cooling method of compressed gas in gas compressor plant equipped with power recovering apparatus

Info

Publication number
JPS60111092A
JPS60111092A JP19365784A JP19365784A JPS60111092A JP S60111092 A JPS60111092 A JP S60111092A JP 19365784 A JP19365784 A JP 19365784A JP 19365784 A JP19365784 A JP 19365784A JP S60111092 A JPS60111092 A JP S60111092A
Authority
JP
Japan
Prior art keywords
refrigerant
coolant
heat exchanger
temperature
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19365784A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishii
石井 弘史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP19365784A priority Critical patent/JPS60111092A/en
Publication of JPS60111092A publication Critical patent/JPS60111092A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit the sufficient cooling for compressed gas by mixing the second coolant having a different temperature with the first coolant and allowing the second coolant to circulate in a heat exchanger in a condenser, thus reducing the loss of energy outside and recovering the more revolution power. CONSTITUTION:In a condenser 5, the second coolant is molten, and the concenttration is increased, and the first coolant into which the second coolant is dissolved is supplied into a heat exchanger 3 by a pump 6. Therefore, the second coolant circulates in a closed circuit, repeating vaporization and absorption. The second coolant works in a turbine 4 and recovers the heat of the gas compressed by a compressor 2. In this case, the property of the second coolant can be selected, with respect to that of the first coolant, to have the liquefaction temperature far lower than the temperature T8 of the outside cooling water, in the state under the outlet pressure of the turbine 4. Therefore, the temperature T10 of the gas in a discharge pipe 7 can be reduced far lower in comparison with the temperature T8 of the outside cooling water, and the driving power necessary for a high-pressure compressor 22 can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一般に化学プラントなどで使用されるガス圧縮
プラントの圧縮ガスの冷却方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention generally relates to a method for cooling compressed gas in a gas compression plant used in a chemical plant or the like.

(従来の技術) 圧縮機において発生ずる圧縮熱を動力に回収し、この動
力を例えば当該圧縮機に利用することによって消費動力
の軽減を図るプラントにおいて、圧縮ガスの圧縮機にお
ける吐出温度を低下させ、その熱量を回転エネルギーと
して回収する手段は公知であり、例えば特開昭52−3
7 (’+ 46号公報に記載されている。この公知資
料は、 ゛「圧iii機より吐出される圧縮ガスの有す
る熱量を有機質媒体に吸収させ、該有機タデ媒体を作動
流体とするタービンサイクルによりタービンを駆動させ
ること」および「該タービンを1−配圧縮機に連結して
当該圧縮はの駆動に用いること」を要旨としたものであ
る。ずなわら、第2図若しくは第3図に示すものを含む
ものと考えられる。第2図は圧縮機が1つのもの、第3
1ツIは圧縮機が2つのもので、前記公報の図面と系統
図的に同一のものか第3図である。圧縮機2又は21、
22は駆動機1によって駆動され、圧縮機2又は21.
22より吐出される圧縮ガスを熱交換器3あるいは31
.32によって冷却し、更に冷却器8又は8,9を経由
して常用温度まで低下させて吐出管7により排出する。
(Prior art) In a plant that aims to reduce power consumption by recovering compression heat generated in a compressor into power and using this power in the compressor, for example, it is possible to reduce the discharge temperature of compressed gas in the compressor. , means for recovering the amount of heat as rotational energy is known, for example, as disclosed in Japanese Patent Application Laid-Open No. 52-3
7 (Described in '+ No. 46. This publicly known material describes a turbine cycle in which the heat of compressed gas discharged from a pressure III compressor is absorbed into an organic medium, and the organic medium is used as a working fluid. The gist of this document is to drive a turbine by means of a compressor, and to connect the turbine to a single-distribution compressor and use the compressor to drive the compressor. It is considered that the compressor shown in Fig. 2 includes one compressor and the third one.
Model 1 I has two compressors, and the system diagram shown in Figure 3 is the same as the drawing in the above-mentioned publication. compressor 2 or 21,
22 is driven by the driver 1, and the compressor 2 or 21.
The compressed gas discharged from 22 is transferred to heat exchanger 3 or 31.
.. 32, and further lowered to a normal operating temperature via a cooler 8 or 8, 9, and then discharged through a discharge pipe 7.

(発明が解決しようとする問題点) 上記公知のプラントにおいては、冷却器8及び9に多量
の水が使用され、系外に圧縮ガスから得た多量のjH%
量が流失してしまい、結局タービンが得る熱量が少なく
回転動力として回収するエネルギーが少ないという問題
がある。
(Problems to be Solved by the Invention) In the above-mentioned known plant, a large amount of water is used in the coolers 8 and 9, and a large amount of jH% obtained from the compressed gas is released outside the system.
There is a problem that the amount of heat is lost, and as a result, the amount of heat obtained by the turbine is small, and the amount of energy recovered as rotational power is small.

本発明は−に記に鑑/Iなされたもので、エネルギーの
外部への流失を少なくして回転動力を多く回収すると共
に、圧縮機吐出側圧縮ガスを系内の熱交換器を通ずだの
で十分に冷却し、圧縮ガスの常用温度にまで冷却するよ
うに工大したものである。
The present invention was made in view of the above, and it reduces the loss of energy to the outside and recovers a large amount of rotational power, and also allows compressed gas on the discharge side of the compressor to pass through a heat exchanger in the system. Therefore, it was engineered to be sufficiently cooled to the temperature at which compressed gas is commonly used.

(問題点を解決するための手段) 本発明は、圧縮機出口に熱交換器を設りてlF縮ガスを
冷却し、該熱交換器の冷媒をタービンザイクルに循環せ
しめ圧縮ガスの熱エネルギーを回転動力に変換させるプ
ラン1において、気化温度の異なる2種の冷媒を混合し
ζ使用し、圧縮機出口の圧縮ガスを熱交換器に61、っ
て冷f、lIし、該混合冷媒中の第一冷媒中の第二冷媒
を気化し、該第二冷媒によってタービンを回転し、該タ
ービンによって膨張冷却された第二冷媒を第二熱交換器
に送給(7て前記圧縮ガスを再冷711し、その後コン
デンサにおいて該第二冷媒を第一冷媒に混合してniJ
記熱交熱交換器環するよ・うにした動力回収装置を備え
たガスIE縮機プラントの圧縮ガス冷却方法である。
(Means for Solving the Problems) The present invention cools the IF condensed gas by installing a heat exchanger at the outlet of the compressor, and circulates the refrigerant in the heat exchanger through the turbine cycle to absorb the thermal energy of the compressed gas. In plan 1 for converting into rotary power, two types of refrigerants with different vaporization temperatures are mixed and used, the compressed gas at the outlet of the compressor is cooled by a heat exchanger, and the refrigerant in the mixed refrigerant is The second refrigerant in the first refrigerant is vaporized, a turbine is rotated by the second refrigerant, and the second refrigerant expanded and cooled by the turbine is sent to the second heat exchanger (7) to re-cool the compressed gas. 711, and then mixes the second refrigerant with the first refrigerant in the condenser to produce niJ
This is a method for cooling compressed gas in a gas IE compressor plant equipped with a power recovery device that includes a heat exchanger.

(作 用) 第1図において、圧縮機2によって圧縮されたガスの熱
量が熱交換器3Lこおいて液状の第一の冷媒に移動する
。このり1シ量を受L)た第一の冷媒はその中に溶り込
んでいた第二のン令媒をメに発させる。ガス状になった
第二の冷媒ば冷カJ器10によって外部からの冷却水に
よって温度を下げる。そしてタービン4に入り膨張する
ことによってタービンが機械的な出力を出すと共にその
第二の冷媒自体の温度は膨張により極めて低い温度とな
る。タービン4を出たその第二の冷媒は第二の熱交換器
3′にて先の熱交換器3を出た前記の圧縮されたガスを
さらに冷却しT1c+の温度にする。そして第二熱交換
器3′を出た第二の冷媒はコンデンサ5に向かう。
(Function) In FIG. 1, the heat of the gas compressed by the compressor 2 is transferred to the liquid first refrigerant through the heat exchanger 3L. The first refrigerant that has received this amount causes the second refrigerant that has dissolved therein to be emitted. The temperature of the second refrigerant, which has become gaseous, is lowered by cooling water supplied from the outside by the cooler 10. The second refrigerant then enters the turbine 4 and expands, causing the turbine to produce mechanical output, and the temperature of the second refrigerant itself becomes extremely low due to the expansion. The second refrigerant leaving the turbine 4 further cools the compressed gas leaving the previous heat exchanger 3 in the second heat exchanger 3' to a temperature of T1c+. Then, the second refrigerant leaving the second heat exchanger 3' heads to the condenser 5.

ところでコンデンサ5は、前記熱交換器3において第二
の冷媒を蒸発させて第二の冷媒の濃度がうずくなった第
一の冷媒がコンデンサ5に流れこんでくるようになされ
ており、またコンデンサ5ば外部の冷却水で冷却されて
いる。このコンデンサ5で冷却されて温度の低くなった
第一の冷媒は、第二〇熱交換器3′を出てきたガス状の
第二の冷媒を容易に吸収する。第二の冷媒は温度によっ
て第一の冷媒に/8解される度合が著しく異なるものを
選定しておく七よい。
By the way, the condenser 5 is configured such that the first refrigerant whose concentration has been reduced by evaporating the second refrigerant in the heat exchanger 3 flows into the condenser 5. In some cases, it is cooled by external cooling water. The first refrigerant, whose temperature has been lowered by being cooled by the condenser 5, easily absorbs the gaseous second refrigerant coming out of the second heat exchanger 3'. It is advisable to select a second refrigerant whose degree of decomposition by the first refrigerant differs significantly depending on the temperature.

第二の上記ガス状の冷媒はコンデンサ5の中で第一の冷
媒に吸収され第一の冷媒の中に/8解した状態、すなわ
ち、第一の冷媒にとりこんだ液体となる。言いかえれば
コンデン9°5ば、ガス状の第二の冷媒を液状にかえる
ものである。第二の冷媒を溶解しその濃度が高くなった
第一・の冷媒はポンプ6によりもとの熱交換器3に送り
込まれる。このように、第二の冷媒は蒸発・吸収を繰り
返しつつ閉回路を循環する。そし″Cタービン4が仕事
をし、圧縮機2によって圧縮されたガスの熱量を回収す
ることができる。また、この場合には第二の冷媒の性質
を第一の冷媒に対し、温度によって著しく熔解される度
合をかえると共に、外部の冷却水の61に度TFIより
もタービン4の出口圧力の状態でははるかに低い液化温
度をもつように選定できる。このためtこ、用出管7の
ガス温度T、oを外部の冷却水の温度T9よりも低(す
ることが可能となる。もらろん、その場合はコンデンサ
5の外部からの冷却水5i :#′;よびタービン入口
側の冷却器H1に必要な合a1の外部からの冷却水量は
、例λは、第2図に示す系統の場合よりはふえる。しか
し、第1図の本発明の実施例は、例えば、従来の第3図
のような場合に対して特に有効となる。ずなわち、熱交
換器3に循環する冷媒の温度T7をり)部の冷却水の温
度より低下できることば高圧圧縮機22に要する駆動動
力を減することができるからである。(圧縮機に要する
駆動動力は圧縮機入口の圧縮されるガスの絶対温度に比
例する。なお、このことは中間冷却器を圧縮機設備に設
けることの意味でもある。)以上詳述したように、本発
明の実施例を第3図のような中間冷却器をもった圧縮機
設備に実施するとタービン4における動力の回収と共に
高圧圧縮機に要する駆動動力をさらに減することが出来
るので(駆動+jl!、 lの容量を大幅に低減するこ
とかできる。
The second gaseous refrigerant is absorbed by the first refrigerant in the condenser 5 and becomes dissolved in the first refrigerant, that is, becomes a liquid incorporated in the first refrigerant. In other words, the condenser 9°5 converts the gaseous second refrigerant into a liquid state. The first refrigerant, which has a higher concentration by dissolving the second refrigerant, is sent back to the heat exchanger 3 by the pump 6. In this way, the second refrigerant circulates in the closed circuit while repeating evaporation and absorption. Then, the C turbine 4 performs work and can recover the heat of the gas compressed by the compressor 2.In addition, in this case, the properties of the second refrigerant are significantly different from those of the first refrigerant depending on the temperature. In addition to changing the degree of melting, the external cooling water 61 can be selected to have a much lower liquefaction temperature at the exit pressure of the turbine 4 than the degree TFI. It is possible to make the temperature T, o lower than the temperature T9 of the external cooling water.In that case, the cooling water 5i: #'; The amount of external cooling water required for H1, for example λ, is greater than in the case of the system shown in Fig. 2. However, the embodiment of the present invention shown in Fig. 1, for example, This is particularly effective in cases such as those in which the temperature T7 of the refrigerant circulating in the heat exchanger 3 can be lowered than the temperature of the cooling water in the (The driving power required for the compressor is proportional to the absolute temperature of the compressed gas at the compressor inlet. This also means that an intercooler is installed in the compressor equipment. ) As detailed above, when the embodiment of the present invention is implemented in a compressor equipment having an intercooler as shown in Fig. 3, the power is recovered in the turbine 4 and the driving power required for the high-pressure compressor is further reduced. (drive+jl!, the capacity of l can be significantly reduced.

なお、符号10の冷却器はタービン4の入口渚。Note that the cooler 10 is at the inlet of the turbine 4.

度T4・を下げることによりタービン出1」?2!を度
16をより下げようとするものであり結局所要の吐1」
管ガス温度T7゜をより下げるために設iJkものであ
る。T10の温度がそれほど低くなくても良いときは勿
論符号10の冷却器はなくてもかまわない。
By lowering the degree T4, the turbine output is 1"? 2! It is intended to lower the degree of 16, and in the end the required level is 1.
This is designed to further lower the pipe gas temperature T7°. Of course, if the temperature of T10 does not need to be so low, the cooler 10 may be omitted.

なお、熱交換器3からコンデンサ5に第一の冷媒が向か
う配管に符号11の絞り一装置を設りて1[[カレー・
ルを調整するのが良い。
In addition, a throttle device 11 is installed in the pipe where the first refrigerant goes from the heat exchanger 3 to the condenser 5.
It is better to adjust the

(発明の効果) 上記説明で明らかな如く、本発明はガス圧縮機によって
46られた圧縮ガスを熱交換器によって冷却し、冷媒が
得た熱量を駆動力に変換するブラン1−において、その
熱交換器の効イシを良?f’にし、圧縮ガスの温度を糸
用温度にまで低下させると共に、その熱量を動力に変換
し7て熱量の外部への流失を極力おさえることができる
ので、得られた動力を圧縮機の駆動動力の−H41Hに
追加し、あるいは他の動力機関として使用してエネルギ
ーの回収が図れるので、化学ブランI・、ツJ泪プラン
ト等の圧縮機プラン1〜にJ白州して極めて大きな効果
を奏するものである。
(Effects of the Invention) As is clear from the above explanation, the present invention cools the compressed gas produced by the gas compressor using a heat exchanger, and converts the heat obtained by the refrigerant into driving force in the blank 1-. Is the exchanger effective? f', lowering the temperature of the compressed gas to the yarn temperature, and converting the heat into power7 to minimize the loss of heat to the outside, so the power obtained can be used to drive the compressor. Since it can be added to the -H41H of power or used as another power engine to recover energy, it can be used with J Hakushu for compressor plans 1~ of chemical bran I, Tsu J Nagi plant, etc., and has an extremely large effect. It is something.

また、冷媒の使用条件によって外部?47 j;++水
の温度よりタービン出口圧力の状態で、はろがにf民い
液化6rA度を持つようにすることも可能でi”+るの
で、圧縮ガスを低温度に冷却することができ、中間熱交
換器に本方式を使用すると高圧圧縮機の回転動力を減少
させることができる」二に、圧縮ガスの使用範囲も拡大
するという9)J果をも有する。
Also, depending on the conditions of use of the refrigerant, is it external? 47 j;++ It is also possible to make the compressed gas have a liquefaction level of 6 rA degrees at a turbine outlet pressure lower than the water temperature, so the compressed gas can be cooled to a low temperature. If this method is used in an intermediate heat exchanger, the rotational power of the high-pressure compressor can be reduced.Secondly, it also has the advantage of expanding the range of use of compressed gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するための一実施例の図式系統図
、第2図、第3図はそれぞれ公知例を示す図式系統図で
ある。 1・・・駆動機、2.2]、、 22・・・圧縮機、3
,3]。 32・・・熱交換器、3′・・・第二熱交換器、4・・
・タービン、5・・・コンデンサ、6・・・ポンプ、7
・・・吐出管、8.9.10・・・冷却器。
FIG. 1 is a diagrammatic system diagram of one embodiment for explaining the present invention, and FIGS. 2 and 3 are diagrammatic system diagrams showing known examples, respectively. 1...Driver, 2.2], 22...Compressor, 3
, 3]. 32... Heat exchanger, 3'... Second heat exchanger, 4...
・Turbine, 5... Capacitor, 6... Pump, 7
...Discharge pipe, 8.9.10...Cooler.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機出口に熱交換器を設けて圧縮ガスを冷却し、該熱
交換器の冷媒をタービンサイクルに循環せしめ圧縮ガス
の熱エネルギーを回転動力に変換させるプラントにおい
て、気化温度の異なる2種の冷媒を混合して使用し、圧
縮機出口の圧縮ガスを熱交換器によって冷却し、該混合
冷媒中の第一冷媒中の第二冷媒を気化し、該第二冷媒に
よってタービンを回転し、該タービンによって膨張冷却
された第二冷媒を第二熱交換器に送給して前記圧縮ガス
を再冷却し、そめ後コンデンサにおいて該第二冷媒を第
一冷媒に混合して前記熱交換器に循環するようにした動
力回収装置を備えたガス圧縮機プラン1〜の圧縮ガス冷
却方法。
In a plant that installs a heat exchanger at the outlet of the compressor to cool the compressed gas, and circulates the refrigerant in the heat exchanger to the turbine cycle to convert the thermal energy of the compressed gas into rotational power, two types of refrigerants with different vaporization temperatures are used. The compressed gas at the outlet of the compressor is cooled by a heat exchanger, the second refrigerant in the first refrigerant in the mixed refrigerant is vaporized, a turbine is rotated by the second refrigerant, and the turbine is rotated by the second refrigerant. The second refrigerant expanded and cooled by the second refrigerant is sent to the second heat exchanger to re-cool the compressed gas, and after cooling, the second refrigerant is mixed with the first refrigerant in the condenser and circulated to the heat exchanger. A compressed gas cooling method for a gas compressor plan 1 equipped with a power recovery device as described above.
JP19365784A 1984-09-14 1984-09-14 Cooling method of compressed gas in gas compressor plant equipped with power recovering apparatus Pending JPS60111092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19365784A JPS60111092A (en) 1984-09-14 1984-09-14 Cooling method of compressed gas in gas compressor plant equipped with power recovering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19365784A JPS60111092A (en) 1984-09-14 1984-09-14 Cooling method of compressed gas in gas compressor plant equipped with power recovering apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1996880A Division JPS56115896A (en) 1980-02-19 1980-02-19 Gas compressor plant equipped with power recovering means

Publications (1)

Publication Number Publication Date
JPS60111092A true JPS60111092A (en) 1985-06-17

Family

ID=16311593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19365784A Pending JPS60111092A (en) 1984-09-14 1984-09-14 Cooling method of compressed gas in gas compressor plant equipped with power recovering apparatus

Country Status (1)

Country Link
JP (1) JPS60111092A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245587A (en) * 2005-03-02 2006-09-14 Woodward Governor Co Retainer and method of maintaining circuit card in abutting contact with clamped side of chassis or heat sink
WO2007137373A1 (en) * 2006-06-01 2007-12-06 Atlas Copco Airpower, Naamloze Vennootschap Improved compressor device
JP2011012659A (en) * 2009-07-06 2011-01-20 Hitachi Industrial Equipment Systems Co Ltd Compressor
JP2013057256A (en) * 2011-09-07 2013-03-28 Ihi Corp Energy recovery system for compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237646A (en) * 1975-09-19 1977-03-23 Nippon Sanso Kk Method to recover the compression heat of compressor as a power

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237646A (en) * 1975-09-19 1977-03-23 Nippon Sanso Kk Method to recover the compression heat of compressor as a power

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245587A (en) * 2005-03-02 2006-09-14 Woodward Governor Co Retainer and method of maintaining circuit card in abutting contact with clamped side of chassis or heat sink
WO2007137373A1 (en) * 2006-06-01 2007-12-06 Atlas Copco Airpower, Naamloze Vennootschap Improved compressor device
BE1017317A3 (en) * 2006-06-01 2008-06-03 Atlas Copco Airpower Nv IMPROVED COMPRESSOR DEVICE.
US8197227B2 (en) 2006-06-01 2012-06-12 Atlas Copco Airpower, Naamloze Vennootschap Multi-stage compressor system
JP2011012659A (en) * 2009-07-06 2011-01-20 Hitachi Industrial Equipment Systems Co Ltd Compressor
US8955323B2 (en) 2009-07-06 2015-02-17 Hitachi Industrial Equipment Systems Co., Ltd. Compressor
US9897103B2 (en) 2009-07-06 2018-02-20 Hitachi Industrial Equipment Systems Co., Ltd. Compressor
JP2013057256A (en) * 2011-09-07 2013-03-28 Ihi Corp Energy recovery system for compressor

Similar Documents

Publication Publication Date Title
JP3365273B2 (en) Refrigeration cycle
US6675609B2 (en) Refrigerant cycle system with ejector pump
US4674297A (en) Chemically assisted mechanical refrigeration process
US4707996A (en) Chemically assisted mechanical refrigeration process
JP2003097857A (en) Air conditioning cycle
JP2007178072A (en) Air conditioner for vehicle
EP0817946B1 (en) Refrigeration system
JP2005329843A (en) Exhaust heat recovery system for vehicle
JPWO2006051617A1 (en) Heat pump using CO2 as a refrigerant and operating method thereof
JP5246891B2 (en) Heat pump system
JPS60111092A (en) Cooling method of compressed gas in gas compressor plant equipped with power recovering apparatus
JP3390801B2 (en) Cooling method of crushed material in low-temperature crushing equipment
JP2006017350A (en) Refrigeration device
EP0138041B1 (en) Chemically assisted mechanical refrigeration process
US3668549A (en) Extended closed cycle gas laser system
CN1405523A (en) Cooling system and method
JP2004212019A (en) Refrigeration system
KR100634606B1 (en) Fuel cell system and fuel cell stack cooling device thereof
JP2001041598A (en) Multi-stage compression refrigerating machine
US3306062A (en) Refrigeration system
KR100457660B1 (en) CO2 aircondination system for automobile
JPH05272837A (en) Compression absorption composite heat pump
JPH0429115Y2 (en)
KR200353120Y1 (en) Gallery Cooling System
JP6887119B2 (en) Absorption chiller