JPS60110307A - Operation of moving bed type continuous filter - Google Patents

Operation of moving bed type continuous filter

Info

Publication number
JPS60110307A
JPS60110307A JP58218889A JP21888983A JPS60110307A JP S60110307 A JPS60110307 A JP S60110307A JP 58218889 A JP58218889 A JP 58218889A JP 21888983 A JP21888983 A JP 21888983A JP S60110307 A JPS60110307 A JP S60110307A
Authority
JP
Japan
Prior art keywords
air
pressure
valve
pipe
lift pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58218889A
Other languages
Japanese (ja)
Other versions
JPH0316161B2 (en
Inventor
Hisaaki Ito
伊藤 久明
Takashi Suzuki
孝 鈴木
Akira Konuma
小沼 亮
Shigemi Terajima
寺嶋 成美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP58218889A priority Critical patent/JPS60110307A/en
Publication of JPS60110307A publication Critical patent/JPS60110307A/en
Publication of JPH0316161B2 publication Critical patent/JPH0316161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • B01D24/4668Regenerating the filtering material in the filter by moving the filtering element
    • B01D24/4689Displacement of the filtering material to a compartment of the filtering device for regeneration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PURPOSE:To markedly reduce operation cost, by raising the pressure of supplied air only when starting an air lift pump, in a filter in which a filter medium provided at a bottom part is moved to a filter medium cleaning part by supplying air to an air lift pump. CONSTITUTION:Before starting the air lift pump 8, high-pressure air is sufficiently supplied from a high-pressure air source C into an air tank 18, and is stored there while maintaining the pressure. Then, a valve 19 is opened, and a valve 16 is opened simultaneously with the valve 19 is opened, and a valve 16 is opened simultaneously with the valve 19 or before closing the valve 19, thereby starting to supply low-pressure air. At this time, since the pressure in an air blowing-in pipe 9 is raised by the air fed from the tank 18, a check valve 17 is closed, whereby high-pressure air is prevented from flowing back to a low-pressure air source B. By this, the filter medium 2 packed in an air lift pipe 4 is jetted out in a stroke, whereby the filter medium 2 starts to be moved upward in the pipe 4 and discharged from the pipe 4. When the valve 19 is closed after supplying the high-pressure air for about 0.1-10sec, the air pressure in the pipe 9 is lowered, and when it is lowered below the pressure of low-pressure air, the valve 17 is opened to start supplying the low-pressure air, and this operation is continued.

Description

【発明の詳細な説明】 本発明は、汚れたP材を1材洗浄部へ移送するのに、エ
アリフトポンプを用いる移床式連続1過器の運転方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a moving bed continuous one-pass reactor using an air lift pump to transfer contaminated P material to a one-material cleaning section.

この種の移床式連続1過器としては、特1fN昭53−
111062号公報および特開昭53−92369号公
報に開示されたものが知られている。この濾過器はエア
リフトポンプを利用して、汚れた1材を気泡とともに、
エアリフト管内を上昇させf材洗浄部へ移送し、1材洗
浄部で洗浄したP材をf材層の上表面へ流下させるよう
に構成したものである。すなわぢ、上記1過器は、例え
ば第1図ないし第3図に示すように、槽1内に砂等のP
材層を充填してr材層が形成され、槽1の中央部に、[
1の底部から、槽1の上部中央にあるe材洗浄部3まで
延在するエアリフトポンプ8が設けられると共に、槽1
の下部に連結されている原水導入管5から分岐した流入
管6が上方に複数膜けられ、かつこの流入管6の上方に
は、原水分散量7が配設されている。一方、上記エアリ
フトポンプ8は、エアリフト管4の下部に、複数の空気
供給孔4aを介してリング状の空気室Aが設けられ、こ
の空気室Aに空気吹込管9が連結されて成るものである
As a moving bed type continuous 1-pass reactor of this type, the special 1fN
Those disclosed in JP-A No. 111062 and JP-A-53-92369 are known. This filter uses an air lift pump to remove dirty materials with air bubbles.
The structure is such that the inside of the air lift pipe is raised and transferred to the f-material cleaning section, and the P material washed in the single-material cleaning section is caused to flow down onto the upper surface of the f-material layer. In other words, the above-mentioned one-pass vessel is configured to store P such as sand in the tank 1, as shown in FIGS. 1 to 3, for example.
The R material layer is formed by filling the R material layer, and in the center of the tank 1, [
An air lift pump 8 is provided which extends from the bottom of the tank 1 to the e-material cleaning section 3 located at the center of the upper part of the tank 1.
A plurality of inflow pipes 6 branched from the raw water introduction pipe 5 connected to the lower part of the inflow pipe 6 are arranged upwardly, and above the inflow pipe 6, a raw water dispersion amount 7 is disposed. On the other hand, in the air lift pump 8, a ring-shaped air chamber A is provided at the lower part of the air lift pipe 4 through a plurality of air supply holes 4a, and an air blowing pipe 9 is connected to this air chamber A. be.

かかる1過器において、原水は、原水導入管5を介して
流入し、流入管6の上端から流出し、原水分散傘7に当
たって、四方に拡散され、t″ii材J中を通過するこ
とにより1過される。一方、エアリフト癖4の下部に連
通された望見吹込・kgから空気室A1空気供給孔4a
を通って連続的に空気が吹き込まれることにより、エア
リフト管4内の戸材2がエアリフト効果により、気泡と
ともにエアリフト管4内を上昇する。このエアリフトポ
ンプ8の作動によって、槽1の下部にある1過により汚
れた1材2が、エアリフト管4の下部に入り込み、エア
リフト骨4を通って、1材洗浄部3へ移送され、このe
材洗浄部3で洗浄されたf材2は、1材層の上に流下し
て新しい1材層を形成する。
In such a one-pass reactor, raw water flows in through the raw water introduction pipe 5, flows out from the upper end of the inflow pipe 6, hits the raw water dispersion umbrella 7, is dispersed in all directions, and passes through the t''ii material J. On the other hand, the air supply hole 4a of the air chamber A1 is connected to the air supply hole 4a from the observation blower/kg connected to the lower part of the air lift habit 4.
By continuously blowing air through the air lift tube 4, the door material 2 inside the air lift tube 4 rises inside the air lift tube 4 together with air bubbles due to the air lift effect. By the operation of the air lift pump 8, the material 2 that is contaminated by the filtration at the bottom of the tank 1 enters the lower part of the air lift pipe 4, passes through the air lift rib 4, and is transferred to the material cleaning section 3.
The f material 2 cleaned by the material cleaning section 3 flows down onto the first material layer to form a new one material layer.

従来、このように、f材2の移送にエアリフトポンプ8
をオリ用する移床式連続1過器において、エアリフトポ
ンプ8を作動させるために供給する空気は、エアリフト
管4内にある1材2と水との混合物の重量にうぢかって
気泡を上昇させるために、この重量によって空気吹込部
にかかる圧力より大きな圧力の空気が必要であるとされ
ている。
Conventionally, the air lift pump 8 was used to transfer the f-material 2 in this way.
In a moving bed continuous 1-filter reactor that uses air-lift pumps, the air supplied to operate the air-lift pump 8 increases the weight of the mixture of material 2 and water in the air-lift pipe 4 and causes bubbles to rise. Therefore, it is said that air at a pressure higher than the pressure applied to the air blowing section due to this weight is required.

例えば、槽1の高さが約53.00 mm、直径が約2
530mm で、P材2が約3200 mmまで充填さ
れ、かつエアリフト管4の内径が25〜32關の移床式
連続f過器においては、1過器の円滑な始動と安定した
運転を行なうために、エアリフトポンプ8駆動用空気と
して、常に一定圧力約3 kg / t* 0)圧縮空
気が必要であるとされている。このため、第1図に示す
ように、エアリフトポンプ8.小動用空気源として、高
圧力で、単位動力当りの望見供給量が小さいことを特性
とし、かつ直11IIlするエアリフトポンプ8を連続
して駆動させるこ吉のできる容量のコンプレッサ10を
用い、これにより供給される圧縮空気を減圧弁11によ
;て約3 kg/cr/rまで減圧した後、圧力計12
、空気弁13、空気流量計14を介して、空気流量調節
弁15により流量を調節して空気吹込管9を経て、エア
リフトポンプ8に吹き込んでいる。
For example, the height of tank 1 is approximately 53.00 mm, and the diameter is approximately 2 mm.
530 mm, P material 2 is filled to about 3200 mm, and the inner diameter of the air lift tube 4 is 25 to 32 mm. In addition, it is said that compressed air at a constant pressure of about 3 kg/t*0 is always required as the air for driving the air lift pump 8. For this reason, as shown in FIG. 1, the air lift pump 8. As a small air source, a compressor 10 with a high pressure and a small expected supply amount per unit power, and with a capacity that allows continuous driving of an air lift pump 8, is used. After reducing the pressure of the compressed air supplied by the pressure reducing valve 11 to approximately 3 kg/cr/r, the pressure gauge 12
, an air valve 13 and an air flow meter 14, the flow rate is adjusted by an air flow control valve 15, and the air is blown into the air lift pump 8 through an air blowing pipe 9.

このような圧力の空気の供給装置として用いるコンプレ
ッサ10は、より低圧の空気を供給するブロワに比べ効
率が悪く、また必要以上に空気圧力を高めてしまうので
、手位空気量当りの消費エネルギーが大きく、移床式連
続1過器の処理水量当りの運転コストが高くなるという
欠点がある。
The compressor 10 used as a device for supplying air at such a pressure is less efficient than a blower that supplies air at a lower pressure, and also increases the air pressure more than necessary, so the energy consumption per unit air volume is low. However, there is a drawback that the operation cost per amount of water treated by the moving bed continuous single filtration unit is high.

上記移床式連続1過器は、1過水及び洗浄排水が連続し
て出てくるため、従来の半連続式1過器の場合に必要で
あった原水、f過水、洗浄排水の各貯槽が不要であり、
設備費が従来の半連続式1過器に比べて安いという利点
がある。しかしながら、処理水量の大きな設備になるほ
ど、従来の半連続式1過器の場合には、上記各貯槽の設
備費が全設備費に占める割合が小さくなるため、上記の
利点は相対的に小さくなる。これに対し、処理水神が大
きくなると、上記運転コストが高くなるという上記移床
式連続f過器の欠点が無視できないものとなり、上記移
床式連続f過器を処理水量の大きな設備に適用すること
の障害となっている。
In the above-mentioned moving-bed continuous 1-pass reactor, 1-super water and washing waste water are continuously discharged, so raw water, f-super water, and washing waste water, which were required in the case of the conventional semi-continuous 1-pass reactor, are discharged continuously. No storage tank required;
It has the advantage that equipment costs are lower than conventional semi-continuous single-pass reactors. However, as the amount of water to be treated increases, in the case of a conventional semi-continuous single-pass unit, the equipment costs of each storage tank account for a smaller proportion of the total equipment cost, so the above advantages become relatively smaller. . On the other hand, as the amount of water to be treated increases, the disadvantage of the moving bed continuous filtration device, which is that the operating cost increases, cannot be ignored, and therefore the moving bed continuous filtration device is applied to equipment with a large amount of water to be treated. It is an obstacle to this.

また、上記移床式連続Ilj過器の始動時には、第1図
に示すように、エアリフトポンプ8用の空気弁13を開
き、所定の圧力の空気を吹き込み、エアリフトポンプ8
を始動させるが、この時、エアリフト管4内に1材2が
詰マっているので、これをp材洗浄部3へ排出しなけれ
ばならない。ところが、運転を長期間停止していた後等
に8いては、エアリフト管4内のt4材2が固まりを形
成し、上記操作では、エアリフトポンプ8が円滑に始動
しないという欠点がある。
Furthermore, when starting the moving bed type continuous Ilj filter, as shown in FIG.
However, at this time, the air lift pipe 4 is clogged with material 2, which must be discharged to the p material cleaning section 3. However, after the operation has been stopped for a long period of time, the T4 material 2 in the air lift pipe 4 forms a lump, and the above operation has the drawback that the air lift pump 8 does not start smoothly.

ところで、本発明の発明者等は、移床式連続1過器への
約3 /cg/ct/を以上の高圧空気の供給を必要と
する機会が、エアリフト管4内に停止して堆積している
f材2を、1材2の電通、σ4材2とエアリフト管4と
の摩擦力あるいはf材2どうしの摩擦力、そしてエアリ
フト管長分の位置水頭差などにうちかつてエアリフト管
4外へ排壮する操作時、すなわちエアリフトポンプ8を
始動するときのみであり、その必要供給時間は数秒間以
内であって、その他の時間(平常運転に移行した後)に
は、エアリフト管4内の1材2と水との混合物の液柱の
見掛の重さが、気泡が混入することにより軽くなるため
、空気吹込管9がエアリフト管4に接続する点の水圧に
配管等の圧力損失を加えた圧力の低圧空気を供給し続け
ればよいということを見い出した。そして、エアリフト
ポンプ8の始動は、例えば下水処理場の場内用水のため
に、との移床式連続p過器を使用する場合には、本−過
器設置時や数カ月毎に行なうメンテナンス時に1吠の頻
度であり、従って、使用1M度の比較的少ない高圧空気
を適度な所要期間内に、例えば、空気槽に蓄圧して、そ
の蓄圧空気を所要時期に使用することが可能であるとい
うことがわかった。
By the way, the inventors of the present invention have discovered that there are occasions when it is necessary to supply high-pressure air of approximately 3 cm/g/ct/ or more to the moving bed continuous single-pass reactor, but the air stops and accumulates in the air lift tube 4. The f material 2 that is in the air is once removed from the air lift pipe 4 due to the electrical conductivity of one material 2, the frictional force between the σ4 material 2 and the airlift pipe 4, the frictional force between the f materials 2, and the difference in water head due to the length of the airlift pipe. This is only when the air lift pump 8 is started, and the required supply time is within a few seconds, and at other times (after transition to normal operation), the air lift pump 8 is Since the apparent weight of the liquid column of the mixture of material 2 and water becomes lighter due to the inclusion of air bubbles, the pressure loss due to piping etc. is added to the water pressure at the point where the air blowing pipe 9 connects to the air lift pipe 4. They discovered that it is sufficient to continue supplying low-pressure air at a certain pressure. The air lift pump 8 should be started, for example, when a moving bed continuous filtration device is used for internal water use in a sewage treatment plant, at the time of installation of the main filtration device or during maintenance performed every few months. Therefore, it is possible to accumulate relatively small amount of high-pressure air of 1 M degrees in a moderate required period, for example, in an air tank, and use the accumulated air at the required time. I understand.

本発明は、上記事情に基づいてなされたもので、高圧気
体を供給してエアリフトポンプを始動した後、上記高圧
気体より低い圧力の気体を供給して、上記エアリフトポ
ンプの運転を継続させることによって、大幅に運転コス
トを軽減でき、エアリフトポンプの始動が容易にできる
移床式連続1過器の運転方法を提供することを目的とす
る。
The present invention has been made based on the above circumstances, and after starting the air lift pump by supplying high pressure gas, the present invention supplies gas at a pressure lower than the high pressure gas to continue the operation of the air lift pump. An object of the present invention is to provide a method of operating a moving bed continuous single-pass unit that can significantly reduce operating costs and facilitate the start-up of an air lift pump.

以下、図面を参照して本発明を具体的に説明する。なお
、以下の説明中、第1図と共通ずる部分については同一
符号を用い説明を省略する。
Hereinafter, the present invention will be specifically explained with reference to the drawings. In the following description, the same reference numerals will be used for the same parts as in FIG. 1, and the description will be omitted.

第4図は本発明の方法を実施する装置4の一実施例を示
すもので、所定の圧力の空気源が既にある場合または所
定の圧力の空気源を新たに設置する場合について示した
ものである。図中符号Bは低圧空気源であり、この低圧
空気源Bを新たに設置する場合には、コンプレッサーに
比べて低圧力で、単位動力当りの空気供給量が大きく、
低運転コストのブロアを用いる。そして、低圧空気fi
Bは、圧力計12、低圧空気弁16、空気流量計14、
空気流−1l1節弁15、逆止弁17を介して空気吹込
管9に連結されている。また、図中符号Cは高圧空気源
であり、この高圧空気源Cは空気槽18、圧力計12、
高圧空気弁19を介して空気吹込管9に連結されている
。そして、高圧空気源Cはエアリフトポンプ8始動前に
空気槽18に必要空気量を長時間かけて貯留すればよい
ので、小容量のコンプレッサを用いればよい。さらに、
例えば、槽lの高さが約5109m、置所が約2530
朋で、P材2が約3200朋まで充填され、かつエアリ
フト管の長さが約5000mm、内径が約25〜32朋
の移床式連続1過器においては、低圧空気の圧力は0.
5〜0.67i/mとし高圧空気の圧力は通常3〜9.
9 kg/cdとする。
FIG. 4 shows an embodiment of the apparatus 4 for carrying out the method of the present invention, and is shown in the case where an air source with a predetermined pressure already exists or where a new air source with a predetermined pressure is installed. be. Symbol B in the figure is a low-pressure air source, and when newly installing this low-pressure air source B, the pressure is lower than that of a compressor, and the amount of air supplied per unit power is large.
Use a blower with low operating costs. And low pressure air fi
B is a pressure gauge 12, a low pressure air valve 16, an air flow meter 14,
Air flow - 11 is connected to the air blowing pipe 9 via a control valve 15 and a check valve 17. Further, the symbol C in the figure is a high-pressure air source, and this high-pressure air source C includes an air tank 18, a pressure gauge 12,
It is connected to the air blowing pipe 9 via a high pressure air valve 19. Since the high-pressure air source C can store the required amount of air in the air tank 18 for a long time before starting the air lift pump 8, a small-capacity compressor may be used. moreover,
For example, the height of tank L is approximately 5109 m, and the location is approximately 2530 m.
In a moving bed continuous single-pass reactor filled with P material 2 to about 3,200 mm, the length of the air lift tube is about 5,000 mm, and the inner diameter is about 25 to 32 mm, the pressure of the low-pressure air is 0.
5 to 0.67 i/m, and the pressure of high-pressure air is usually 3 to 9.
9 kg/cd.

次いで、第4図に示した装置によって本発明の方法を実
施する場合について説明する。
Next, a case in which the method of the present invention is implemented using the apparatus shown in FIG. 4 will be described.

まず、エアリフトポンプ8始動前に、空気槽18に十分
に高圧空気源Cから高圧空気を供給して蓄圧貯留してお
く。この状態で、エアリフトポンプ8を始動する場合に
は、高圧空気弁19を開き、同時に(または高圧空気弁
19を閉じる前に)、低圧空気弁16を開き、空気の供
給を開始する。
First, before starting the air lift pump 8, a sufficient amount of high pressure air is supplied to the air tank 18 from the high pressure air source C and stored under pressure. In this state, when starting the air lift pump 8, the high pressure air valve 19 is opened and at the same time (or before the high pressure air valve 19 is closed) the low pressure air valve 16 is opened to start supplying air.

この時、空気吹込’gfQ内の圧力は空気槽18から供
給される高圧空気によって高まるため、逆止弁17が閉
まり、高圧空気が低圧空気源Bに逆流することを防止す
る。そして、高圧空気を供給すると、エアリフト管4内
に詰まっているf材2は、−気に噴出する突沸状現象を
起こし、エアリフト管4内の流動が開始し、エアリフト
管4内のf材2の上昇、管外排出が始まる。高圧空気を
約0.1〜10秒供給した後、重圧空気弁19を閉める
と、空気吹込管9内の空気圧が低下し、低圧空気の圧力
より低い圧力になった時に、逆止弁17か開き、低圧空
気の供給が開始される。これにより、エアリフト管4へ
の空気の供給が継続され、エアリフトポンプ8による1
材2の移送が連続して行なわれる。さらに、f材2の移
送量の調節は、エアリフトポンプ8に供給する空気・計
を調節することにより行ない、この空気量の調節は、空
気流−二調節弁15の開度を調節することにより、弁に
おける圧力損失を調節することに置き換えて行なうが、
従来のような装置を用いた場合平常運転時には、例えば
空気流量調節弁15の入口の圧力が約3に97cm、出
口の圧力が約0.4〜0.5 kg / crdとなり
、空気流量調節弁15によって与えなければならない圧
力損失が約2.6〜2.5 kgと大きくなるので、空
気流量調節弁15の操作量と空気流量との関係が、操作
の容易な直線比例的な関係ではなく、全気流量調節弁1
5の開度のわずかな違いで、柴気流婿が大きく変わるた
め、空気流量の微調整がむずかしいのに対して、本発明
に係る運転方法によれば、平常運転時に、空気流量調節
弁の入口圧力が約0.5 kg /c1d、出口の圧力
が約0.4〜0.5 ψ賞となり、空気流量調節弁15
により与える圧力損失が0.1〜Q jcg / cI
ftと小さく、空気流量調節弁15と空気流量との関係
は、少なくともその操作可能範囲内で、はぼ直線比例的
な関係で追従するので、空気流量の微調整が容易である
At this time, the pressure within the air blower 'gfQ is increased by the high pressure air supplied from the air tank 18, so the check valve 17 closes to prevent the high pressure air from flowing back into the low pressure air source B. Then, when high-pressure air is supplied, the f-material 2 stuck in the air lift pipe 4 causes a bumping phenomenon in which air is ejected, and the flow in the air lift pipe 4 starts, and the f-material 2 in the air lift pipe 4 rises, and extravasation begins. After supplying high-pressure air for about 0.1 to 10 seconds, when the heavy-pressure air valve 19 is closed, the air pressure inside the air blowing pipe 9 decreases, and when the pressure becomes lower than the pressure of low-pressure air, the check valve 17 closes. It opens and the supply of low pressure air begins. As a result, air is continuously supplied to the air lift pipe 4, and the air lift pump 8 continues to supply air to the air lift pipe 4.
The material 2 is transferred continuously. Further, the amount of transferred material 2 is adjusted by adjusting the air meter supplied to the air lift pump 8, and the amount of air is adjusted by adjusting the opening degree of the air flow control valve 15. , but instead of adjusting the pressure loss in the valve,
When using a conventional device, during normal operation, for example, the pressure at the inlet of the air flow control valve 15 is about 3 to 97 cm, the pressure at the outlet is about 0.4 to 0.5 kg/crd, and the air flow control valve 15 Since the pressure loss that must be provided by the air flow control valve 15 is large, approximately 2.6 to 2.5 kg, the relationship between the operation amount of the air flow control valve 15 and the air flow rate is not a linear proportional relationship that is easy to operate. , total air flow control valve 1
However, according to the operating method of the present invention, during normal operation, the inlet of the air flow control valve The pressure is about 0.5 kg/c1d, the outlet pressure is about 0.4 to 0.5 ψ, and the air flow control valve 15
The pressure loss caused by 0.1 to Q jcg/cI
ft, and the relationship between the air flow rate control valve 15 and the air flow rate follows a nearly linear proportional relationship at least within its operable range, making it easy to finely adjust the air flow rate.

また、第5図は、高圧及び低圧の空気源があるが、高圧
空気源Cは所定の圧力より高く、かつ低圧空気源Bは所
定の圧力より低い場合の実施例を示すもので、この場合
、低圧空気は昇圧ブロア20で所定の圧力に上げて、か
つ高圧空気は減圧弁11で所定の圧力まで減圧して供給
すればよい。
Moreover, FIG. 5 shows an example in which there are high pressure and low pressure air sources, but the high pressure air source C is higher than a predetermined pressure, and the low pressure air source B is lower than the predetermined pressure. The low-pressure air may be raised to a predetermined pressure by the booster blower 20, and the high-pressure air may be reduced to a predetermined pressure by the pressure-reducing valve 11 before being supplied.

さらに、第6図は、平常運転中に、エアリフト骨4また
は空気吹込管9が閉塞する等なんらかの原因でエアリフ
ト管4内への空気吹込量が少なくなって、エアリフトポ
ンプ8の作動状態が不安定となることを防止し、エアリ
フトポンプ8の作動をより確実に行なうために、フロー
スイッチ21を空気吹込管9ζこ設けたもので、これに
より、なんらかの原因でエアリフトポンプ内への空気吹
込量が少なくなった場合に、エアリフトポンプ用空気流
量の低下を検知し、直ちζこエアリフトポンプ8始動時
と同様に高圧空気弁19を自動的に開くことによって、
高圧空気を供給し、配管の閉塞等の原因を解消する。そ
して、短時間(01〜10秒)高圧空気を供給した後、
高圧空気弁19を自動的に閉じ、平常運転に戻り、エア
リフトポンプ8の作動を回復する。なお、フロースイッ
チ21は空気流!調節弁15と逆止弁17との間に設け
てもよく、また、第6図の空気流量計14で流量をチェ
ックして、流量が低下した場合に、高圧空気弁19を自
動的に開く構成としてもよい。
Furthermore, FIG. 6 shows that during normal operation, the amount of air blown into the air lift pipe 4 decreases due to some reason such as blockage of the air lift bone 4 or the air blowing pipe 9, and the operating state of the air lift pump 8 becomes unstable. In order to prevent this from happening and to operate the air lift pump 8 more reliably, a flow switch 21 is provided in the air blowing pipe 9ζ.This will prevent the amount of air blown into the air lift pump from being reduced due to some reason. When this occurs, a decrease in the air flow rate for the air lift pump is detected, and the high pressure air valve 19 is immediately opened in the same way as when the air lift pump 8 is started.
Supply high-pressure air to eliminate causes of pipe blockage, etc. Then, after supplying high pressure air for a short time (01 to 10 seconds),
The high pressure air valve 19 is automatically closed, normal operation is resumed, and the operation of the air lift pump 8 is restored. In addition, the flow switch 21 is an air flow! It may be provided between the control valve 15 and the check valve 17, and if the flow rate is checked with the air flow meter 14 shown in FIG. 6 and the flow rate decreases, the high pressure air valve 19 is automatically opened. It may also be a configuration.

なおまた、高圧空気の供給時間を0.1〜10秒の短時
間とするのは、高圧空気をこれ以上長く供給すると、供
給した望気量が過剰となり、空気がエアリフト管4を通
って上に抜は切れず、エアリフト管4の下端から1材層
に逆流する現象が起こり、この空気が気泡捕集傘22で
捕集し切れない場合には、気泡がf材ノーの中を連行し
局部的な流動化が起こり、−過水の水質を悪化させる等
の現象が生じるためである。さらに、本実施例で低圧空
気源Bとして用いられるブロアは、一般に、コンプレッ
サより効率が良く、また必要な圧力までしか空気を圧縮
しないため、単位空気量当たりの消費エネルギーが小°
さい。さらにまた、本実施例においては、空気を供給気
体としたが、場合によっては他の気体を使用してもよい
Furthermore, the reason why the high-pressure air supply time is set to a short time of 0.1 to 10 seconds is because if the high-pressure air is supplied for a longer period of time, the supplied desired air volume will be excessive and the air will pass through the air lift pipe 4 and rise. If the air cannot be completely removed, a phenomenon occurs in which the air flows backward from the lower end of the air lift pipe 4 into the first material layer, and if this air cannot be completely collected by the air bubble collecting umbrella 22, the air bubbles are entrained inside the f material layer. This is because local fluidization occurs, causing phenomena such as deterioration of the quality of overwater. Furthermore, the blower used as the low-pressure air source B in this example is generally more efficient than a compressor, and because it compresses air only up to the required pressure, it consumes less energy per unit amount of air.
Sai. Furthermore, in this embodiment, air was used as the supply gas, but other gases may be used depending on the case.

以上説明したように、本発明は、単位空気を肖りの消費
エネルギーが大きい高圧空気は、始動時の短時間だけ使
用し、平常運転時には、単位空気量当りの消費エネルギ
ーが小さい低圧空気を使用するようにするので、運転費
を大幅に低減できる。
As explained above, the present invention uses high-pressure air, which consumes a large amount of energy per unit of air, only for a short time during startup, and uses low-pressure air, which consumes less energy per unit of air, during normal operation. As a result, operating costs can be significantly reduced.

例えば、1過面積5rrL2の移床式連続を過器を10
台運転する場合、従来の運転方法では、最低でも15K
Wのコンプレッサ1台を必俄とするが、本発明の運転方
法では、5.5 KWのブロア1台で良く、エアリフト
ポンプ駆動用の高圧空気の消費エネルギーは無視できる
径小さいので、運転コストを1〜!−に低減できる。ま
た、砂1過器は活性汚3 理法を用いた下水処理場の場内用水をまかなうために近
年多用される傾向にあり、その場内には、曝気用ブロア
が既設されているが、この曝気用ブロアのように、空気
供給量に余裕のある、適当な圧力の低圧空気源がある場
合には、これにより低圧空気を供給すればよく、新たに
低圧空気源を設置する必要がないので、設備費が低減で
きる。さらに、エアリフトポンプ始動時にエアリフト管
内に詰まっている1材を、高圧空気を吹き込むことによ
り、−気に噴出させる突沸状現象を起こさせてエアリフ
ト管外に排出すると共に、このエアリフト管内に次に誘
導する1材の流動化を有利にさせ、低圧空気の供給を引
き続きうけるので、エアリフトポンプを円滑に運転させ
ることができる等価れた効果を有する。
For example, if you use a moving bed continuous system with 1 over area of 5rrL2, 10
If you drive a truck, the conventional driving method requires a minimum of 15K.
Although one W compressor is required, in the operating method of the present invention, one 5.5 KW blower is sufficient, and the energy consumption of the high pressure air for driving the air lift pump is small enough to be ignored, reducing operating costs. 1~! It can be reduced to −. In addition, sand 1-filter vessels have been increasingly used in recent years to supply on-site water at sewage treatment plants that use the activated sewage treatment method, and aeration blowers are already installed at these plants. If you have a low-pressure air source with enough air supply and an appropriate pressure, such as a blower, you can supply low-pressure air using this, and there is no need to install a new low-pressure air source, so the equipment Costs can be reduced. Furthermore, when the air lift pump is started, high-pressure air is blown into one material that is stuck inside the air lift pipe, causing a bumping phenomenon in which air is ejected, and the material is discharged outside the air lift pipe, and the material is guided into the air lift pipe. Since the fluidization of the material to be used is advantageous and low pressure air is continuously supplied, the air lift pump has an equivalent effect of being able to operate smoothly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は従来の移床式連続f過器を示すも
ので、第1図は全体構成図、第2図番まエアリフトポン
プの断面図、第3図は第2図のl−■線に沿う断面図、
第4図は本発明の実施lご用(為る移床式連続f過器の
一例を示す全体構成図、第5図は高圧空気源の圧力が高
く、低圧空気源の圧力が低い場合の一例を示す全体構成
図、第6図はエアリフトポンプの作動をより確実に行な
うための一例を示す全体構成図である。 2・・・・・・を材、3・・・・・・1材洗浄部、8・
・・・・・エアリフトポンプ、B・・・・・・低圧空気
源、C・・・・・・高圧空気源。 出願人月島機械株式会社
Figures 1 to 3 show a conventional moving bed type continuous flow pump. − Cross-sectional view along the line,
Fig. 4 is an overall configuration diagram showing an example of a moving bed continuous filter for carrying out the present invention. Figure 6 is an overall configuration diagram showing an example for more reliable operation of the air lift pump. Washing section, 8.
...Air lift pump, B...Low pressure air source, C...High pressure air source. Applicant Tsukishima Kikai Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] f材層底部のf材をエアリフトポンプによりe材洗浄部
へ移送し、このt44材洗浄で洗浄した1材を1材層の
上部へ流下させるように構成された移床式連続濾過器の
運転方法において、高圧気体を供給して上記エアリフト
ポンプを始動させた後、上記エアリフトポンプ始動時に
供給した高圧気体の圧力より低い圧力の気体を継続して
供給することにより、上記エアリフトポンプの運転を継
続させて上記f材の移送を行なうことを特徴とする移床
式連続濾過器の運転方法。
Operation of a moving bed type continuous filter configured to transfer the F material at the bottom of the F material layer to the e material washing section using an air lift pump, and cause the 1 material washed by this T44 material washing to flow down to the top of the 1 material layer. In the method, after starting the air lift pump by supplying high pressure gas, the operation of the air lift pump is continued by continuously supplying gas at a pressure lower than the pressure of the high pressure gas supplied at the time of starting the air lift pump. A method for operating a moving bed continuous filter, characterized in that the above-mentioned f-material is transferred.
JP58218889A 1983-11-21 1983-11-21 Operation of moving bed type continuous filter Granted JPS60110307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58218889A JPS60110307A (en) 1983-11-21 1983-11-21 Operation of moving bed type continuous filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58218889A JPS60110307A (en) 1983-11-21 1983-11-21 Operation of moving bed type continuous filter

Publications (2)

Publication Number Publication Date
JPS60110307A true JPS60110307A (en) 1985-06-15
JPH0316161B2 JPH0316161B2 (en) 1991-03-04

Family

ID=16726890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58218889A Granted JPS60110307A (en) 1983-11-21 1983-11-21 Operation of moving bed type continuous filter

Country Status (1)

Country Link
JP (1) JPS60110307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166113A (en) * 2011-02-10 2012-09-06 Takuma Co Ltd Sand filter
JP2013516316A (en) * 2010-01-08 2013-05-13 パークソン コーポレーション Apparatus for treating liquids containing impurities

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516316A (en) * 2010-01-08 2013-05-13 パークソン コーポレーション Apparatus for treating liquids containing impurities
JP2012166113A (en) * 2011-02-10 2012-09-06 Takuma Co Ltd Sand filter

Also Published As

Publication number Publication date
JPH0316161B2 (en) 1991-03-04

Similar Documents

Publication Publication Date Title
US5976365A (en) Biomass growth control apparatus for fluid bed biological reactor
US5749711A (en) Automatic pneumatic pump including a tank with inlet and outlet and a pump connected to the inlet
US3201919A (en) Drilling mud degasser
US4217218A (en) Removal of solids from a wet oxidation reactor
JPH08132082A (en) Method for cleaning floating filter medium for biological filter
US5203890A (en) Deaerator for removing dissolved oxygen in water
US5591347A (en) Single cell gas flotation separator with filter media
JPS60110307A (en) Operation of moving bed type continuous filter
JP2695624B2 (en) How to clean floating filter media
JP3772028B2 (en) Anaerobic water treatment device
EP0002928B1 (en) Removal of solids from a wet oxidation reactor
JPH11289911A (en) Method for purifying water quality in aquarium, etc., treating device and treating system
JPS60193599A (en) Digester
US3028817A (en) Adjustable airlift pump
SE501901C2 (en) Method and apparatus for reducing reject flow and energy consumption when filtering in dynamic filters
CN113384923A (en) Automatic-cleaning siphon filter tank and use method thereof
US3226916A (en) Mud treating apparatus
JP2008093552A (en) Moving-bed filtration apparatus
JP2005246185A (en) Water treatment and air diffusion equipment and operation management method
CN207169212U (en) Wear resistant y-type filter
US2053628A (en) Improved filtering apparatus and method
JPH0524358B2 (en)
JP4249855B2 (en) Moving bed type filtration equipment using floating media
GB2064350A (en) Regenerating sand filters
EP0612695A1 (en) Biomass growth control apparatus for fluid bed biological reactor