JPS60108652A - Heat pump - Google Patents

Heat pump

Info

Publication number
JPS60108652A
JPS60108652A JP21591183A JP21591183A JPS60108652A JP S60108652 A JPS60108652 A JP S60108652A JP 21591183 A JP21591183 A JP 21591183A JP 21591183 A JP21591183 A JP 21591183A JP S60108652 A JPS60108652 A JP S60108652A
Authority
JP
Japan
Prior art keywords
pressure
stage
condenser
refrigerant
lowest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21591183A
Other languages
Japanese (ja)
Other versions
JPH0317053B2 (en
Inventor
小川 康夫
伸治 野路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP21591183A priority Critical patent/JPS60108652A/en
Publication of JPS60108652A publication Critical patent/JPS60108652A/en
Publication of JPH0317053B2 publication Critical patent/JPH0317053B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、圧力の異なる複数個の凝縮器と、これらの各
凝縮器にそれぞれ対応する圧縮ガスを送る多段又は複数
個の圧縮機を備えた14エネルギ形ヒートボンゾの改良
に関する。なお、本F3A細書において「ヒートポンプ
」とは、温流体を製造する狭義のヒートポンプのみなら
ず、冷流体を製造する冷凍(勅も含む広義のヒートポン
プをいう。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an improvement of a 14-energy type heat bonzo equipped with a plurality of condensers having different pressures and a multistage or plurality of compressors that send corresponding compressed gas to each of these condensers. Regarding. In addition, in this F3A specification, "heat pump" refers not only to a heat pump in a narrow sense that produces hot fluid, but also to a heat pump in a broad sense that includes refrigeration that produces cold fluid.

最近、省エネルギの観点よジニっ以上の複数イめ]の凝
縮器全治するヒートポンプが注目されている。
Recently, heat pumps that completely cure condensers have been attracting attention from an energy-saving perspective.

先ス、第7図の70−シートによってこのヒートポンプ
について説明する。
First, this heat pump will be explained using sheet 70 in FIG.

蒸発器/内の液冷媒は、配管−を介して送ジ込まれる熱
源水によって加熱されて蒸発し、吸込管3を経て第1段
圧縮機≠に吸込まれる。該圧縮機弘によって圧縮うれた
ガスは、その少ち例えば約//3 は、吐出管よを経て
凝縮器乙に吐出され、残シの2/3は、分岐管7を経て
第λ段圧縮機rに吸込まれる。同様に、第λ段圧縮機♂
の吐出ガスの例えば約//2は吐出管/7を経て凝縮器
りに、残りの//2は第3段圧縮機/Qの吸込部に送ら
れ、ここで圧縮されて凝縮器/lに吐出される。
The liquid refrigerant in the evaporator is heated and evaporated by the heat source water fed through the pipe, and is sucked into the first stage compressor through the suction pipe 3. A small amount of the gas compressed by the compressor is discharged to the condenser B via the discharge pipe, and the remaining 2/3 is passed through the branch pipe 7 to the λ stage compressor. It gets sucked into machine r. Similarly, λ stage compressor ♂
For example, about //2 of the discharged gas is sent to the condenser via the discharge pipe /7, and the remaining //2 is sent to the suction part of the third stage compressor /Q, where it is compressed and sent to the condenser /l. is discharged.

上記各凝縮器に、り、//の冷却は、被加熱流体として
の負荷流体によって行われ、該負荷流体は、ボンゾ/、
2により、これら三つの凝m器Z。
Cooling of each of the condensers described above is performed by a load fluid as a fluid to be heated, and the load fluid is Bonzo/,
2, these three condensers Z.

り、//を直列状に1閣に質流するjulに加熱される
It is heated to a jul which passes // in series to one cabinet.

圧力の異なる複数個の凝縮器g、り、//を有するこの
システムは、通常出入口温度産の大きい負荷流体が適用
され、例えば、負荷流体人口/3よ夕約6θ℃の温流体
が、各凝縮器g、り、//で70℃ずつ加熱され、負荷
流体出口/りでは約2θ℃となって負荷に供される。
In this system having multiple condensers with different pressures, a load fluid with a large inlet/outlet temperature is usually applied. It is heated by 70° C. in the condensers g, ri, and //, and the temperature becomes about 2θ° C. at the load fluid outlet and is used for loading.

一方、冷媒ガスは、凝縮器//において凝縮し、配管/
!を経て減圧装置/2で減圧され、次段の凝縮器りに送
シ込まれる。このとき、減圧作用に伴いフランシュガス
が発生するが、このガスは、第2段圧縮機とより吐出管
77′f:経て吐出される冷媒ガスと共に、この凝縮器
り内で負荷流体にょシ冷却されて凝縮する。次いで、配
管7gを経て減圧装置lりによシ減圧されて最下段凝縮
器乙に送られ、フラッシュガス分は、吐出管3′!i−
経て第1段圧縮機グより吐出される冷媒ガスと共に凝縮
液化する。そして最下段減圧装置20によって減圧され
、蒸発器/にル3る。
On the other hand, the refrigerant gas condenses in the condenser
! It is depressurized by the depressurizer/2 and sent to the next stage condenser. At this time, Franche gas is generated due to the pressure reduction, but this gas is cooled by the load fluid in this condenser together with the refrigerant gas discharged from the second stage compressor through the discharge pipe 77'f. be condensed. Next, the pressure is reduced by the pressure reducing device 1 through the pipe 7g and sent to the lowest stage condenser B, and the flash gas is sent to the discharge pipe 3'! i-
After that, it is condensed and liquefied together with the refrigerant gas discharged from the first stage compressor. Then, the pressure is reduced by the lowest stage pressure reducing device 20, and the air is transferred to the evaporator/cooler 3.

上記の装置ム:(ヒートポンプ)においては、負荷流体
の出入口部lit yiが大きいので、三つの凝縮器の
凝縮温度は大きく異なっている。例えに二、上記各凝縮
器//、り、2の◇亡縮温贋をそれぞれりj’Q、13
℃、7.f℃と仮定し、また蒸発器/での蒸発温度を夕
θ℃と仮定すると、gi!/段圧縮機グで上昇すべき圧
力はSO“C相尚圧より7j℃相当圧までであり、した
がって相当圧温度差は2!℃であシ、同様に、第2段及
び第3段圧縮機では何れも相自圧温度差は70℃である
。すなわち、このシステムは、第7段及び第λ段圧縮機
では、負荷流体温度り0℃より低いそれぞれ75℃及び
rr℃の凝縮温度相当圧まで圧縮すればよいので、多段
圧縮機の最終段よシの全吐出冷媒ガスを一つの凝縮器へ
導いて、例えば入口温度to℃よシ出ロ温度りo″Cま
で負荷流体温度を上昇させるようにする従来方式に比べ
て、所要動力が少なくてよく、また一つの圧縮機の所要
圧A+1d比は、圧縮機が7台の場合に比して大幅に少
なくて済むという長所がある。
In the above device (heat pump), the inlet and outlet portions of the load fluid are large, so the condensation temperatures of the three condensers are significantly different. For example, 2, each of the above condensers//, 2, ◇ decomposition temperature/false, respectively j'Q, 13
°C, 7. Assuming f°C and assuming that the evaporation temperature in the evaporator is θ°C, gi! The pressure to be increased in the /stage compressor is 7j℃ equivalent pressure from the SO"C phase pressure, so the equivalent pressure temperature difference is 2!℃. Similarly, the second and third stage compression The phase pressure temperature difference is 70°C in both the 7th stage and λ stage compressors.In other words, this system has a condensing temperature equivalent to 75°C and rr°C below the load fluid temperature of 75°C and rr°C, respectively, in the 7th stage and λ stage compressors. All the refrigerant gas discharged from the last stage of the multi-stage compressor is led to one condenser, and the load fluid temperature is increased from, for example, the inlet temperature to °C to the outlet temperature of o''C. This has the advantage that less power is required than in the conventional system in which the compressor is operated, and the required pressure A+1d ratio of one compressor is significantly smaller than that in the case of seven compressors.

しかしながら、このヒートポンプは次のような二つの大
ぎな欠点を有している。その一つは、第2段、第1段の
ように圧力の低い最下段に近づくなこつ、iLで&細器
の冷媒液−の流ノ1.が流れ柱くなるということである
。上記の例で、特vc%下段の凝縮器6では、大是の敢
冷媒が減圧装置/りより流入するので、この液冷媒を流
すために凝縮器下部にこのためのスペースが必袂となる
。唱、に下記のような混合冷媒を使用する場合、凝縮器
内の冷媒の流れと、負荷流体の流れとを自流にし々けれ
ば外らないときには、凝縮器乙は非常に大きなものとな
ってしまう欠点がある。
However, this heat pump has two major drawbacks as follows. One of them is to approach the lowest stage where the pressure is lower like the 2nd stage and the 1st stage, and the flow of refrigerant liquid in the iL and small vessel. This means that the flow will become a pillar. In the above example, the main refrigerant flows into the lower stage condenser 6 of the special vc% from the pressure reducing device, so a space is required at the bottom of the condenser for this liquid refrigerant to flow. . When using a mixed refrigerant as shown below, the condenser becomes very large if the flow of refrigerant in the condenser and the flow of the load fluid must be made to flow independently. There is a drawback.

他の一つは、混合冷媒を使用する場合、例えば、第λ段
圧縮機♂から吐出管/7を経て送られる冷媒ガスの温度
と、減圧装置/2によって減圧された冷媒の温度とが異
なるということである。これを第2図を用いて説明する
Another is that when a mixed refrigerant is used, for example, the temperature of the refrigerant gas sent from the λ-stage compressor ♂ through the discharge pipe /7 is different from the temperature of the refrigerant reduced in pressure by the pressure reducing device /2. That's what it means. This will be explained using FIG.

この第2図は、混合冷媒(非共沸混合冷媒)の等圧下に
おける気液平衡図であって、高沸点T□を有する冷媒■
と低沸点Tmを有する冷媒■の混合冷媒において、組成
Xのものを冷却すると、k4点曲線り上のA点の温度T
Aにて一部凝縮が始まシ、沸点曲線E上のB点の温度T
Bにて全部の凝縮が終ることを示している。いま、第一
段圧縮機ざから送られる冷媒ガスの状態をA点(圧力1
)I+A4I成X、温度TA)とすれば、このガスが欠
を給茶り内で凝縮する除の変化はA −+ Bで表わさ
れ、凝縮液の状態はB点で表わされる。一方、減圧装置
16によって減圧された冷媒(気液混合状態)は、圧力
がpとな、QC点で表わされ、温度はT。とな9、前記
の温度TAより低くなってしまう。
This Figure 2 is a gas-liquid equilibrium diagram of a mixed refrigerant (non-azeotropic mixed refrigerant) under equal pressure, and shows that the refrigerant with a high boiling point T□
When a mixed refrigerant consisting of a refrigerant with a low boiling point Tm and a refrigerant with a low boiling point Tm is cooled, the temperature at point A on the k4 point curve becomes T.
Partial condensation begins at point A, and the temperature T at point B on the boiling point curve E
B indicates that all condensation is complete. Now, the state of the refrigerant gas sent from the first stage compressor is set to point A (pressure 1
)I+A4I formation On the other hand, the refrigerant (gas-liquid mixed state) whose pressure has been reduced by the pressure reducing device 16 has a pressure of p, expressed as a QC point, and a temperature of T. 9, the temperature becomes lower than the above-mentioned temperature TA.

上記のように、圧縮機からの冷媒と減圧装置からの冷媒
に温度差があるので、凝縮器内での熱交換が有効に行な
えなくなるという欠点がある。
As mentioned above, since there is a temperature difference between the refrigerant from the compressor and the refrigerant from the pressure reducing device, there is a drawback that heat exchange within the condenser cannot be performed effectively.

本発明の目的は、上記した従来技術の二つの欠点を除去
したコンパクトな凝縮器を備えた省エネルギヒートポン
プを提供するにある。
The object of the present invention is to provide an energy-saving heat pump with a compact condenser that eliminates the two drawbacks of the prior art described above.

装置を経て上記圧力段より1段低い圧力段の凝縮器圧ま
で減圧させた後の冷媒のうち、欣冷媒のみを、該1段低
い圧力段の凝縮器で凝縮された液冷媒と合流して、次段
以降の凝縮器を経由させずに最下段減圧装胤を経て、蒸
発器に戻すように構成したことを特徴としている。
Of the refrigerant that has been depressurized through the device to the condenser pressure of the pressure stage one stage lower than the above pressure stage, only the refrigerant is combined with the liquid refrigerant condensed in the condenser of the pressure stage one stage lower. , it is characterized in that it is configured so that it is returned to the evaporator through the lowest stage depressurization equipment without passing through the condensers in the subsequent stages.

以下、本発明の実施例を第3図ないし第1/図について
説明する。これら図中、第7図と同一符号は同−物又は
均等物を示す。
Embodiments of the present invention will be described below with reference to FIGS. 3 to 1/FIG. In these figures, the same reference numerals as in FIG. 7 indicate the same or equivalent parts.

第3図は、第1実施例を示すフローシートであって、蒸
発器/内の液冷媒は、配管コを介して送9込まれる熱源
水によシ加熱されて蒸発し、吸込管3を経て第1段圧&
白機グに吸込まれる。該第1段圧縮機弘によって圧縮さ
れたガスは、そのうち、例えば約//3は吐出管jを経
て凝縮器乙に吐出され、残シの2/3は分岐管7を経て
第一段圧縮機とに吸込まれる。同様に、該第−膜圧縮機
rの吐出ガスの例1えば約//2は吐出管17を経て凝
縮器りに、残りの//2は第3段圧縮機IOの吸込部に
送られ、さらに圧縮さノLで凝縮器//に吐出され、こ
こで被加熱流体としての負荷流体により冷却されること
は、前記第1図のものと変りはない。
FIG. 3 is a flow sheet showing the first embodiment, in which the liquid refrigerant in the evaporator is heated and evaporated by the heat source water fed through the piping 9, and the liquid refrigerant in the evaporator is evaporated. After that, the first stage pressure &
It gets sucked into the white machine. Of the gas compressed by the first stage compressor Hiroshi, for example, about 1/3 of the gas is discharged to the condenser B via the discharge pipe J, and the remaining 2/3 passes through the branch pipe 7 to the first stage compressor. being sucked into the machine. Similarly, for example, approximately //2 of the discharge gas of the first membrane compressor r is sent to the condenser via the discharge pipe 17, and the remaining //2 is sent to the suction section of the third stage compressor IO. , and is further compressed and discharged to the condenser//, where it is cooled by the load fluid as the heated fluid, which is the same as in FIG.

しかしながらこの実施例では、各凝縮器を通過する負荷
流体は、ポンプ/2によシ、これら三つの凝縮器6.り
、//と、これら各bX Ad器の冷媒下流側にそれぞ
れ設ffi、さ力、た三つの過冷却器2/。
However, in this embodiment, the load fluid passing through each condenser is transferred by pump/2 to these three condensers 6. Three supercoolers 2/ are installed on the refrigerant downstream side of each bX Ad unit.

2.2.23とを直列状に順に貫流して加熱されるよう
に構成されている。したがって、圧力の異なる複数個の
凝和j器を有するこのシステムは、第7図に示されたも
のと同様に、通常出入口温度差の大きい負(f+j流体
が適用され、例えば只イ釘流体入口13より約60℃の
温流体が各過冷却器と凝縮器との組合せでio℃ずつ加
熱され、負荷流体出口/4’では約20℃となって負荷
に供されるが、一方、冷媒ガスは、最上段の凝縮器/l
において凝1<u した後、配管/!(i−経て減圧装
置/jに至る途中に過冷却器23が設けられているため
、この過冷却器23で冷却され、更に減圧装置/6で減
圧される。
2, 2, and 23 in series in order to be heated. Therefore, this system having a plurality of condensers with different pressures, similar to the one shown in FIG. 13, the hot fluid at approximately 60°C is heated by io°C in each subcooler and condenser combination, and the temperature at the load fluid outlet /4' becomes approximately 20°C and is supplied to the load. On the other hand, the refrigerant gas is the top condenser/l
After condensing at 1<u, piping/! (Since the supercooler 23 is provided on the way to the pressure reducing device /j via i-, it is cooled by this supercooler 23, and further depressurized by the pressure reducing device /6.

このように、減圧装置/乙の手前に過冷却器λ3を設け
たことにより、冷媒は過冷却されているので、減圧装置
/6で減圧作用を受けてもフラッシュガスは発生しない
。したがって、別個の気液分ト;11器を設けなくても
液冷媒のみをと9出すことができる。この減圧された冷
媒は液冷媒のみからなり、涙浴器2で凝縮した液冷媒と
合流して更に過冷却器22に送られ、(与び冷却された
後、減圧装置/りで減圧されるが、ここでも、冷媒は過
冷却されているのでフランシュガスは発生せず、凝縮器
6よシの液冷媒と合流し、過冷却器2/で冷却されて後
、最下殺減圧装*、20によジ減圧されて蒸発器/に戻
る。
In this way, by providing the supercooler λ3 before the pressure reducing device/B, the refrigerant is supercooled, so no flash gas is generated even if the refrigerant is subjected to the pressure reducing action by the pressure reducing device/6. Therefore, only the liquid refrigerant can be discharged without providing a separate gas-liquid divider. This depressurized refrigerant consists only of liquid refrigerant, joins with the liquid refrigerant condensed in the tear bath 2, is further sent to the supercooler 22, and after being cooled, is depressurized by the depressurizer. However, here too, since the refrigerant is supercooled, no Franche gas is generated, and it merges with the liquid refrigerant in the condenser 6 and beyond, and after being cooled in the supercooler 2/, the lowest pressure reducing device *, 20 and returns to the evaporator.

第μ図は、第3因に示された第1実施例のヒートポンプ
の圧力−エンタルピ線図であって、A点と81点は第1
段圧縮機の吸込口と吐出口の冷媒ガスの状態を、またB
2点及び83点は第2段及び汀3段圧縮機の吐出口の冷
媒ガスの状態を示し、B3点、B2点及びB1点は凝縮
器//、り及び2の出口あ冷媒液の状態を、またD′3
点、D′2点及び071点は過冷却器23.22及び、
2/の出口の冷媒液の状態を示し、また22点、51点
及びEは減圧装置/1./!P及び、2oの出口の冷媒
の状1πをそhぞれ示している。仁の図に示すように、
例えば凝縮器//の液冷媒は、過冷却器23にょシ、D
′3点(凝縮器りの相当飽第1J温度と同一温度)まで
過冷却されるので、減圧装置谷lzにより減圧されても
 B2点が液相領域にあることがらみても明らかなよう
に1 フラッシュガスは発生しない。
Figure μ is a pressure-enthalpy diagram of the heat pump of the first embodiment shown in the third factor, and points A and 81 are the first
The state of the refrigerant gas at the suction and discharge ports of the stage compressor is
Points 2 and 83 indicate the state of the refrigerant gas at the discharge ports of the second and third stage compressors, and points B3, B2 and B1 indicate the state of the refrigerant liquid at the outlets of the condenser //, ri and 2. , and also D'3
Point, D'2 point and 071 point are supercooler 23.22 and
The state of the refrigerant liquid at the outlet of 2/ is shown, and points 22, 51, and E indicate the state of the refrigerant liquid at the outlet of pressure reducing device/1. /! The shapes 1π of the refrigerant at the exits of P and 2o are shown respectively. As shown in the figure of Jin,
For example, the liquid refrigerant in the condenser// is in the subcooler 23, D
Since it is supercooled to point '3 (same temperature as the equivalent saturation 1J temperature of the condenser), even if the pressure is reduced by the pressure reducing device valley lz, it is clear that point B2 is in the liquid phase region. No flash gas is generated.

この第/実施例によれば、各減圧装置、の冷媒上Dit
 01llに過冷却器を設けているために、減圧装置に
よシ減圧されてもフラッシュガスが発生しないので、別
個に気液分離器を設けなくても液冷媒をとυ出すことが
でき、凝縮器からの液冷媒と合流して、次段以II4の
Cεε倍器経由させずに最下段減圧装置を経て蒸発器に
戻すことができるので、特に低圧力段の凝縮器下部に液
冷媒が溜まることがなく、シたがって前記従来装置の二
つの欠点の何れをも除去することができる。また過冷却
器、2/は、最下段M縮梅6の出口冷媒を第を図の51
点よシp/1点1で過冷却するので、E点に相当する最
下段減圧装置−〇の/Jj口を経て蒸発器/ VCよる
冷凍効果(A点と■つ点のエンタルピの差1AiE)を
増加させることができる。なお、上記の過冷却器K ヨ
る作用は、他の過冷却器23..2.2についても同様
にいえる。
According to this third/embodiment, each pressure reducing device has a refrigerant top Dit.
Since the subcooler is installed in the 01ll, flash gas is not generated even if the pressure is reduced by the pressure reducing device, so the liquid refrigerant can be discharged without a separate gas-liquid separator, and the condensation Since the liquid refrigerant can be combined with the liquid refrigerant from the evaporator and returned to the evaporator through the lowest stage pressure reducing device without passing through the Cεε multiplier in the next stage and subsequent stages II4, liquid refrigerant accumulates especially at the bottom of the condenser in the low pressure stage. Therefore, both of the two drawbacks of the conventional device can be eliminated. In addition, the supercooler 2/ is the outlet refrigerant of the lowest stage M 6, which is shown in Fig. 51.
Since supercooling occurs at point 1 point 1, the cooling effect by the evaporator/VC (the difference in enthalpy between point A and point 1AiE ) can be increased. Note that the above-mentioned supercooler K's twisting action is similar to that of the other supercoolers 23. .. The same can be said for 2.2.

第5図は、第2英施例を示すフローシートであって、減
圧装置/6./Fで減圧さぜた後の冷媒のうち、液冷媒
のみをと9出すために、減圧装礒/乙、/りの冷媒下流
に気液分離器、2≠、2jが設けられている。この実施
例では、凝縮器l/及びりからの液冷媒が減圧装置/z
及び/りによって減圧される際、フラッシュガスが兄生
するが、この気液分離器、2≠及び、2!により分離さ
れ、ガスは次段の凝縮器り及び乙に送られて凝縮される
が、液冷媒は、凝縮器よりの凝縮液と合流されて次段の
減圧装置に送り込まれる。
FIG. 5 is a flow sheet showing the second embodiment, and shows the pressure reducing device/6. A gas-liquid separator, 2≠, 2j, is provided downstream of the refrigerant of the decompression equipment /O and /R in order to extract only the liquid refrigerant from the refrigerant after being depressurized at /F. In this example, liquid refrigerant from condensers l/ and
When the pressure is reduced by and/or, flash gas is generated, but in this gas-liquid separator, 2≠ and 2! The gas is sent to the next stage condenser and condensed, but the liquid refrigerant is combined with the condensed liquid from the condenser and sent to the next stage pressure reducing device.

第61は%第5図に示されたヒートポンプの圧力−エン
タルピ線図であって、例えば、凝縮器//の液冷媒(D
s点)は減圧装置−16によって減圧されたとき B2
点で示されるように気液混合状態にあり、ガスは第2段
圧縮様ざからの吐出ガス(82点)と合流して凝縮器り
(B2点)へ送られることが示されている。なお、この
線図は、第1図に示すヒートポンプの圧力ーエンタルピ
線図と同じである。
61 is a pressure-enthalpy diagram of the heat pump shown in FIG. 5, for example, the liquid refrigerant (D
point s) is when the pressure is reduced by the pressure reducing device-16 B2
As shown by the dots, it is in a gas-liquid mixed state, and the gas is shown to be combined with the discharge gas from the second stage compression stage (point 82) and sent to the condenser (point B2). Note that this diagram is the same as the pressure-enthalpy diagram of the heat pump shown in FIG.

この第2実施例によれば、減圧装置によって減圧された
冷媒のうち、液冷媒は気液分離器によって有効に採9出
すことができ、該液冷媒はに給茶からの液冷媒と合流し
て、次段以降の凝縮器を経由させずに最下段減圧装置を
経て蒸発器に戻すことができるので、特に低圧力段の凝
縮器下部に液冷媒が溜まることがなく、シたがって前記
第7図に示す従来装置の何れの欠点も除去することがで
きる。
According to this second embodiment, liquid refrigerant can be effectively extracted from the refrigerant whose pressure has been reduced by the pressure reducing device by the gas-liquid separator, and the liquid refrigerant is combined with the liquid refrigerant from the tea supply. Since the liquid refrigerant can be returned to the evaporator through the lowest pressure reducing device without passing through the condensers of the next stage and subsequent stages, liquid refrigerant does not accumulate especially at the bottom of the condenser of the low pressure stage, and therefore Any of the drawbacks of the conventional device shown in FIG. 7 can be eliminated.

第7図は、第3実施例を示すフローシートであって、第
1実施例における過冷却器と、第2実施例における気液
分離器の両方が設けられている。
FIG. 7 is a flow sheet showing the third embodiment, in which both the supercooler in the first embodiment and the gas-liquid separator in the second embodiment are provided.

この実施例では、例えば凝座器//を出た冷媒は、過冷
却器、23を通った後、減圧装置/lによって減圧され
、万−含まれている冷媒ガス分を気液分離器λグで分離
し、第2段圧縮様♂からの吐出ガスと合流して凝縮器り
で凝縮させるように構成されているので、前記した第1
及び第コ実施例の特gを併せ有することができる。
In this embodiment, for example, the refrigerant exiting the condenser // passes through a subcooler 23 and is then depressurized by a pressure reducing device /l, and the refrigerant gas contained therein is removed by a gas-liquid separator λ. The gas discharged from the second stage compressor is separated from the gas in the second stage compressor, and is condensed in the condenser.
and Feature g of the third embodiment can be combined.

第r図は、第V実施例を示すフローシートであって、上
記第7図に示された第3笑施例における過冷却器のうち
、冷凍熱閂を増加させて冷凍効果を向上させる点で、最
も効果のある最下殺減圧装fk20の直前の過冷却器2
/のみを残し、あとの過冷却器を省略して構造を簡単に
したものである・しかしこの実施例には、減圧装置にょ
力発生するフラッシュガスを分離する気液分離器が設け
られているので、本発明の特徴とする機能をも十分果し
ている。
FIG. So, the supercooler 2 just before the bottom killing decompression device FK20 is the most effective.
The structure is simplified by leaving only / and omitting the subsequent supercooler. However, this embodiment is equipped with a gas-liquid separator to separate the flash gas generated by the pressure reducing device. Therefore, the feature of the present invention is fully fulfilled.

第り図は、M J’図に示されたヒートポンプの圧力−
エンタルピ線図であって、過冷却器2/による過冷却が
D′1点捷で冷却されておplそれにより冷凍効果(I
A−11)の増加が計られていることが分かる。
The second diagram shows the pressure of the heat pump shown in the MJ' diagram.
It is an enthalpy diagram, and supercooling by supercooler 2/ is cooled at D'1 point pl, which results in freezing effect (I
It can be seen that A-11) is increasing.

第1Q図は、第j実施例を示すフローシートであって、
凝縮器が2個(//と2)設けられ、低圧側凝縮器乙に
は、第1段圧縮機≠からの吐出ガスと、減圧装置/りで
発生したフラッシュガスを気液分離器2jで分離した冷
媒ガスとを合流して導入(7、捷だ分離された液冷媒を
過冷却器)/全経て最下段減圧装置へ導くように構成さ
れている。
FIG. 1Q is a flow sheet showing the jth embodiment,
Two condensers (// and 2) are provided, and the low-pressure side condenser B is used to collect the discharge gas from the first stage compressor≠ and the flash gas generated by the pressure reducing device/2 in the gas-liquid separator 2j. The separated refrigerant gas is combined with the refrigerant gas and introduced (7, the separated liquid refrigerant is passed through the supercooler) and then guided to the lowest pressure reducing device.

この実施例においても、比較的11i’i巣な構成であ
りながら、本発明の特徴とする前記した機能、即ち省エ
ネルギ作用の外、凝縮器の底部に液冷媒が溜凍らないよ
うにする等の作用効果が萎され、したがって凝縮器をコ
ンパクトにすることができる。
Even though this embodiment has a relatively simple configuration, it still has the above-mentioned functions that are characteristic of the present invention, such as saving energy and preventing liquid refrigerant from accumulating at the bottom of the condenser. The effect of the condenser is reduced, and the condenser can therefore be made more compact.

第1/図は、第1θ図に示されたヒートポンプの圧力−
エンタルピ線図である。
Figure 1/Figure 1 shows the pressure of the heat pump shown in Figure 1θ.
It is an enthalpy diagram.

なお、上記各実施例においてiよ、圧縮機を多段式圧縮
機について説明したが、本発明は、2台以上のターゼ圧
縮機を1は列に連結して運転する場合及びスクリュ一式
或いは往復式の容8i1U圧縮機をλ台以上直列に連結
して運転する場合も含むことは勿論である。また、温流
体を製造する狭義のヒートポンプについて王として説明
したが、冷流体を製造する冷凍機にも同機に適用でさる
ことは勿1齢である。
In each of the above embodiments, the compressor was described as a multi-stage compressor, but the present invention is applicable to the case where two or more Tase compressors are connected in a row, and when a screw set or a reciprocating type compressor is operated. Of course, this also includes the case where λ or more compressors with a capacity of 8i1U are connected in series and operated. Further, although the description has been made regarding a narrowly defined heat pump that produces hot fluid, it goes without saying that the same device can also be applied to a refrigerator that produces cold fluid.

以上説明したように 本発明は、低圧力段の凝縮器で凝
縮した冷媒を減圧装置をAヰて次段の凝縮器圧まで減圧
させた後、液冷II!i1.を該凝縮器で凝縮された液
冷媒と合流して、次段以降の凝縮器を経由させずに照光
器に戻すように構成しているので、特に低圧力段の凝縮
器下部に液冷媒が溜まることがなく、シたがって、k倍
器をコンノ々クトに設計することができる。また、最下
段減圧装置の手前に、凝縮器で加熱されるべき被加熱流
体によって冷却される過冷却器を′設けることにより、
冷凍効果が」・1イし、ヒートポンプの性能が同上する
As explained above, in the present invention, the pressure of the refrigerant condensed in the condenser of the low pressure stage is reduced to the condenser pressure of the next stage using the pressure reducing device A, and then the liquid cooling II! i1. The structure is such that the liquid refrigerant is combined with the liquid refrigerant condensed in the condenser and returned to the illuminator without passing through the condensers in the next stage or later. There is no accumulation, and therefore the k-multiplier can be designed in a connected manner. In addition, by providing a supercooler that is cooled by the fluid to be heated in the condenser before the lowest pressure reducing device,
The refrigeration effect increases by 1, and the performance of the heat pump improves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は先に開発した従来の省エネルギヒートポンプの
フローシート、第2図は混合冷媒の等圧気液乎喚j図、
ml)3図 ny jr図、第7図、第r図及び第/Q
商は本発明のヒートポンプの第/・;Cいし第j実施例
の70−シート、第4L図、第6図、第2図及び第1/
図は、それぞれ第/、男λ、・、゛、≠及び第j実施例
の圧力ーエンタルピか4図でおる。 /・・・蒸発器、≠、7,10・・・圧縮機、乙、り。 //・・・凝縮器、/l、lり、20・・・減圧装↑R
1,2/。 、!、!、?3・・・過冷苅1器、24’、 、2J’
・・・気液分ト]1を器。 第2図 第4図 第8図 ブ/1
Figure 1 is a flow sheet of the conventional energy-saving heat pump developed earlier, Figure 2 is a diagram of the isobaric air-liquid flow of a mixed refrigerant,
ml) Figure 3 ny jr figure, figure 7, figure r and figure /Q
The quotient is the 70th sheet of the heat pump of the present invention;
The diagrams are four diagrams showing the pressure-enthalpy of the /, λ, ·, ゛, ≠ and j-th embodiments, respectively. /... Evaporator, ≠, 7, 10... Compressor, Otsu, ri. //... Condenser, /l, l, 20... Pressure reduction device ↑R
1,2/. ,! ,! ,? 3...1 supercooled rice bowl, 24', , 2J'
...gas/liquid fraction] 1 in a container. Figure 2 Figure 4 Figure 8 B/1

Claims (1)

【特許請求の範囲】 f 蒸発器、圧力の異なった複数個の凝縮器、これらの
凝縮器にそれぞれ対応する圧力の圧縮ガスを送る多段又
は複数個の圧縮機、複数個の減圧装置及びこれらの機器
を接続する配管等からなる省エネルギヒートポンプにお
いて、一番圧力の低い凝縮器以外の任意の凝縮器で凝縮
した冷媒を、減圧装置を経て上記圧力段よ97段低い圧
力段の凝縮器圧まで減圧させfc後の冷媒のうち、液冷
媒のみを、次段以降の凝縮器を経由させずに、最下段減
圧装置を経て蒸発器に戻すように構成したことを特徴と
するヒートポンプ。 2 圧力の最も低い最下段よシ/段上位の圧力段の凝縮
器で凝縮した冷媒を、減圧装置を経て最下段の凝縮器圧
まで減圧させた後の冷媒のうち、液冷媒のみをとり出す
手段として、該減圧装置の冷媒上流C)υに、凝縮器で
加熱されるべき被加熱流体によって冷却され゛る′過冷
却器を設けた特許請求の範囲第1項記載のヒートポンプ
。 3、 圧力の最も低い最下段、Ilニジ/股上位の圧力
段の凝縮器で凝縮した冷媒を、減圧装置を経て最下段の
凝縮器圧まで減圧させた後の冷媒のうち、液冷媒のみを
とり出す手段として、減圧装置の冷媒下流に気液分離器
を設け、該気液分離器で分離された液冷媒のみを最下段
の凝縮器を経由させずに最下段減圧装置を経て蒸発器へ
戻すようにする囲第1項記載のヒートポンプ。 lA 蒸発器、圧力の異なった複数イク1の凝縮器、こ
れらの凝縮器にそれぞれ対応する圧力の圧縮ガスを送る
多段又は複数個の圧縮機、複数個の減圧装置及びこれら
の機器を接続する配管等からなる省エネルギヒートポン
プにおいて、一番圧力の低い凝縮器以外の任意の凝縮器
で凝縮した冷媒を、減圧装置を経て上記圧力段よpi段
低い圧力段の凝縮器圧まで減圧させた後の冷媒のうち、
液冷媒のみを、該圧力段の凝縮器で軟線された液冷媒と
合流して次段以降の凝縮器を経由させずに、最下段減圧
装置に導く管路の途中に、Maa器で加熱されるべき被
加熱流体によって冷却される過冷却器を設けたことを特
徴とするヒートポンプ。
[Claims] f. An evaporator, a plurality of condensers with different pressures, a multi-stage or plurality of compressors that send compressed gas at a pressure corresponding to each of these condensers, a plurality of pressure reducing devices, and these In an energy-saving heat pump consisting of piping connecting equipment, etc., the refrigerant condensed in any condenser other than the condenser with the lowest pressure is passed through a pressure reduction device to the condenser pressure of the pressure stage 97 stages lower than the above pressure stage. A heat pump characterized in that, of the refrigerant after depressurization and fc, only the liquid refrigerant is returned to the evaporator through the lowest stage pressure reducing device without passing through the condenser at the next stage or later. 2. Take out only the liquid refrigerant from the refrigerant condensed in the condenser of the lowest pressure stage/higher pressure stage, after reducing the pressure to the lowest stage condenser pressure via the pressure reducing device. 2. The heat pump according to claim 1, further comprising a supercooler cooled by the heated fluid to be heated in the condenser, which is provided upstream of the refrigerant C)v of the pressure reducing device. 3. After reducing the pressure of the refrigerant condensed in the condenser of the lowest stage, the lowest pressure stage, through the pressure reducing device to the condenser pressure of the lowest stage, only liquid refrigerant is removed. As a means for taking out the refrigerant, a gas-liquid separator is provided downstream of the refrigerant, and only the liquid refrigerant separated by the gas-liquid separator is sent to the evaporator through the lowest-stage pressure-reducing device without passing through the lowest-stage condenser. 1. The heat pump according to item 1 of the box. lA Evaporator, multiple condensers with different pressures, multistage or multiple compressors that send compressed gas at corresponding pressures to each of these condensers, multiple pressure reducing devices, and piping that connects these devices. In an energy-saving heat pump consisting of, etc., the refrigerant condensed in any condenser other than the condenser with the lowest pressure is reduced to the condenser pressure of the pressure stage pi stages lower than the above pressure stage through a pressure reducing device. Among refrigerants,
Only the liquid refrigerant is heated in the Maa device in the middle of the pipe that joins the softened liquid refrigerant in the condenser of the pressure stage and leads to the lowest stage pressure reducing device without passing through the condenser of the next stage or later. A heat pump characterized in that it is provided with a subcooler that is cooled by a fluid to be heated.
JP21591183A 1983-11-18 1983-11-18 Heat pump Granted JPS60108652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21591183A JPS60108652A (en) 1983-11-18 1983-11-18 Heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21591183A JPS60108652A (en) 1983-11-18 1983-11-18 Heat pump

Publications (2)

Publication Number Publication Date
JPS60108652A true JPS60108652A (en) 1985-06-14
JPH0317053B2 JPH0317053B2 (en) 1991-03-07

Family

ID=16680287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21591183A Granted JPS60108652A (en) 1983-11-18 1983-11-18 Heat pump

Country Status (1)

Country Link
JP (1) JPS60108652A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331136A (en) * 2004-05-18 2005-12-02 Mitsubishi Heavy Ind Ltd Heat transporting system and air conditioner
US8043029B2 (en) 2008-10-10 2011-10-25 Chen Man Kim Packer structure
JP2019000807A (en) * 2017-06-15 2019-01-10 三菱重工サーマルシステムズ株式会社 Chemical plant and distillation method of liquid material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331136A (en) * 2004-05-18 2005-12-02 Mitsubishi Heavy Ind Ltd Heat transporting system and air conditioner
US8043029B2 (en) 2008-10-10 2011-10-25 Chen Man Kim Packer structure
JP2019000807A (en) * 2017-06-15 2019-01-10 三菱重工サーマルシステムズ株式会社 Chemical plant and distillation method of liquid material

Also Published As

Publication number Publication date
JPH0317053B2 (en) 1991-03-07

Similar Documents

Publication Publication Date Title
US9989280B2 (en) Cascade cooling system with intercycle cooling or additional vapor condensation cycle
AU2011227678B2 (en) Integrated pre-cooled mixed refrigerant system and method
US6519967B1 (en) Arrangement for cascade refrigeration system
US6658888B2 (en) Method for increasing efficiency of a vapor compression system by compressor cooling
US4254637A (en) Refrigeration system with refrigerant cooling of compressor and its oil
CN1301944C (en) Olefin plant refrigeration system
CN111174453B (en) Refrigerating system
CN107606875A (en) The method and apparatus that compressed nitrogen and liquid nitrogen are produced by low temperature air separating
US6018958A (en) Dry suction industrial ammonia refrigeration system
CN108375233A (en) A kind of folding type cooling system with backheat and injection decompression
JPS60108652A (en) Heat pump
US6470693B1 (en) Compressed air refrigeration system
US3440828A (en) Liquefaction of natural gas employing cascade refrigeration
US4987751A (en) Process to expand the temperature glide of a non-azeotropic working fluid mixture in a vapor compression cycle
US4402189A (en) Refrigeration system condenser heat recovery at higher temperature than normal condensing temperature
JP2000018735A (en) Refrigerating machine
JPH0248824B2 (en) HIITOHONPU
JPH0421109B2 (en)
CN114719593B (en) Heat pump drying system for step cooling and step evaporation
JP2574545B2 (en) Refrigeration cycle device
JPH0349018B2 (en)
JPS60126546A (en) Heat pump
JPS5818061A (en) Refrigerator
SU813094A1 (en) Refrigerating plant
JP2008071021A (en) Automatic vending machine