JPS60110431A - Polypropylene resin-foamed molding - Google Patents

Polypropylene resin-foamed molding

Info

Publication number
JPS60110431A
JPS60110431A JP58219135A JP21913583A JPS60110431A JP S60110431 A JPS60110431 A JP S60110431A JP 58219135 A JP58219135 A JP 58219135A JP 21913583 A JP21913583 A JP 21913583A JP S60110431 A JPS60110431 A JP S60110431A
Authority
JP
Japan
Prior art keywords
particulate
random copolymer
resin
polypropylene resin
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58219135A
Other languages
Japanese (ja)
Other versions
JPH0350693B2 (en
Inventor
Hideki Kuwabara
英樹 桑原
Yoshimi Sudo
好美 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP58219135A priority Critical patent/JPS60110431A/en
Publication of JPS60110431A publication Critical patent/JPS60110431A/en
Publication of JPH0350693B2 publication Critical patent/JPH0350693B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To make flexibility and shock resistance favorable, by making a crystalline propylene resin random copolymer having crystallizing quantity of heat falling within a specific range into basic resin. CONSTITUTION:A crystalline propylene resin random copolymer whose crystallizing quantity of heat through differential scanning measurement is 5-16cal/g is used as basic resin. A polypropylene resin random copolymer particulate and a foaming agent are made to disperse into water by a dispersant within a closed container, to begin with, and the foaming agent is made to impregnated within the particulate by heating the same at a temperature of more than softening one of the particulate. Then one end of the container is released and a prefoaming particulate is obtained by releasing the particulate and water at the same time. After the prefoaming particulate obtained in this manner has been treated by pressure with inorganic gas such as air and nitrogen, molded article is obtained by filling the prefoaming particulate into a molding die, making the same heat, foam and expand and fusing the particulates each other.

Description

【発明の詳細な説明】 本発明はポリプロピレン系樹脂発泡成型体に関する。[Detailed description of the invention] The present invention relates to a polypropylene resin foam molded article.

予備発泡粒子を型内に充填し加熱し発泡させて得られる
。いわゆるビーズ発泡成製体(型内成朦体)は緩衝性、
断熱性等に優れ、緩衝材、包装材。
It is obtained by filling pre-expanded particles into a mold and heating and foaming them. The so-called bead foam molded body (in-mold molded body) has cushioning properties,
Excellent insulation properties, cushioning material, packaging material.

断熱材、建築資材等広範囲に利用され、その需要は近年
富みに増大している。
It is widely used in insulation materials, construction materials, etc., and the demand for it has increased tremendously in recent years.

この種の型内成製体として従来、ポリスチレン系樹脂発
泡成型体が知られていたが、脆いという致命的な欠点が
ある上、耐薬品性にも劣るという欠点を有し、早くから
その改善が望まれていた。
Conventionally, polystyrene resin foam moldings have been known as this type of in-mold molding, but they have the fatal drawback of being brittle and have poor chemical resistance. It was wanted.

かかる欠点を解決するものとして架橋ポリエチレン系樹
脂発泡成製体が提案された。しかしながら架橋ポリエチ
レン系樹脂発泡粒子の場合は、屋内成製によって低密度
(高発泡)の成製体を得ることが困難であ91強いて低
密度の成型体を得ようとすると気泡構造が連続気泡とな
シ、その結果収縮が著しく、シかも反発弾性が小さく吸
水性が大きい、物性の劣った成凰体しか得られず、実用
に供し得る成型体は到底得ることができなかった。
A crosslinked polyethylene resin foam product has been proposed as a solution to these drawbacks. However, in the case of cross-linked polyethylene resin foam particles, it is difficult to obtain a low-density (highly foamed) molded product by indoor molding. However, as a result, only molded bodies with poor physical properties such as significant shrinkage, low impact resilience and high water absorption were obtained, and it was impossible to obtain molded bodies that could be put to practical use.

tt独立気泡率の高いものを得ようとすると必然的に高
密度(低発泡)のものとならざるを得なかった0 そこで本発明者らは、ポリプロピレン系樹脂の有する優
れた物性に着目し、従来の屋内成型体の有する欠点を解
決すべくポリプロピレン系樹脂発泡成型体の研究を行な
って来た。しかしながらポリスチレン系樹脂発泡成型体
は、緩衝性1反発弾性に優れ、軽量で機械的強度が大き
く、加熱変化が小さいという優れた物性を有する反面、
架橋ポリエチレン系樹脂発泡成型体に比べて柔軟性。
ttIn order to obtain a product with a high closed cell ratio, it was inevitable to obtain a product with a high density (low foaming). Therefore, the present inventors focused on the excellent physical properties of polypropylene resin, We have been conducting research on polypropylene resin foam moldings in order to solve the drawbacks of conventional indoor moldings. However, while polystyrene resin foam moldings have excellent physical properties such as excellent cushioning properties, high impact resilience, light weight, high mechanical strength, and small thermal changes,
More flexible than cross-linked polyethylene resin foam moldings.

耐衝撃性にやや劣るという問題を有し、未だ改良の余地
を残していた。
It had the problem of being somewhat inferior in impact resistance, and there was still room for improvement.

本発明者らはこれらの点に鑑み更に鋭意研究を行なった
結果、特定範囲の結晶化熱量を有する結+f&!プロピ
レン系樹脂ランダム共重合体を基材樹脂とするポリプロ
ピレン系樹脂発泡成型体によシ上述の問題点を解決でき
ることを見い出し本発明を完成するに至った。
In view of these points, the present inventors conducted further intensive research and found that crystallization +f&! has a specific range of heat of crystallization. The present inventors have discovered that the above-mentioned problems can be solved by a polypropylene resin foam molded product using a propylene resin random copolymer as a base resin, and have completed the present invention.

即ち本発明は、ポリプロピレン系樹脂予備発泡粒子を成
製用屋内で加熱成製して得られるポリプロピレン系樹脂
発泡成型体において、咳発泡成屋体の基材樹脂が、示差
走査熱量測定による結晶化熱量が5〜16 cal/ 
11の結晶性プロピレン系樹脂ランダム共重合体よりな
ることを特徴とするポリプロピレン系樹脂発泡成型体を
要旨とする。
That is, the present invention provides a polypropylene resin foam molded product obtained by heating and forming pre-expanded polypropylene resin particles indoors, in which the base resin of the foamed material is crystallized by differential scanning calorimetry. Calorific value is 5-16 cal/
The gist of the present invention is a polypropylene resin foam molded product characterized by being made of a crystalline propylene resin random copolymer of No. 11.

本発明のポリプロピレン系樹脂発泡成型体り。Polypropylene resin foam molded body of the present invention.

ポリプロピレン系樹脂予備発泡粒子を成型用型内/ ’
1 に充填して加熱し2粒子相互を融着せしめて所定の形状
に成型してなる成型体であり、該成型体の基材樹脂とし
て、示差走査熱量測定による結晶化熱量ヵ55二16 
cal/ I−ラ完ビ、7系樹脂、72・ム共重合体が
用いられる。上記結晶化熱量とは基材樹脂約6〜8ml
を示差走査熱量計において室温から220℃まで10℃
/分の昇温速度で昇温し。
Pre-expanded polypropylene resin particles in a mold/'
It is a molded body made by filling the molded body into a molded body and heating it to fuse the two particles together and molding it into a predetermined shape.
cal/I-La-Kanubi, 7-based resin, and 72-mu copolymer are used. The above crystallization heat amount is approximately 6 to 8 ml of base resin.
10℃ from room temperature to 220℃ using a differential scanning calorimeter.
The temperature is raised at a heating rate of /min.

その後10℃/分の降温速度で約50℃まで降温したと
き、溶融したランダム共重合体の結晶化に要する発熱エ
ネルギーであυ、結晶化熱量は第1図に示す如<DSC
曲線のa点とb点を結ぶ直線1とピーク2とで囲まれる
部分の面積(第1図の斜線部分)よりめることができる
。基材樹脂の結晶化熱量が16 cal/& t−超え
る場合は成型体が柔軟性、耐衝撃性に乏しいものとなシ
、また5 cal/9未満の場合は成型体の加熱寸法変
化が大きく好ましくない。
When the temperature is then lowered to approximately 50°C at a cooling rate of 10°C/min, the exothermic energy required for crystallization of the molten random copolymer is υ, and the crystallization heat amount is as shown in Figure 1.
It can be determined from the area of the part surrounded by the straight line 1 connecting points a and b of the curve and the peak 2 (the shaded part in FIG. 1). If the heat of crystallization of the base resin exceeds 16 cal/& t-, the molded product will have poor flexibility and impact resistance, and if it is less than 5 cal/9, the dimensional change of the molded product will be large. Undesirable.

本発明において基材樹脂として用いられnζココピレン
樹脂ランダム共重合体としては、プロピレンとエチレン
とのランダム共重合体、プロビレゝ 3 ′ ンと1−ブテンとのランダム共重合体等が挙げられるが
、特にプロピレンと1−ブテンとのランダム共重合体が
好ましい。これらのランダム共I合体ハ、プロピレンモ
ノマーとエチレンモノマーあるいは1−ブテンモノマー
等とをチタン系重合触媒、バナジウム系重合触媒等を用
いて重合せしめたものが男いられるが、特にバナジウム
系重合触媒を用いて重合せしめたものが好ましい。また
Examples of the nζ cocopylene resin random copolymer used as the base resin in the present invention include a random copolymer of propylene and ethylene, a random copolymer of propylene 3' and 1-butene, etc. In particular, a random copolymer of propylene and 1-butene is preferred. These random co-I polymers include those obtained by polymerizing propylene monomer and ethylene monomer or 1-butene monomer using a titanium-based polymerization catalyst, a vanadium-based polymerization catalyst, etc. In particular, a vanadium-based polymerization catalyst is used. It is preferable to use polymerized polymers. Also.

プロピ、レン系樹脂ランダム共重合体におけるプロピレ
ン成分とエチレンあるいは1−ブテン等の成ム系重合触
媒を用いたランダム共重合体の場合。
In the case of a random copolymer using a propylene component in a propylene-based resin random copolymer and a component-based polymerization catalyst such as ethylene or 1-butene.

販ランダム共重合体の結晶化熱量を5〜16cal/J
i’の範囲とするためには9例えばプロピレンと1−ブ
テンとのランダム共重合体では、1−ブテン成分が15
〜40モルチであることが好ましい。
The heat of crystallization of the commercially available random copolymer is 5 to 16 cal/J.
For example, in a random copolymer of propylene and 1-butene, the 1-butene component must be within the range of 15
It is preferable that it is 40 mol.

本、発明のプロピレン系樹脂発泡成型体は例えば次のよ
うにして展進することができる。
The propylene resin foam molded article of the present invention can be developed, for example, as follows.

まず密閉容器内で前述したポリプロピレン系ll() 脂ランダム共重合体粒子と発泡剤とを分散剤の存在下で
水に分散させ、前記粒子が軟化する温度以上に加熱して
粒子内に発泡剤を含浸させ、しかる後容器の一端を開放
し、容器内圧力を所定の圧力に保持しながら前記粒子と
水とを同時に容器内よシ低圧の雰囲気下(通常は大気圧
下)に放出し。
First, the aforementioned polypropylene-based random copolymer particles and a foaming agent are dispersed in water in the presence of a dispersant in a closed container, and the foaming agent is incorporated into the particles by heating to a temperature higher than the temperature at which the particles soften. After that, one end of the container is opened, and while the pressure inside the container is maintained at a predetermined pressure, the particles and water are simultaneously released inside the container into a low-pressure atmosphere (usually under atmospheric pressure).

粒子を発泡せしめ予備発泡粒子を得る。こむで用いられ
る発泡剤としては、プロパン、ブタン、ジクロロシフ0
ロメタン、トリクロロ70ロメタン等の揮発性発泡剤や
二酸化炭素等の無機発泡剤が挙げられ、これらは共重合
体粒子ioo重量部に対して通常10〜40重量部用い
られる。分散剤としては微粒状の酸化アルミニウム、酸
化チタン等が挙げられ、これらは共重合体粒子100重
量部に対して通常0.04〜2.0重量部用いられる。
The particles are expanded to obtain pre-expanded particles. Foaming agents used in this process include propane, butane, dichlorosif
Examples include volatile blowing agents such as lomethane and trichloro-70 lomethane, and inorganic blowing agents such as carbon dioxide, and these are usually used in an amount of 10 to 40 parts by weight per ioo parts by weight of the copolymer particles. Examples of the dispersant include finely divided aluminum oxide, titanium oxide, etc., and these are usually used in an amount of 0.04 to 2.0 parts by weight per 100 parts by weight of the copolymer particles.

また発泡温度は、共重合体粒子の示差走査熱量測定によ
って得たDSC曲線における該粒子の融解による吸熱ピ
ークの頂点の温度をT(”C)としたどき、T−T −
5(”C)の範囲の温度が好ましい。
Further, the foaming temperature is defined as T-T-
Temperatures in the range of 5"C are preferred.

上記のようにして得た予備発泡粒子を空気、窒素等の無
機ガスあるいは無機ガスと前記揮発性発泡剤との混合ガ
スにより通常2〜5 ′Kg/d (G) 。
The pre-expanded particles obtained as described above are heated with air, an inorganic gas such as nitrogen, or a mixed gas of an inorganic gas and the above-mentioned volatile blowing agent, usually at a rate of 2 to 5'Kg/d (G).

20〜100時間加圧処理した後、成型用型内に充填し
2〜51V/c、t(G)の加圧水蒸気等によシ加熱し
て予備発泡粒子を発泡膨張させ1粒子相互を融着せしめ
、以って屋通シに成型された本発明の成型体が得られる
After pressure treatment for 20 to 100 hours, the pre-expanded particles are filled into a mold and heated with pressurized steam of 2 to 51 V/c, t(G) to expand and fuse the particles together. As a result, a molded article of the present invention which is molded in a transparent manner is obtained.

本発明の成型体は緩衝材、包装材、断熱材、防露材、建
築資材、自動車用部品、雑貨品等床机な用途に供せられ
る。
The molded product of the present invention can be used as a cushioning material, a packaging material, a heat insulating material, a dew-proofing material, a building material, an automobile part, a miscellaneous goods, and other uses such as floor desks.

以上説明したように本発明のポリプロピレン系ダム共重
合体を基材樹脂としたことにより9本発明によれば従来
のポリプロピレン系樹脂発泡体の有する緩衝性1反発弾
性に優れ、軽量で機械的強度が大きく、加熱寸法変化が
小さいという優れた物性をそのit有するとともに、従
来のポリプロピレン系樹脂発泡成型体の欠点であった。
As explained above, by using the polypropylene dumb copolymer of the present invention as a base resin, the present invention has excellent cushioning properties, 1 impact resilience, and lightweight mechanical strength that conventional polypropylene resin foams have. It has excellent physical properties such as a large dimensional change and a small dimensional change upon heating, which was a drawback of conventional polypropylene resin foam molded products.

柔軟性。Flexibility.

耐衝撃性を改善した。優れた物性を有する発泡成型体を
提供できる効果を有しその利用範囲はきわめて広く9例
えば本発明の発泡成型体を緩衝材として用いたときは、
いわゆる硬すぎず、柔らかすぎず、加えて腰も強いとい
う緩衝材として理想的な性質を発揮でき、実益大なるも
のである。
Improved impact resistance. It has the effect of providing a foam molded product with excellent physical properties, and its application range is extremely wide9. For example, when the foam molded product of the present invention is used as a cushioning material,
It is not too hard, not too soft, and is also strong, making it ideal for use as a cushioning material, making it extremely useful.

以下実施例、比較例を挙げて本発明を更に詳細に説明す
る。
The present invention will be explained in more detail below by giving Examples and Comparative Examples.

実施例1〜4.比較例1〜2 耐圧容器内に第1表に示す基材樹脂粒子io。Examples 1-4. Comparative examples 1-2 The base resin particles io shown in Table 1 were placed in a pressure-resistant container.

重量部、水300重量部9分散剤として微粒状の酸化ア
ルミニウム0.3重量部および発泡剤として第1表に示
す量のジクロロジフロロメタンを配合し、攪拌下に加熱
して145℃まで昇温した。次いで同温度で容器の一端
を開放し、容器内圧を窒素ガスにてa5kCg/m(G
)に保持しながら樹脂粒子と水とを大気圧下に放出し、
樹脂粒子を発泡せしめて予備発泡粒子を得た。得られた
各予備発泡粒子を3ゆ/I:tl(G)の空気で加圧し
て1.5 kg/nJ (G)の粒子内圧を付与した後
、300m1纂×300關×50間(内寸法)の平板用
金型に充填し、 a、 2 kg / cd(G)(7
) の水蒸気で加熱して発泡成型体を得た。得られた発泡成
型体を60℃のオープン中で24時間乾燥した後、咳発
泡成型体の諸物性の測定を行なった。
Parts by weight, 300 parts by weight of water 9 0.3 parts by weight of finely divided aluminum oxide as a dispersant and dichlorodifluoromethane in the amount shown in Table 1 as a blowing agent were mixed and heated to 145°C with stirring. It was warm. Next, one end of the container was opened at the same temperature, and the internal pressure of the container was increased to a5kCg/m (G
) while releasing the resin particles and water under atmospheric pressure,
Pre-expanded particles were obtained by foaming the resin particles. Each of the obtained pre-expanded particles was pressurized with air at 3 Yu/I:tl (G) to give an internal pressure of 1.5 kg/nJ (G), and was A, 2 kg/cd (G) (7
) to obtain a foamed molded product. After drying the obtained foamed molded product in an open air at 60° C. for 24 hours, various physical properties of the cough foamed molded product were measured.

結果を第1表にあわせて示す。また参考例として架橋低
密度ポリエチレン予備発泡成型体の諸物性を第1表にあ
わせて示す。
The results are also shown in Table 1. Further, as a reference example, various physical properties of a cross-linked low-density polyethylene pre-foamed product are shown in Table 1.

() (10ノ ※1150mm正方に切取った発泡成型体サンプルの中
央部に1100mX100+iの正方形と該正方形の中
心で交わる十字線を描き。
() (Draw a 1100m x 100+i square and a cross line that intersects at the center of the square in the center of the foam molded sample cut into 10*1150mm squares.

正方形の中心から正方形と十字線とが交わる位置までの
各線分の長さを精測した後。
After carefully measuring the length of each line segment from the center of the square to the point where the square and crosshair intersect.

サンプルを90±1℃に調節した恒温槽内に22時間靜
装し、25℃で1時間放冷した後、各線分の長さを精測
して元の長さからの変化率をめ、その平均値が 4%未満(実用上問題なし)−・−・−04%以上(使
用に耐得ない) −−−−−−−−xとして判定した。
The sample was placed in a constant temperature bath adjusted to 90 ± 1°C for 22 hours, left to cool at 25°C for 1 hour, and the length of each line segment was precisely measured to determine the rate of change from the original length. It was determined that the average value was less than 4% (no problem in practical use) - 4% or more (unsuitable for use) - x.

※2 厚さ20nm+ 長さ300wmX幅4Qmi+
の直方体に切取ったサンプルを300話の両辺を対向せ
しめる方向に折シ曲げたとき 完全に2つ折りに折り曲げて割れない・−−−−−−一
−−−−〇両辺が接するまで曲けて割れない・−−−−
−−一−−−−−−−−−−−△両辺が接するまでの間
に割れる−−−−−−−−−−−−−−−Xとして判定
した。
*2 Thickness 20nm + length 300wm x width 4Qmi +
When you bend a sample cut into a rectangular parallelepiped in the direction of 300 stories so that both sides are facing each other, it will not break when it is completely folded in half. It won't break...
-----------------------------------------------------------------------------------------------------

秦3 厚さ、50冨翼の300關X 300 mmのサ
ンプル上に高さ1mから重さ5kg、直径155鰭の円
盤を水平に落下させた時のサンプルの破損の程度を観察
し。
Qin 3 A disk weighing 5 kg and having a diameter of 155 fins was dropped horizontally from a height of 1 m onto a sample measuring 300 mm x 300 mm with a thickness of 50 fins, and the degree of damage to the sample was observed.

破損が10Cm(円盤円周の115)未満−−−−−−
−−−−0破損が25a++以上−−−−−−−−−−
−−−−−−−−−−−−−−−−−xとして判定した
Damage is less than 10 cm (115 of the disk circumference)------
−−−−0 damage is 25a++ or more −−−−−−−−−
−−−−−−−−−−−−−−−−−x.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基材樹脂のDSC曲線よp基材樹脂の結晶化熱
量をめる方法を示す図である。
FIG. 1 is a diagram showing a method of calculating the heat of crystallization of the p base resin from the DSC curve of the base resin.

Claims (1)

【特許請求の範囲】 ポリプロピレン系樹脂予備発泡粒子を成型用型内で加熱
成壓して得られるポリプロピレン系樹脂発泡成型体にお
いて、諌発泡成製体の基材樹脂が。 示差走査熱量測定による結晶化熱量が5〜16cal/
11 O納品性プロピレン系樹脂ランダム共重合体よシ
なることを特徴とするポリプロピレン系樹脂発泡成型体
[Scope of Claims] In a polypropylene resin foam molded product obtained by heating and forming polypropylene resin pre-expanded particles in a mold, the base resin of the cross-shaped foam molding is: Crystallization heat amount by differential scanning calorimetry is 5 to 16 cal/
11. A polypropylene resin foam molded product characterized by being made of a propylene resin random copolymer.
JP58219135A 1983-11-21 1983-11-21 Polypropylene resin-foamed molding Granted JPS60110431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58219135A JPS60110431A (en) 1983-11-21 1983-11-21 Polypropylene resin-foamed molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58219135A JPS60110431A (en) 1983-11-21 1983-11-21 Polypropylene resin-foamed molding

Publications (2)

Publication Number Publication Date
JPS60110431A true JPS60110431A (en) 1985-06-15
JPH0350693B2 JPH0350693B2 (en) 1991-08-02

Family

ID=16730775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219135A Granted JPS60110431A (en) 1983-11-21 1983-11-21 Polypropylene resin-foamed molding

Country Status (1)

Country Link
JP (1) JPS60110431A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823834A (en) * 1981-08-05 1983-02-12 Japan Styrene Paper Co Ltd Expanded molded article of polypropylene resin
JPS5825334A (en) * 1981-08-05 1983-02-15 Japan Styrene Paper Co Ltd Production of polypropylene resin foam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823834A (en) * 1981-08-05 1983-02-12 Japan Styrene Paper Co Ltd Expanded molded article of polypropylene resin
JPS5825334A (en) * 1981-08-05 1983-02-15 Japan Styrene Paper Co Ltd Production of polypropylene resin foam

Also Published As

Publication number Publication date
JPH0350693B2 (en) 1991-08-02

Similar Documents

Publication Publication Date Title
JPH0417978B2 (en)
US4359160A (en) Nestable foam cup with improved heat retention and the process for its manufacture
EP0123144A1 (en) Polypropylene resin prefoamed particles
JPS5923731B2 (en) Polypropylene resin pre-expanded particles
JPH0419258B2 (en)
US2848427A (en) Method of making celluloar plastic articles from vinyl aromatic resins
JPS5943491B2 (en) Polypropylene resin foam molding
US3259595A (en) Expandable polystyrene compositions
US3259594A (en) Expandable polystyrene compositions
EP0933389B1 (en) Polypropylene resin pre-expanded particles
JPH0559139B2 (en)
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
JPH0365259B2 (en)
JPS60110431A (en) Polypropylene resin-foamed molding
JPS6344779B2 (en)
JPH0386737A (en) Production of foamed polyolefin resin particle
JPS6244778B2 (en)
JPS58215326A (en) Manufacture of polyolefin resin molding foamed in force
JP2709395B2 (en) Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles
JP2021001255A (en) Polypropylene resin foam particles and polypropylene resin foam particle compact
JPH03103449A (en) Foamed low-density polyethylene resin and production thereof
JPS5991125A (en) Production of spherical polyolefin resin particle
JPS6324618B2 (en)
JPS6324617B2 (en)
JPH0218225B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees