JPS60109799A - Self-excited induction generator - Google Patents

Self-excited induction generator

Info

Publication number
JPS60109799A
JPS60109799A JP58215510A JP21551083A JPS60109799A JP S60109799 A JPS60109799 A JP S60109799A JP 58215510 A JP58215510 A JP 58215510A JP 21551083 A JP21551083 A JP 21551083A JP S60109799 A JPS60109799 A JP S60109799A
Authority
JP
Japan
Prior art keywords
induction generator
self
relay
voltage
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58215510A
Other languages
Japanese (ja)
Inventor
Junzo Kato
順三 加藤
Kiyoshi Itani
猪谷 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP58215510A priority Critical patent/JPS60109799A/en
Publication of JPS60109799A publication Critical patent/JPS60109799A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/46Control of asynchronous generator by variation of capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To reduce the rotating speed for establishing an output voltage by flowing a direct current through an output winding during the prescribed time before starting an induction generator, thereby increasing the magnetic flux of a rotor. CONSTITUTION:When an operation switch 18 is closed, a relay R and a timer relay T are energized. Thus, a relay X is energized, and a direct current is flowed from a battery 16 to the output winding 9 (between V-phase and W-phase terminals) of an induction generator 7. When the contact T1 of the timer is opened, the energization of the relay X is interrupted. Thus a microprocessor 20 is operated, and an engine 12 is driven. Thus, the output voltage is established at the low rotating speed, and the established voltage can be simultaneously reduced. Accordingly, the rush current generated at the voltage establishing time can be reduced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は電型の回転子と、出力巻線と、自己励磁用のコ
ンデ/すとを備える自己励磁式誘導発電機の運転制御に
係り、特に起動時の制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention is applicable to the operation control of a self-exciting induction generator equipped with an electric rotor, an output winding, and a self-exciting condenser. This relates particularly to control at startup.

(ロ)従来技術 一般に電型の回転子と、出力巻線と、自己励磁用のコン
デンサとを備えた自己励磁式誘導発電機はエンジンなど
で回転子を駆動して発電を行なっていた。この場合コン
デンサに流れる無効電流で誘導発電機を自己励磁すると
、この特性は第1図に示すようなものであった。すなわ
ちこの図において横軸は励磁電流(無効電流)、縦軸は
誘導発電機の出力電圧であり、(1)、(2)は誘導発
電機の無負荷飽和特性を示す直線であり夫々回転子の回
転数をHf I+、′1.51″とした時の特性である
(b) Prior Art In general, self-exciting induction generators, which are equipped with an electric rotor, an output winding, and a self-exciting capacitor, generate electricity by driving the rotor with an engine or the like. In this case, when the induction generator was self-excited by the reactive current flowing through the capacitor, its characteristics were as shown in FIG. In other words, in this figure, the horizontal axis is the exciting current (reactive current), the vertical axis is the output voltage of the induction generator, and (1) and (2) are straight lines showing the no-load saturation characteristics of the induction generator, and the rotor These are the characteristics when the rotational speed of Hf I+ is '1.51''.

(3)′、(4)は自己励磁用に用いたコンデンサの充
電電圧特性を示す直線であり、この傾き6β″は回転子
の角速度を6ω”コンデンサの容量をM C11とする
とβ= tan−1α/azC)で表わされる。曲線(
1)は直線(3)と点P、で交わるようにコンデンサの
容量を選択した゛ものであり、直線(4)は曲線(1)
の回転数を1.5f”とした時の直線(3)の対応直線
であり曲線(2)と点P2で交わっている。誘導発電機
の定格回転数を6f”とすれば曲線(1)と直線(3)
との間には誘導発電機からコンデンサへ1クトル(5)
で表わされる9ff’の進み電流が流れ、この進み電流
がコンデンサに流れなくなった点P1でこの誘導発電機
の出力電圧が確立する。すなわちこの点P1でコンデン
サに無効電流として流れる90°の進み電流(励磁電流
)で出力巻線が自己励磁されて、この発電機が定格回転
数で安定した発電を得ることができる。従って、自己励
磁用のコンデンサの容量を直線(6)となるように選択
した場合、誘導発電機からコンデンサへは90°の進み
電流が流れず発電が行なわれないためコンデンサの容量
はこの直線(6)に用いた容量より大きくする必要があ
る。尚、コンデンサの容量を大きくすれば、この発・電
機の確立する出力電圧の値が大きくなるのは第1図から
れかることである。
(3)' and (4) are straight lines showing the charging voltage characteristics of the capacitor used for self-excitation, and the slope of this line is 6β'', where the angular velocity of the rotor is 6ω, and the capacitance of the capacitor is MC11, β=tan- 1α/azC). curve(
In 1), the capacitance of the capacitor is selected so that the straight line (3) intersects at point P, and the straight line (4)
It is a corresponding straight line to straight line (3) when the rotational speed of the induction generator is 1.5f'', and it intersects curve (2) at point P2.If the rated rotational speed of the induction generator is 6f'', then curve (1) and straight line (3)
There is 1 ktor from the induction generator to the capacitor (5).
A leading current of 9ff' expressed as follows flows, and the output voltage of this induction generator is established at a point P1 where this leading current no longer flows to the capacitor. That is, at this point P1, the output winding is self-excited by the 90° advance current (excitation current) flowing as a reactive current in the capacitor, and the generator can obtain stable power generation at the rated rotation speed. Therefore, if the capacitance of the capacitor for self-excitation is selected so that it forms a straight line (6), a 90° lead current will not flow from the induction generator to the capacitor and power generation will not occur, so the capacitance of the capacitor will be determined by the straight line (6). It is necessary to make the capacity larger than the capacity used in 6). As can be seen from FIG. 1, if the capacitance of the capacitor is increased, the value of the output voltage established by this generator/electric machine increases.

またコンデンサの容量を直線(3)に用いたコンデンサ
と同容量としかつこの発電機の定格回転数を’1.51
”とすれば、出力電圧(■2)の確立が点P2となる。
Also, the capacity of the capacitor is the same as the capacitor used for the straight line (3), and the rated rotation speed of this generator is set to '1.51'.
”, the establishment of the output voltage (■2) becomes point P2.

この時コンデンサの充電電圧特性は周波数と関係するた
め直線(4)のように傾きが変化している。従って、回
転子の回転数が変われば電圧の確立点も変わるものであ
ろう このような特性を有する誘導発電機を駆動した場合、こ
の発電機の出力II E nは発電機の極数をP”、−
相の直列コイル数をル”、回転子の磁束をΦ″、回転子
の回転数を”N6”とすると出力電圧は一般に′E=ル
・P@φ・N、/60”で示されるが、誘導発電機から
の出力電圧がE=e”となった時から自己励磁用に設け
たコンデンサへ無効電流が流れ始め自己励磁作用が生じ
、急激に磁束”蛋”の値が増加して瞬時に電圧の確立す
る点に達する。すなわち誘導発電機の回転子の回転数を
順次増加させながら誘導発電機を起動した場合、この誘
導発電機の出力電圧がE=e”となる回転数″N、nで
瞬時に電圧が確立するものである。尚、上記の出力電圧
“C”は誘導発電機の緒特性及びコンデンサの容量に基
づいて一定値に定まるものである。
At this time, since the charging voltage characteristic of the capacitor is related to the frequency, the slope changes as shown by straight line (4). Therefore, when driving an induction generator with such characteristics that the voltage establishment point will change as the rotation speed of the rotor changes, the output II E n of this generator will change the number of poles of the generator by P ”,−
If the number of series coils in a phase is ``L'', the magnetic flux of the rotor is Φ'', and the rotation speed of the rotor is ``N6'', then the output voltage is generally expressed as 'E=P@φN,/60''. When the output voltage from the induction generator reaches E=e'', a reactive current begins to flow into the capacitor installed for self-excitation, and a self-excitation effect occurs, causing a sudden increase in the value of the magnetic flux ``eg''. A point is reached where the voltage builds up. In other words, when the induction generator is started while gradually increasing the rotation speed of the rotor of the induction generator, the voltage is instantaneously established at the rotation speed ``N, n'' where the output voltage of the induction generator becomes E=e''. It is something. Note that the above output voltage "C" is determined to be a constant value based on the mechanical characteristics of the induction generator and the capacitance of the capacitor.

例えば3相、2極、定格出力が200 (V)、20’
0 (W)、定格回転数が3000 ([p13)誘導
発電機に容量が14〔μF〕の自己励磁用コンデンサを
接続した場合、この誘導発電機からコンデンサへ無効電
流が流れ始める出力電圧”e”は実験的に約″g=5(
V)であった。従って、出力電圧″E”がE = e”
となる回転数Nは上記の関係式″E=トリ・生・N、/
60″から磁束11の埴によつ1変わることがわかる。
For example, 3-phase, 2-pole, rated output is 200 (V), 20'
0 (W), rated rotation speed is 3000 ([p13) When a self-excitation capacitor with a capacity of 14 [μF] is connected to an induction generator, the output voltage "e" at which reactive current begins to flow from the induction generator to the capacitor ” is experimentally approximately ”g=5 (
V). Therefore, the output voltage "E" is E = e"
The rotational speed N is determined by the above relational expression ``E=chicken/raw/N,/
It can be seen that from 60'', the magnetic flux changes by 1 depending on the magnetic flux of 11.

すなわち磁束゛干パの値が小さい時は回転子の回転数を
大きくしなければ自己励磁作用が発生せず発電が行なわ
れない、また”磁束”の値が大きい時は回転子の回転数
が小さくても自己励磁作用が発生して発電が開始される
。具体的には無負荷状態でこの誘導発電機の回転子の回
転数を順次増加して起動を行なうと、回転子の回転数″
Ng″が”N、=3200(rpm )”となった時に
コンデンサへ無効電流が流れ始めて誘導発電機の出力電
圧が確立し、この回転数″N、=3200(甲〕”にお
ける確立電圧は6■=230(V)”であった。尚、こ
の確立電圧の値は前記した誘導発電機の無負荷飽和特性
の曲線と自己励磁用に用いたコンデンサの充電電圧特性
の直線との交点からまる確立電圧と一致しているもので
ある。この出力電圧が確立した後に負荷を接続していた
。この負荷にR(抵抗)負荷を用いた場合には、誘導発
電機を停止した後に再度上記と同様な起動を行なっても
同じ起動特性が得られるものであった。しかしこの負荷
にモータなどのL(インダクダンス)負荷を用いた場合
、誘導発電機の停止時にL負荷の減磁作用で回転子の磁
束1歪”の値が極めて小さくなるものであった。このよ
うに回転子の磁束歪”の値が極めて小さい状態(この状
態は誘導発電機の一停止状態が極めて長い時に、磁束′
引”の自然減少で生じることもある。)で再度上記と同
様な起動を行なうと、出力電圧がE=e”となる回転数
が極めて高くなり例えばN、= 4000 (rW)”
となる場合があった。この時の確立電圧は”V=360
(V)”であった。このように磁束1グの値が小さい時
には起動時の回転数を定格回転数と比べて極めて高くす
る必要があり、誘導発電機の軸受部などが破損すること
があった。また出力電圧がE=C”となった時から急激
に出力電圧が確立するため、この時に自己励磁用のコン
デンサに突入電流が流れこのコンデンサを破損する場合
があった。さらにこのような誘導発電機の起動特性を考
慮するとL負荷にはあまり利用できないものであった。
In other words, when the value of "magnetic flux" is small, the rotation speed of the rotor must be increased to prevent self-excitation and power generation, and when the value of "magnetic flux" is large, the rotation speed of the rotor must be increased. Even if it is small, a self-excitation effect occurs and power generation starts. Specifically, if the rotation speed of the rotor of this induction generator is sequentially increased and started in a no-load state, the rotation speed of the rotor "
When Ng" becomes "N, = 3200 (rpm)", a reactive current begins to flow to the capacitor and the output voltage of the induction generator is established, and the established voltage at this rotational speed "N, = 3200 (A)" is 6. ■ = 230 (V)''.The value of this established voltage is determined by the intersection of the above-mentioned no-load saturation characteristic curve of the induction generator and the straight line of the charging voltage characteristic of the capacitor used for self-excitation. After this output voltage was established, the load was connected.If an R (resistive) load was used for this load, the same as above was repeated after stopping the induction generator. However, when an L (inductance) load such as a motor is used as this load, when the induction generator is stopped, the rotor is damaged due to the demagnetization effect of the L load. In this state, the value of the magnetic flux 1 strain of the rotor is extremely small (this state occurs when the induction generator is stopped for a very long time).
If the same start-up as above is performed again at a time when the output voltage becomes E=e", the rotational speed at which the output voltage becomes E=e" becomes extremely high, for example, N=4000 (rW).
There were cases where this happened. The established voltage at this time is “V=360
(V)''.When the value of magnetic flux 1g is small like this, it is necessary to make the rotational speed at startup extremely high compared to the rated rotational speed, which may damage the bearings of the induction generator. In addition, since the output voltage suddenly becomes established after the output voltage becomes E=C'', a rush current flows into the self-excitation capacitor at this time, which may damage the capacitor. Furthermore, considering the starting characteristics of such induction generators, they cannot be used for L loads.

(ハ)発明の目的 斯る問題点に鑑み、本発明は誘導発電機の起動時に回転
子の磁束を増加させて出力電圧が確立する回転数を小さ
くし、起動特性を改善した自己励磁式誘導発電機を提供
するものである。
(c) Purpose of the Invention In view of the above problems, the present invention provides a self-excited induction generator that improves the starting characteristics by increasing the magnetic flux of the rotor at the time of starting the induction generator and reducing the number of revolutions at which the output voltage is established. It provides a generator.

に)発明の構成 本発明は電型の回転子と、出力巻線と、自己励磁用のコ
ンデンサとを有する自己励磁式誘導発電機において、誘
導発電機の起動前の所定時間の間出力巻線に直流を通電
する制御回路を備えて、回転子の磁束を増加させたもの
である。
B) Structure of the Invention The present invention provides a self-exciting induction generator having an electromagnetic rotor, an output winding, and a self-excitation capacitor, in which the output winding is operated for a predetermined period of time before starting the induction generator. The rotor is equipped with a control circuit that applies direct current to the rotor to increase the magnetic flux of the rotor.

(ホ)実施例 以下本発明の実施例を第2図第3図に基づいて説明する
と、先づ第2図において(7)は電型の回転子(8)、
出力巻線(9)を有する三相i導発電機であり、定格出
力200 (V)、200 (W)、定格回転数300
0 (rF)、−相の巻線抵抗6〔Ω〕、極数2CP)
の従来例の説明に用いた誘導発電機と同じものを用いて
いる。α唱ま誘導発電機(7)の自己励磁用のコンデン
サであり、容量が14〔μF〕で各相間に夫々接続され
ている。尚(XI)、(X、)は誘導発電機(7)の■
相端子、W相端子に設けられた切換接片であり、後記す
るリレー(3)の通電で図示の状態と反対側に切換る娘
のである。(ト)は電圧検出リレーであ、す、端子間電
圧が所定値以上となった時に接片(Y、)を閉じるもの
である。αBはこの誘導発電機(力の負荷であり、リレ
ー(Z)の接片(zl)、(Z2)、(Z3)を介して
接続されている。02)はエンジンであり、この回転軸
には回転数検出器α飄起動用のセルモータα似及び電磁
クラッチ(15+を介して誘導発電機(7)の回転子(
8)が接続されている。
(e) Examples Examples of the present invention will be explained based on FIGS. 2 and 3. First, in FIG. 2, (7) is an electric type rotor (8),
It is a three-phase i-conductor generator with an output winding (9), rated output 200 (V), 200 (W), and rated rotation speed 300.
0 (rF), - phase winding resistance 6 [Ω], number of poles 2CP)
The same induction generator as used in the explanation of the conventional example is used. This is a capacitor for self-excitation of the α induction generator (7), and has a capacity of 14 [μF] and is connected between each phase. Note that (XI) and (X,) are the ■ of induction generator (7)
This is a switching contact piece provided on the phase terminal and the W-phase terminal, and it switches to the opposite side from the illustrated state when the relay (3) described later is energized. (G) is a voltage detection relay, which closes the contact piece (Y) when the voltage between the terminals exceeds a predetermined value. αB is this induction generator (which is a force load and is connected through contacts (zl), (Z2), and (Z3) of the relay (Z). 02) is the engine, which is connected to this rotating shaft. is the rotor of the induction generator (7) via the rotation speed detector α and the electromagnetic clutch (15+).
8) is connected.

尚この電磁クラッチα9はリレー(C)が通電されると
ON状態となる。(16)は定格電圧6〔■〕のバッテ
リーであり、リレー(3)の通電で切換る切換接片(X
3)(X、)及びリレー(S)の通電で動作する接片(
Sl)、(Sz)を介してセルモータα荀に接続されて
いる。
Note that this electromagnetic clutch α9 is turned on when the relay (C) is energized. (16) is a battery with a rated voltage of 6 [■], and the switching contact (X
3) Contact piece (
It is connected to the cell motor α via Sl) and (Sz).

αnはエンジンαつをコントロールし、かつ、以下に説
明する制御回路からのエンジン回転数設定信号及び回転
数検出器α尋の出力に基づいてエンジンαりの回転数を
定めるガバナである。制御回路は常開の運転開始スイッ
チα樽、常閉の運転停止スイッチ0!J、自己保持用の
常開接片<L)と、常開接片(R6)、(R9)を有す
るリレー(旬が順次直列に電源+■ccに接続されてい
る。尚このリレー(6)には並列にタイマリレー(T′
)が設けられており、このタイマリレー(T)は通電か
ら所定時間後に開く常閉のタイマ接片(T、)を有して
いる。また囚は常開接片(R2)、タイマ接片(T、)
を介して通電されるリレーであり上記した切換接片(X
l )、(X、)、(X、)、(X4)及び常閉接片(
X、)を有している。
αn is a governor that controls the engine α and determines the rotational speed of the engine α based on the engine rotational speed setting signal from the control circuit described below and the output of the rotational speed detector α. The control circuit has a normally open operation start switch α barrel and a normally closed operation stop switch 0! J, a relay with a self-holding normally open contact piece <L) and normally open contacts (R6) and (R9) (the relays are connected in series to the power supply +cc. ) is connected in parallel with a timer relay (T'
), and this timer relay (T) has a normally closed timer contact (T, ) that opens after a predetermined period of time after energization. Also, the capacitors are the normally open contact (R2) and the timer contact (T,).
It is a relay that is energized via the above-mentioned switching contact (X
l ), (X, ), (X, ), (X4) and normally closed contacts (
X,).

さらに(20)はマイクロプロセッサであり、常開接片
(R3)が閉じて電源が接続されると動作を開始し、常
開接片(X、)、(Yl)が閉じて生じる信号と回転数
検出器0階からの回転数信号とに基づいてリレー(Z)
、(C)、 (S)の通電を制御すると同時にガバナ(
17)へエンジン回転数設定信号を出力するものである
Furthermore, (20) is a microprocessor, which starts operating when the normally open contact piece (R3) is closed and the power supply is connected, and the signal and rotation generated when the normally open contact pieces (X, ) and (Yl) are closed. Relay (Z) based on the rotation speed signal from the number detector 0th floor
, (C), (S) and at the same time, the governor (
17) outputs an engine rotation speed setting signal.

このマイクロプロセッサ(イ)は第3図に示すフローチ
ャ=1・図に基づいて動作する。すなわち、常開接片(
R5)が閉じるとマイクロプロセッサ翰がイニシャライ
ズ設定され動作を開始する。次に常開接片(X、)が閉
じるとリレー(S)を通電して常開接片(Sl)、(S
2)を閉じる。この時リレー(3)の通電は遮断されて
おり切換接片(X、)、(X4)は図に示す状態にある
。従って、バッテリーα6)から電流が供給されてセル
モータα沿が駆動する。次にエンジンaのが起動したか
否かを判断し、エンジンa′IJが起動していない場合
はセルモータα(イ)の駆動を維持し、エンジン(1の
が起動した場合はセルモータ(14)の駆動を停止する
と同時にリレー(0を通電して電層クラッチ(151を
ON状態とする。この後、常開接片(Y、)が閉じるま
でエンジン(12+の回転数を上昇させる。この常開接
片(Y、)が閉じるとエンジンα2の回転数を定格回転
数に設定した後リレー(Z+を通電し常開接片(Z、)
、(Z2)、(Zs)を閉じて負荷へ電流を供給するも
のである。
This microprocessor (a) operates based on the flowchart 1 shown in FIG. That is, the normally open contact piece (
When R5) is closed, the microprocessor screen is initialized and starts operating. Next, when the normally open contacts (X,) close, the relay (S) is energized and the normally open contacts (Sl), (S
Close 2). At this time, the relay (3) is de-energized and the switching contacts (X, ), (X4) are in the state shown in the figure. Therefore, current is supplied from the battery α6) to drive the cell motor α. Next, it is determined whether engine a has started or not, and if engine a'IJ has not started, starter motor α (a) is maintained, and if engine (1) has started, starter motor (14) is activated. At the same time, the relay (0) is energized and the electric layer clutch (151 is turned on. When the open contact piece (Y,) closes, the rotation speed of engine α2 is set to the rated rotation speed, and then the relay (Z+ is energized and the normally open contact piece (Z, )
, (Z2), and (Zs) are closed to supply current to the load.

このように構成された自己励磁式誘導発電機(7)を運
転する場合、先づ運転スイッチα樟を投入するとリレー
(8)、タイマリレー(T)が通電される。これにより
常開接片(R2)が閉じられリレーXが通電される。従
って、切換接片(Xl)、(X、)、(X、)、(X4
)が切換って誘導発電機(力の出力巻線(9) (V相
端子及びW相端子間)にバッチIJ −(16)から直
流が通電される。この通電はタイマリレーげ)のタイマ
接片(T1)が開くまでの所定時間(約20秒)維持さ
れる。タイマ接片(T、)が開くとリレー囚への通電が
遮断され切換接片(X、)、(X、)、(X3)、(X
4)が切換ると同時に常閉接片(X、)が閉じる。これ
によりマイクロプロセッサ翰が第3図のフローチャート
図に基づいて動作しエンジンα2が駆動される。
When operating the self-exciting induction generator (7) configured as described above, first the operation switch α is turned on, and the relay (8) and timer relay (T) are energized. This closes the normally open contact piece (R2) and energizes the relay X. Therefore, switching contacts (Xl), (X, ), (X, ), (X4
) is switched and DC is energized from the batch IJ-(16) to the force output winding (9) (between the V-phase terminal and the W-phase terminal). This energization is carried out by the timer relay). This is maintained for a predetermined time (approximately 20 seconds) until the contact piece (T1) opens. When the timer contact (T,) opens, the power to the relay is cut off and the switching contacts (X,), (X,), (X3), (X
At the same time as 4) switches, the normally closed contact (X,) closes. This causes the microprocessor to operate based on the flowchart shown in FIG. 3, and the engine α2 is driven.

尚、この時リレー(ト)の動作する端子電圧はコンデン
サα0)K無効電流が流れ始める電圧より大きくかつ誘
導発電機(7)の確立した中力電圧より小さい電圧値で
動作するので、実質的には誘導発電機(7)の電圧が確
立した時に常開接片(Y、)が閉じるものである。従っ
て、出力電圧が確立した後にエンジンa渇の回転数が定
格回転数に制御され同時に負荷(11)へ電流が供給さ
れるものである。
At this time, the terminal voltage at which the relay (g) operates is greater than the voltage at which the reactive current of the capacitor α0)K begins to flow, and is smaller than the established neutral voltage of the induction generator (7), so in effect The normally open contact (Y,) closes when the voltage of the induction generator (7) is established. Therefore, after the output voltage is established, the engine speed is controlled to the rated speed, and at the same time, current is supplied to the load (11).

この制御回路を用いて誘導発電機(力を起動した場合、
エンジン(2)の回転数が約2800 (rPl)でコ
ンデンサQOに無効電流が流れ始め約160 [:V)
で出力電圧が確立した。これは従来の起動方法に比べて
低い回転数で出力電圧が確立し、同時に確立電圧を低く
することかでき、電圧確立時に生じる突入電流を小さく
することができる。
When starting an induction generator (power) using this control circuit,
When the engine (2) rotational speed is approximately 2800 (rPl), a reactive current begins to flow into the capacitor QO at approximately 160 [:V].
The output voltage has been established. This allows the output voltage to be established at a lower rotational speed than the conventional startup method, and at the same time the established voltage can be lowered, making it possible to reduce the rush current that occurs when the voltage is established.

尚、上記実施例では負荷を一定としているが、この負荷
が変動する場合には、誘導発電機(7)の出力電圧も同
時に変動するため自己励磁用のコンデンサα0の容量を
可変できるようにすれば良い。例えばコンデンサααへ
流れる無効電流の量をトライアックで制御できるように
し、同時にマイクロプロセッサ翰の出力でトライアック
の点弧角を制御すれば良い。また、この誘導発電機(力
をタービンなど回転数の制御ができないもので駆動した
場合は、変速機構を設けこの変速機構の変速比を変えて
制御するようにしても良い、さらに上記実施例では制御
回路の電源を別個に設けたがバッチIJ−(10を用い
てフロート充電を行ないながら供給できるようにすれば
外部電源を用いず単独で運転できるものである。さらに
本発明は単相の自己励磁式誘導発電機に用いても同様な
効果が得られるのは言うまでもない。
In the above embodiment, the load is kept constant, but if this load changes, the output voltage of the induction generator (7) will also change at the same time, so the capacitance of the self-excitation capacitor α0 should be made variable. Good. For example, the amount of reactive current flowing to the capacitor αα may be controlled by the triac, and at the same time, the firing angle of the triac may be controlled by the output of the microprocessor. In addition, if this induction generator (power is driven by something whose rotational speed cannot be controlled, such as a turbine), a transmission mechanism may be provided and control may be performed by changing the gear ratio of this transmission mechanism. Although the power supply for the control circuit is provided separately, if it can be supplied while performing float charging using batch IJ-10, it can be operated independently without using an external power supply. Needless to say, similar effects can be obtained when used in an excitation type induction generator.

(へ)発明の効果 以上のように本発明の自己励磁式誘導発電機は電型の回
転子と、出力巻線と、自己励磁用のコンデンサと、この
誘導発電機の起動前の所定時間の間出力巻線に直流を通
電する制御回路とを備えたので、起動時に回転子には常
に所定の磁束が与えられ、はぼ所定の起動回転数で出力
電圧を確立させることができる。従って、従来のように
回転子の磁束が小さい時と比べて低い回転数で出力電圧
を確立させることができる。すなわち確立電圧を低くで
き電圧確立時の突入電流を小さくすることができる。ま
た起動時の高回転に伴う各部の損失も防止することがで
きるものである。
(f) Effects of the Invention As described above, the self-exciting induction generator of the present invention includes an electric rotor, an output winding, a self-exciting capacitor, and a predetermined period of time before starting the induction generator. Since the rotor is equipped with a control circuit that supplies direct current to the output winding, a predetermined magnetic flux is always applied to the rotor during startup, and an output voltage can be established at a predetermined startup rotation speed. Therefore, the output voltage can be established at a lower rotational speed than when the magnetic flux of the rotor is small as in the conventional case. That is, the establishment voltage can be lowered, and the rush current when the voltage is established can be reduced. Furthermore, it is possible to prevent losses in various parts due to high rotation at the time of startup.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は誘導発電機の無負荷飽和特性図、第2図は本発
明の実施例を示す概略図、第3図は第2図に用いたマイ
クロプロセッサの動作を示すフローチャート図である。 (7)・・・自己励磁式誘導発電機、 (8)・・・回
転子、(9)・・・出力巻線、 Q(lIコンデンサ。
FIG. 1 is a no-load saturation characteristic diagram of an induction generator, FIG. 2 is a schematic diagram showing an embodiment of the present invention, and FIG. 3 is a flowchart showing the operation of the microprocessor used in FIG. (7)...Self-excited induction generator, (8)...Rotor, (9)...Output winding, Q(lI capacitor).

Claims (1)

【特許請求の範囲】[Claims] (1) 電型の回転子と、出力巻線と、自己励磁用のコ
ンデンサとを有する自己励磁式誘導発電機において、こ
の誘導発電機の起動前の所定時間の間出力巻線に直流を
通電する制御回路を備えたことを特徴とする自己励磁式
誘導発電機。
(1) In a self-exciting induction generator having an electric type rotor, an output winding, and a self-excitation capacitor, direct current is applied to the output winding for a predetermined period of time before starting the induction generator. A self-exciting induction generator characterized by being equipped with a control circuit.
JP58215510A 1983-11-15 1983-11-15 Self-excited induction generator Pending JPS60109799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58215510A JPS60109799A (en) 1983-11-15 1983-11-15 Self-excited induction generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58215510A JPS60109799A (en) 1983-11-15 1983-11-15 Self-excited induction generator

Publications (1)

Publication Number Publication Date
JPS60109799A true JPS60109799A (en) 1985-06-15

Family

ID=16673598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58215510A Pending JPS60109799A (en) 1983-11-15 1983-11-15 Self-excited induction generator

Country Status (1)

Country Link
JP (1) JPS60109799A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539648A (en) * 2010-07-02 2013-10-24 イスパノ・シユイザ Power supply for equipment held by a rotating support
JP2013542709A (en) * 2010-11-10 2013-11-21 イスパノ・シユイザ Aircraft power circuit including asynchronous machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797352A (en) * 1980-12-05 1982-06-17 Mitsubishi Electric Corp Induction generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797352A (en) * 1980-12-05 1982-06-17 Mitsubishi Electric Corp Induction generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539648A (en) * 2010-07-02 2013-10-24 イスパノ・シユイザ Power supply for equipment held by a rotating support
JP2013542709A (en) * 2010-11-10 2013-11-21 イスパノ・シユイザ Aircraft power circuit including asynchronous machine

Similar Documents

Publication Publication Date Title
US4119861A (en) Starting apparatus for gas turbine-generator mounted on electric motor driven motorcar
US5029263A (en) Electric start control of a VSCF system
JP3512950B2 (en) Power generator for internal combustion engines
US4772814A (en) Parallel resonant single phase motor
US5065305A (en) Rotary phase converter having circuity for switching windings to provide reduced starting current with rapid, dependable starting
US6121746A (en) Speed reduction switch
JPH0815377B2 (en) Two-stator three-phase squirrel-cage induction motor
JPS6132908B2 (en)
US7880418B2 (en) Electromechanical drive system, in particular for progressive cavity pumps for oil wells
EP0324219B1 (en) Series resonant capacitor motor
US4451775A (en) Motor/generator starting circuit
JPS63178800A (en) Variable-speed generator
JPS60109799A (en) Self-excited induction generator
US5477115A (en) Apparatus and method for controlling start-up of electrically-powered machines
Thanyaphirak et al. Soft starting control of single-phase induction motor using PWM AC Chopper control technique
JPS61124278A (en) Starting method of induction motor
JP3003560B2 (en) Disaster prevention equipment and starting method of induction motor for disaster prevention equipment
JPH06284657A (en) Induction generator
EP0653118B1 (en) Rotating induction generator adapted to be driven by a prime mover for generating electrical power
EP0243154B1 (en) Parallel resonant single phase motor
JPH0880095A (en) Internal combustion engine driven power generation system
JP2612369B2 (en) Power source device
JPH0312077Y2 (en)
SU1690166A1 (en) The two-motor ac drive unit
KR790001532Y1 (en) Single phase induction motor