JPS60110838A - Sintered hard alloy and its production - Google Patents

Sintered hard alloy and its production

Info

Publication number
JPS60110838A
JPS60110838A JP58217009A JP21700983A JPS60110838A JP S60110838 A JPS60110838 A JP S60110838A JP 58217009 A JP58217009 A JP 58217009A JP 21700983 A JP21700983 A JP 21700983A JP S60110838 A JPS60110838 A JP S60110838A
Authority
JP
Japan
Prior art keywords
phase
powder
sintered
hard
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58217009A
Other languages
Japanese (ja)
Other versions
JPH0547619B2 (en
Inventor
Hiroshi Tsukada
塚田 博
Akinori Kobayashi
小林 晄徳
Yasuhiro Saito
斉藤 恭寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58217009A priority Critical patent/JPS60110838A/en
Publication of JPS60110838A publication Critical patent/JPS60110838A/en
Publication of JPH0547619B2 publication Critical patent/JPH0547619B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a sintered hard alloy having excellent wear resistance and toughness by compounding WC, TiC, TaC or TaNbC powder as a hard phase and a ferrous metal as a bond phase at a specific ratio and sintering the same then incorporating an adequate amt. of N therein. CONSTITUTION:55-75vol% WC powder, 15-35% TiC powder and 5-25% TaC or TaNbC powder are compounded as a hard phase and further 10-18% Fe group metallic powder as a bond metal is compounded therewith and after the mixture is molded under pressure, the molding is sintered in a vacuum. The sintered body after sintering is cooled in a nitrogen atmosphere. The sintered body is cooled at a rate of >=30 deg.C/min in the range from the sintering temp. up to 1,100 deg.C during the course of cooling. The sintered hard alloy which is constituted of the hard phase consisting of WC and BI type solid soln. and the bond phase consisting of the Fe group metal and contains N in the range of x+y<=1, 0.005<=y<=0.05 when the compsn. of the hard phase is expressed by (WTiTaNb) (CxNy) is obtd.

Description

【発明の詳細な説明】 (イ)技v1q分野 本発明は著しく敗色された南摩耗性と靭性を有する切削
工具用超硬合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a cemented carbide for cutting tools having significantly degraded wear resistance and toughness.

(ロ)発明の背景 超硬合金工具によるりJ削加工の分野において、高能率
の切削加工を実現するために要請されていることは、従
来のり削連反において、J:り銅摩耗1ににが尚く、よ
り高送りが1if能であって欠けにくい工具を開発する
ことである。これらのことを工具の物性にtM、きかえ
て1」うと、より硬く、より靭性が高い超硬合金を開発
することである。ところが一般的にはこれら2つの物性
は一方を向上させようとすると一方が低下するという」
1」反する性質を持っている。
(b) Background of the Invention In the field of J-cutting using cemented carbide tools, what is required to realize highly efficient cutting is that J: Copper wear 1 in the conventional sawing process. What is more important is to develop a tool that is capable of higher feed rates (1if) and is less likely to chip. Translating these into the physical properties of tools, we need to develop a cemented carbide that is harder and has higher toughness. However, it is generally said that if you try to improve one of these two physical properties, the other will decrease.
1” has contrary properties.

例えば、耐摩耗性を増す為にTicなとの炭化物を含む
Bl型固溶体(以下γ相と呼ぶ)の量を多くすると、こ
のγ41]はW Cよりも脆い事とCafeどの結合金
114との濡れ1にLが悪い為に靭性が低下するし、ま
た+r1+t ノφ耗f1:を向上させる為にGoなど
の結合金属相の:Ii、を少なくしても靭性が低下する
For example, when increasing the amount of Bl-type solid solution (hereinafter referred to as γ phase) containing carbides such as Tic to increase wear resistance, this γ41] is more brittle than W Toughness decreases because L is poor in wettability 1, and even if Ii of the binder metal phase such as Go is decreased in order to improve +r1+t φ wear f1:, toughness decreases.

この様に従来の71fl硬合金では耐摩耗性と靭性の向
」−を同時に達成する事は非常に困4fiであった。
As described above, it has been extremely difficult to achieve both wear resistance and toughness with the conventional 71fl hard alloy.

(ハ)発明の111¥成 本発明はかかる困jillさ全克服して、1ijJ’ 
)郭耗性とvJ性を11−月1ろに向上させた超硬合金
を提供する事を目的とするものである。
(c) 111 yen of the invention The present invention overcomes all such difficulties and achieves 1ijJ'
) The object of the present invention is to provide a cemented carbide whose wear resistance and VJ resistance are improved by 11-1.

本発明にらが、本発明を完成するに至った経緯ヲ以1ζ
ニ述へる。1illJ摩耗性を向上させるーっの手段と
、してはCodどの結合金属相量を従来の超硬合金より
も少なくする事があげられるが、これだけでは靭性が低
下してしまい制摩耗′i生と靭性の両立は達成出来ない
。そこで耐摩耗性を向上させる為に、γ相量を多くする
事とし、この為に生ずる靭性低下はγ相全超硬合金の組
織中に細かく分散さぜる事により克服されるのではない
かと考えた。
The details of how the present inventors came to complete the present invention are as follows:
I'll tell you two. One way to improve wear resistance is to reduce the amount of binder metal phase such as Cod compared to conventional cemented carbide, but this alone will reduce toughness and cause wear resistance. It is not possible to achieve both toughness and toughness. Therefore, in order to improve wear resistance, we decided to increase the amount of γ phase, and we thought that the decrease in toughness caused by this could be overcome by finely dispersing the γ phase into the structure of the cemented carbide. Thought.

また、この様にして靭 性を低下させないでγ(11量
を多くして耐摩耗1テ1;を上げる事が出来れば、C。
In addition, if it is possible to increase the wear resistance by increasing the amount of γ (11) without reducing the toughness, C.

などの結合金属相量を従来より多くしても、超硬合金全
体としての耐磨耗性向上を維持したまま靭性も向上する
のではないかと考えた。
We thought that even if the amount of the binder metal phase was increased compared to the conventional one, the toughness could be improved while maintaining the improvement in the wear resistance of the cemented carbide as a whole.

γ相を微細化する手段としては、超硬合金+1弓こ例え
ばTiNヤT1CN、 (TiW) (CN )などの
形態で窒素を添加する方法が公知である。(特開昭55
−91953号) 一方、窒素を含有する超硬合金を真空中で焼結すると、
窒素分解反応により焼結体表面近傍にγ相が消失して、
内部よりも硬度の低いW C−Co層(以後脱γ相と呼
ぶ〕が生成することが公知であり、これをコーティング
エ其のIJ旧として用いると優れた性能を示す事が公知
である。(特公昭57−393.01号) しかしながら脱γ層の生じた超硬合金をコーティングし
ないで切削工具として用いる場合には大きな問題がある
。というのは、最近の超硬切削工具番よ、その製造コス
トを低減する為に、焼結体の寸法精度向」−と;111
まって、」1其の側面を研削除去しない物が広く用いら
れており、この表面の脱γ層が」−其の耐摩耗性を音し
く劣化させるためである。
As a means for refining the γ phase, a method of adding nitrogen in the form of a cemented carbide +1 bow, for example, TiN, T1CN, (TiW) (CN), etc. is known. (Unexamined Japanese Patent Publication No. 55
-91953) On the other hand, when a nitrogen-containing cemented carbide is sintered in a vacuum,
The γ phase disappears near the surface of the sintered body due to the nitrogen decomposition reaction,
It is known that a WC-Co layer (hereinafter referred to as a γ-degraded phase) having a lower hardness than the inner layer is formed, and that this layer exhibits excellent performance when used as an IJ layer in a coating layer. (Special Publication No. 57-393.01) However, there is a big problem when using cemented carbide with a degamma layer as a cutting tool without coating it. In order to reduce manufacturing costs, the dimensional accuracy of the sintered body has been improved.
This is because products whose sides are not polished off are widely used, and the γ-removal layer on this surface significantly deteriorates their wear resistance.

そこで本発明にらは、超硬合金に窒素を含有させるJト
によりγ相を微細化し、なおかつ表面に脱γ1・1づ生
成による耐摩耗性劣化を生じないものを開発すべく、超
硬合金の組成、製造法などの条件を変えて試作とすU 
l’ilJ性能をくり返した結果、本発明を完ノ反する
に至ったーここで特許請求の範囲に記し、た限定理11
0こついて述べる。
Therefore, in the present invention, in order to develop a cemented carbide alloy in which the γ phase is made finer by adding nitrogen to the cemented carbide alloy, and the wear resistance does not deteriorate due to the formation of deγ1. Prototypes are made by changing the composition, manufacturing method, etc.
As a result of repeating the l'ilJ performance, the present invention has been completely contradicted.
0I'll tell you about it.

まず、窒素合有4H,H,および焼結後の冷却条件の限
定について述べる。窒系含有量が多い超硬合金で脱γ2
111を生のしめないようにする方法として減圧窒素雰
囲気下で焼結する方法やマイクロ波プラズマ窒素1う゛
メ囲気中で焼結する方法(特開昭58−25404号)
が公知ではあるが、これらの方法は現在の段階では制御
がむつかしく、安定した性能の製品を大量に生産する事
が困難である。
First, limitations on nitrogen-containing 4H, H and cooling conditions after sintering will be described. Deγ2 removal using cemented carbide with high nitrogen content
As a method to prevent 111 from becoming raw, there is a method of sintering it in a reduced pressure nitrogen atmosphere and a method of sintering it in a microwave plasma nitrogen atmosphere (Japanese Patent Application Laid-Open No. 58-25404).
However, these methods are difficult to control at the current stage, and it is difficult to mass-produce products with stable performance.

そこで本発明者らは」−記のような焼結過程にあ・ける
複雑でかつ微妙な雰囲気制御にたよる事なく脱γ相全生
ぜしめない方法を探索し、以下の知見全得たのである。
Therefore, the present inventors searched for a method that would prevent the entire degamma phase from occurring without relying on complex and delicate atmosphere control during the sintering process, as described in the article, and obtained the following knowledge. be.

すなわち窒素量を、窒素分解が生じにくい様な低い窒素
量に限定し、かつ焼結体の冷却過程に入る前後から窒素
ガスを々1人して、焼結体表面からの窒素分解を抑制あ
るいは窒素分解を起こしてしまった超硬合金が得られる
事が判明したのである。
In other words, the amount of nitrogen is limited to a low amount that makes it difficult for nitrogen decomposition to occur, and nitrogen gas is applied before and after the cooling process of the sintered body to suppress nitrogen decomposition from the surface of the sintered body. It was discovered that it was possible to obtain cemented carbide that had undergone nitrogen decomposition.

本発明者らのω1究によると、窒素量については特許請
求の範囲第1項記載したy値が0005以下ではγつ・
1」の微細化に効果がなく、またy値が0,05以上で
ばγ相の微細化に対しての効果は充分であるが、真空焼
粕をした場合焼結体表面に窒素分解反応による軟化層が
生成し、表面を研削除去しないで切削工具として用いた
場合著しく耐摩耗i11:が減じる。(I11j%11
量の効果を更に高める為にはy値が0.03以下である
事が望ましい。
According to the ω1 study conducted by the present inventors, when the y value described in claim 1 is less than 0005, the amount of nitrogen becomes γ
1" is not effective in refining the γ phase, and if the y value is 0.05 or more, the effect in refining the γ phase is sufficient. However, when vacuum sintering is performed, nitrogen decomposition reactions occur on the surface of the sintered body. When used as a cutting tool without polishing the surface, the wear resistance i11: is significantly reduced. (I11j%11
In order to further enhance the effect of quantity, it is desirable that the y value is 0.03 or less.

また冷却条件については先に述べた如く窒素雰囲気中で
冷却するAJ+が望ましいが、特に焼結温度から110
0℃までの間を30℃/分以上の速度で急冷すると、結
晶の粒成長抑制が可能となり、原料WC粒度を粗くして
おけば靭 性の高いWCを粗くし、脆いγ相をより微粒
化できるので、超硬合金の靭性が著しく増す。
As for the cooling conditions, AJ+, which is cooling in a nitrogen atmosphere as mentioned above, is desirable, but especially from the sintering temperature
Rapid cooling at a rate of 30°C/min or higher from down to 0°C makes it possible to suppress grain growth of crystals, and if the grain size of the raw material WC is coarsened, the tough WC becomes coarser and the brittle γ phase becomes finer. The toughness of the cemented carbide increases significantly.

次に硬質相組成の限定理由については、まずWCが55
体(”s”(バー士ント以下では靭性に劣り、75体積
バー士ント以上では耐摩耗性に劣る。またTlcが15
体4i’?パーセント以下では耐摩耗性に劣り351イ
ζ積パーセント以」二では靭性に劣る。TaC才たば1
−、 a N I)Cが5体積バー七ント以下では靭性
に劣り、25体積バー七ント以」−では耐摩耗性に劣る
。本発明の効果を更に高めるには硬質相組成は俸11゛
(バーーーセントて、 55<WC<68 20 < ’l”ic < 33 7 (TaCまたはTaNbC(20 である事が望ましい。
Next, regarding the reason for limiting the hard phase composition, first of all, WC is 55
Body ("s") If the volume is less than 15%, the toughness is poor, and if the volume is more than 75%, the wear resistance is poor.
Body 4i'? If it is less than 351%, the wear resistance will be poor, and if it is less than 351%, the toughness will be poor. TaC Saitaba 1
- If aN I) C is less than 5 volume percent, the toughness is poor, and if it is 25 volume percent or more, the wear resistance is poor. In order to further enhance the effects of the present invention, the hard phase composition should preferably be 11% (%, 55<WC<68 20<'l"ic <337 (TaC or TaNbC (20%).

次に結合金属4’ll hkについては10体積パーセ
ント以下では靭性に劣り、18体積パー士ント以上では
1IliJ摩耗性に劣る。
Next, when the bonding metal 4'll hk is less than 10 volume percent, the toughness is inferior, and when it is 18 volume percent or more, the abrasion resistance is inferior.

た性能に発揮する。 − 以下、本発明の実施例について説明する。Demonstrates excellent performance. − Examples of the present invention will be described below.

実施例 第1図に示す炭化物組成で、かつ第1表に示す組成とな
るように原料粉末全秤量し、アトライク−中でアルコー
ルと共に湿式粉砕し、その後乾燥させた混合粉末にパラ
フィンI M Fiパーセントを添加して2000Kg
/c++Iの圧力でhat形した。これを真空中140
0℃で1時同焼結した後、第1表に示す方法で冷却し、
一連の超硬合金を得た。
Example All raw material powders were weighed to have the carbide composition shown in Figure 1 and the composition shown in Table 1, wet-pulverized with alcohol in an attrike, and then dried. Paraffin I M Fi percentage was added to the mixed powder. 2000Kg by adding
Hat-shaped at a pressure of /c++I. This was done in a vacuum for 140 minutes.
After simultaneous sintering at 0°C, cooling by the method shown in Table 1,
A series of cemented carbides were obtained.

第 1 表 傘1 ) LQ削rN+’1(ニア ライスLl+削)
波間Iう5Ch1435 ll5−88 100W×3
0OLB II 力、7ター1r160φ、AR=8°
、RR−0’ 、CA=+5゜70−1ウエイチノブハ
1ノ番 5PU422の1枚刃でテストLり削速111
20III/グ、切込、7JA5關、送り 02關/刃
、切削時間 30分牢2)切削条【牛 次にこれらの合金の上下面のみを研削し、側面は研削し
ないままのスローアウェイチップに加工して耐)φ耗試
験および断続切削による靭性試験を行なっに0その結果
を第1表に示すが、本発明合金Aが極めて優れている事
が明らかであり、本発明によればこのように従来の超硬
合金ではIJ、1姉であった耐摩耗性と靭性を同時に向
上させる事が出来、切削工具として使用した場合、工具
のJ粘耗および欠けが激減し、長い工具寿命と高い信頼
′吐が得られるのである。
1st table umbrella 1) LQ cut rN+'1 (near rice Ll+ cut)
Nami Iu5Ch1435 ll5-88 100W×3
0OLB II Force, 7ter 1r160φ, AR=8°
, RR-0', CA=+5゜70-1 way tip blade No. 1 5PU422 single blade test L cutting speed 111
20III/g, Depth of cut, 7JA5, Feed 02/blade, Cutting time: 30 minutes 2) Cutting strips The results are shown in Table 1, and it is clear that the alloy A of the present invention is extremely superior. In addition, it is possible to simultaneously improve the wear resistance and toughness of conventional cemented carbide, which were two older sisters, and when used as a cutting tool, the J adhesive and chipping of the tool are drastically reduced, resulting in a long tool life and high performance. This will earn you trust.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明合金の硬質相組成範囲と実施例合金の硬
質相の組成を示す図である。 代理人 弁理士 」二 代 哲 司
FIG. 1 is a diagram showing the hard phase composition range of the present invention alloy and the hard phase composition of the example alloy. Agent Patent Attorney: Tetsuji II

Claims (1)

【特許請求の範囲】 (すW CとB I 2a固溶体からなる硬質相とFe
族金ノド、名の結合相から構成された超硬合金において
、硬r′!相の組)ak (W 7ri Ta Nb 
) (Cx Ny ) と表はした11j」、体積%で
wcが55%以」ニア5%以下、1”ic 15%以」
二、35%以下、TaCまたはTaNbCが5%以」二
25%以下であり、x −1−y≦1.0.0056y
≦+1.05であり、結合金属が10体積%以上18体
積%以下である窒素を含有することを1.1徴とする超
硬合金。 (2) WC、T iC、l’a CまたはTaNbC
の粉末を、硬質相として体積%でWCが55%以上75
%以下、TiCを15%以上35%以下、TaCまたは
TaNbCを5%以」−25%以下になるように配合し
、更に結合金属としてFe族金属粉末を10体積%以」
二1818体積下配合し、成型後、焼結し、焼結後、窒
素′、!メ囲気中で冷却し、冷却過程中で焼結温度から
1100℃に至るまでの範囲全り0℃/分以上の速度で
急冷すること全性徴とする最終合金の硬質41」を(W
 Ti Ta Nb ) (Cx Ny )と表はした
とtx+y≦10.005≦y≦0.05の範囲で窒素
を含有する超硬合金の製造法。
[Claims] (Hard phase consisting of W C and B I 2a solid solution and Fe
In a cemented carbide composed of a bonding phase of the group metal, hard r'! phase set) ak (W 7ri Ta Nb
) (Cx Ny) 11j", wc is 55% or more in volume%, near 5% or less, 1"ic 15% or more"
2. 35% or less, TaC or TaNbC is 5% or more, 25% or less, x -1-y≦1.0.0056y
≦+1.05, and the 1.1 characteristic is that the bonding metal contains 10% by volume or more and 18% by volume or less of nitrogen. (2) WC, TiC, l'aC or TaNbC
powder with a WC of 55% or more by volume as a hard phase 75
% or less, TiC from 15% to 35%, TaC or TaNbC from 5% to 25%, and Fe group metal powder as a binding metal of 10% by volume or more.
2 1818 volumes, blended, molded, sintered, and after sintered, nitrogen ',! The hardness of the final alloy (W
TiTaNb)(CxNy) is a method for producing a cemented carbide containing nitrogen in the range of tx+y≦10.005≦y≦0.05.
JP58217009A 1983-11-16 1983-11-16 Sintered hard alloy and its production Granted JPS60110838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58217009A JPS60110838A (en) 1983-11-16 1983-11-16 Sintered hard alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58217009A JPS60110838A (en) 1983-11-16 1983-11-16 Sintered hard alloy and its production

Publications (2)

Publication Number Publication Date
JPS60110838A true JPS60110838A (en) 1985-06-17
JPH0547619B2 JPH0547619B2 (en) 1993-07-19

Family

ID=16697390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58217009A Granted JPS60110838A (en) 1983-11-16 1983-11-16 Sintered hard alloy and its production

Country Status (1)

Country Link
JP (1) JPS60110838A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357732A (en) * 1986-08-27 1988-03-12 Sumitomo Electric Ind Ltd Cermet sintering method
JPH0392210A (en) * 1989-01-26 1991-04-17 Sumitomo Electric Ind Ltd Super hard alloy-made drill
EP0912458B1 (en) * 1996-07-11 2002-03-06 Sandvik Aktiebolag (publ) Sintering method
CN102649155A (en) * 2012-03-09 2012-08-29 成都邦普合金材料有限公司 Method for preventing oxygenation of hard alloy mixture
CN102994853A (en) * 2012-11-30 2013-03-27 株洲普瑞克硬质合金有限公司 Hard alloy raw material, hard alloy for cutting tool as well as preparation method of hard alloy
GB2501976A (en) * 2011-01-20 2013-11-13 Element Six Gmbh Cemented carbide article with carbide-free surface

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357732A (en) * 1986-08-27 1988-03-12 Sumitomo Electric Ind Ltd Cermet sintering method
JPH0392210A (en) * 1989-01-26 1991-04-17 Sumitomo Electric Ind Ltd Super hard alloy-made drill
EP0912458B1 (en) * 1996-07-11 2002-03-06 Sandvik Aktiebolag (publ) Sintering method
GB2501976A (en) * 2011-01-20 2013-11-13 Element Six Gmbh Cemented carbide article with carbide-free surface
GB2501976B (en) * 2011-01-20 2014-08-20 Element Six Gmbh Method of making a cemented carbide article
US9297054B2 (en) 2011-01-20 2016-03-29 Element Six Gmbh Cemented carbide article and method for making same
CN102649155A (en) * 2012-03-09 2012-08-29 成都邦普合金材料有限公司 Method for preventing oxygenation of hard alloy mixture
CN102994853A (en) * 2012-11-30 2013-03-27 株洲普瑞克硬质合金有限公司 Hard alloy raw material, hard alloy for cutting tool as well as preparation method of hard alloy

Also Published As

Publication number Publication date
JPH0547619B2 (en) 1993-07-19

Similar Documents

Publication Publication Date Title
CN104630590B (en) A kind of composite hard alloy material and preparation method thereof
CN103924145B (en) A kind of soap-free emulsion polymeization phase carboloy and preparation method thereof
CN103276268A (en) High-performance hard alloy and manufacturing method thereof
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JPS60110838A (en) Sintered hard alloy and its production
KR0180522B1 (en) Nitrogen containing sintered hard alloy
JPH0196084A (en) Surface-coated cubic boron nitride-based material sintered under superhigh pressure to be used for cutting tool
CN103667843B (en) A kind of preparation method of deep hole machining ultra-fine cemented carbide cutter material
JPS61141672A (en) Manufacture of cubic boron nitride base sintered body for cutting tool
JPS5918157A (en) Aluminum oxide ceramic for cutting tool
JPH0346538B2 (en)
JPS6176646A (en) Tungsten carbide-base sintered hard alloy
JPS6342346A (en) High-strength sintered hard alloy
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JPH08225877A (en) Nitrogen-containing sintered hard alloy
JPS6240340A (en) Diamond-type sintered material for cutting tool
JPS6335591B2 (en)
JPS6242988B2 (en)
JPH04300106A (en) Ultra-high pressure-sintered-material cutting tool excellent in hard phase adhesion
JPS6046334A (en) Preparation of tungsten carbide base sintered hard alloy
RU2133296C1 (en) Solid alloy (variants) and method of preparing thereof
JPS5964729A (en) Manufacture of cemented carbide
JPH09227981A (en) Cemented carbide
CN115383109A (en) Gradient hard alloy material and application thereof in hand tool
JPS61199048A (en) Sintered hard alloy and its production