JPS60108371A - Manufacture of beta-sialon sintered body - Google Patents

Manufacture of beta-sialon sintered body

Info

Publication number
JPS60108371A
JPS60108371A JP58212925A JP21292583A JPS60108371A JP S60108371 A JPS60108371 A JP S60108371A JP 58212925 A JP58212925 A JP 58212925A JP 21292583 A JP21292583 A JP 21292583A JP S60108371 A JPS60108371 A JP S60108371A
Authority
JP
Japan
Prior art keywords
sintered body
powder
silicon nitride
mixed
sialon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58212925A
Other languages
Japanese (ja)
Other versions
JPS614789B2 (en
Inventor
和司 岸
正気 梅林
英治 谷
和夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58212925A priority Critical patent/JPS60108371A/en
Publication of JPS60108371A publication Critical patent/JPS60108371A/en
Publication of JPS614789B2 publication Critical patent/JPS614789B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、窒化珪素粉末に、アルミニウムアルコキシド
溶液を加え、ボールミルで混合後、蒸発乾固して得た粉
末を100〜400℃で仮焼し、次いで、1700〜1
900℃で加圧焼結をしてβ−づイアロン焼結体を得る
方法及び窒化珪素粉末にアルミニウムアルコキシドを加
え、加水分解後、口過して得た粉末を、600〜900
℃で仮焼し、1700〜1900℃で加圧焼結をしてβ
−サイアロン焼結体を得ることを特徴とする、焼結体の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, an aluminum alkoxide solution is added to silicon nitride powder, mixed in a ball mill, and then evaporated to dryness. The resulting powder is calcined at 100 to 400°C, and then
A method of obtaining a β-dium iron sintered body by pressure sintering at 900°C, and a method of adding aluminum alkoxide to silicon nitride powder, hydrolyzing it, and then passing it through the mouth.
Calcined at ℃ and pressure sintered at 1700-1900℃ to obtain β
- It relates to a method for manufacturing a sintered body, characterized by obtaining a sialon sintered body.

β−サイアロンは、硬度、耐摩耗性、#4酸化抵抗、高
温ガス及び溶融金属に対する耐蝕性に優れ、ガスタビン
部材、鉄鋼及び非鉄金属の圧延ロール材等の高温機械材
料としての実用化が期待される材料である。
β-Sialon has excellent hardness, wear resistance, #4 oxidation resistance, and corrosion resistance against high-temperature gases and molten metals, and is expected to be put to practical use as a high-temperature mechanical material such as gas turbine parts and rolling roll materials for steel and non-ferrous metals. It is a material that

β−サイアロン焼結体は、一般に、窒化珪素とアルミナ
の混合粉末をホットプレス又は雰囲気加圧下で、170
0〜1900℃で、焼き固めることにより製造される。
β-Sialon sintered body is generally produced by hot-pressing a mixed powder of silicon nitride and alumina or under atmospheric pressure.
Manufactured by baking and hardening at 0 to 1900°C.

窒化珪素とアルミナの粉末を、各々所定員を秤量したあ
と、ボールミルを用い混合する。ボールミルによる粉体
同士の混合は、普通1〜7日行うが、混合に際し、容器
及びボールからの媒体の混入があること及び、長時間の
混合でも、粉体の均一混合が困難であるという欠点があ
る。
After weighing a predetermined amount of silicon nitride and alumina powder, they are mixed using a ball mill. Mixing of powders using a ball mill is normally carried out for 1 to 7 days, but disadvantages include the mixing of medium from the container and ball during mixing, and the difficulty of uniformly mixing the powders even after long mixing times. There is.

β−サイアロンは、脆性材料であるため、焼結体中の欠
陥が、焼結体の強度に致命的な影響を与える。焼結体中
の欠陥には、焼結体表面の加工傷。
Since β-sialon is a brittle material, defects in the sintered body have a fatal effect on the strength of the sintered body. Defects in the sintered body include processing scratches on the surface of the sintered body.

焼結体中の空孔、未焼結部分及び粗大粒子等がある。こ
れらの欠陥の中で、焼結体中の空孔、未焼結部分及び粗
大粒子は、いずれも、原料粉末の不均一混合に由来する
ことが多い。
There are pores, unsintered parts, coarse particles, etc. in the sintered body. Among these defects, pores, unsintered parts, and coarse particles in the sintered body are often caused by non-uniform mixing of raw material powders.

従って、β−サイアロンの製造過程で、粉末の混合は重
要な過程であり、種々検討されてきた。
Therefore, mixing of powder is an important process in the production process of β-Sialon, and various studies have been made.

粉体同士の混合は、ボールミルの他に、アトマイザ−、
ヘンシェルミキサー等の機械的攪拌による混合が行われ
ているが、良好な結果は得られていない。本発明者らは
、この点に鑑み、鋭意研究を進めたところ、窒化珪素に
対し、アルミナ源を液相状態で混入し、混合を行ったと
ころ、混合が均一に進行し、良好な焼結体が得られる乙
とを見出し、本発明をなすに到った。
In addition to ball mills, mixing of powders can be done using atomizers,
Mixing using mechanical stirring, such as a Henschel mixer, has been carried out, but good results have not been obtained. In view of this, the present inventors conducted intensive research and found that when silicon nitride was mixed with an alumina source in a liquid phase, the mixing progressed uniformly and good sintering was achieved. The inventors have discovered that the present invention can be achieved by the present invention.

5すなわち、β−サイアロン焼結体を製造する際、窒化
珪素粉末に、アルミニウムアルコキシドをベンゼン、テ
トラハイドロフラン、メタノール等の溶媒に溶解したも
のを加え、窒化珪素粉体とアルコキシド溶液を十分に混
合せしめたのち、蒸発乾固し、窒化珪素とアルミニウム
アルコキシドの混合粉末を得、ついで、100〜400
℃で、仮焼し、窒化珪素とアルミナの混合粉末を得る方
法もしくは、窒化珪素にアルミニウムアルコキシドをベ
ンゼン。
5. In other words, when producing a β-sialon sintered body, a solution of aluminum alkoxide dissolved in a solvent such as benzene, tetrahydrofuran, or methanol is added to silicon nitride powder, and the silicon nitride powder and alkoxide solution are thoroughly mixed. After cooling, it was evaporated to dryness to obtain a mixed powder of silicon nitride and aluminum alkoxide.
℃, calcining to obtain a mixed powder of silicon nitride and alumina, or benzene and aluminum alkoxide to silicon nitride.

テトラハイドロフラン、メタノール等の溶媒に溶解した
ものを加え、十分混合した後、加熱攪拌しながら、アル
ミニウムアルコキシドを加水分解し、水酸化アルミニウ
ムとして、口過乾燥後、600〜900℃に仮焼して、
窒化珪素とアルミナの混合粉末を得る方法が可能である
乙とを見出しtこ。これらの方法は、いずれも、溶液中
に存在するアルミナ源が、蒸発乾固もしくは、加水分解
により、液相状態から固相として析出してくるため、仮
焼後、沢入した窒化珪素の表面にアルミナを均一に付着
することが出来ることに特徴がある。この様にして、製
造した混合粉末を、ホットプレスすると、強度の用いβ
−サイアロン焼結体が得られる。
After adding the solution dissolved in a solvent such as tetrahydrofuran or methanol and mixing thoroughly, the aluminum alkoxide is hydrolyzed while heating and stirring to form aluminum hydroxide, which is dried over the mouth and calcined at 600 to 900°C. hand,
We have discovered a method for obtaining a mixed powder of silicon nitride and alumina. In both of these methods, the alumina source present in the solution is precipitated from the liquid phase as a solid phase by evaporation to dryness or hydrolysis, so after calcination, the alumina source that is present in the solution is precipitated as a solid phase. The feature is that alumina can be deposited uniformly. When the mixed powder produced in this way is hot pressed, the strength increases β
- A sialon sintered body is obtained.

本実験で用いる窒化珪素粉末は、一般の市販の粉末を用
いることが出来るが、なるべく、高純度で、a含有率の
高いものがよい。アルミニウムアルコキシドとしては、
アルミニウムメトキシド(AI(OCI(3)31 、
アルミニウムエトキシド(AI(Oll:HCH) )
 、アルミニウムイソプロポキシ 33 F (AIfOC)[(CH3)213) 及ヒフ ル
i: = ウA !l−シャ!J −/ 14サイ)’
 (AIfOC(CI+3)3]31 等ヲ用イルコと
ができる。アルミニウムアルコキシドは、その種類によ
り、溶媒への溶解度が異なるので、サイアロンの組成に
よって、アルミニウムアルコキシドを選択しなければな
らない。
As the silicon nitride powder used in this experiment, general commercially available powder can be used, but it is preferable to use one with high purity and high a content. As aluminum alkoxide,
Aluminum methoxide (AI(OCI(3)31,
Aluminum ethoxide (AI(Oll:HCH))
, aluminum isopropoxy 33 F (AIfOC) [(CH3)213) and Hifrui: = UA! l-sha! J-/14 Sai)'
(AIfOC(CI+3)3]31 etc.) can be used.Aluminum alkoxides have different solubility in solvents depending on their type, so the aluminum alkoxide must be selected depending on the composition of Sialon.

本発明について、実施例を用い、その詳細を説明する。The present invention will be described in detail using examples.

実施例 1 アルミニウムエトキシド(AI(QC■2cH3) 3
1をベンゼン(CH) 、 500 ccに溶解する。
Example 1 Aluminum ethoxide (AI(QC■2cH3) 3
Dissolve 1 in 500 cc of benzene (CH).

このrB液に、6 窒化珪素(sIgu、i) 23.33gを添加し、ボ
ールミルを用い、6時間混合する。混合溶液を、噴霧乾
燥する。噴π乾祿条件は次の通りである。液滴下速度H
20cc/分、熱風吹出温度;140℃、熱風量;13
4/分、吹出し空気量;0.3rn’/分。噴霧乾燥粉
末を、シリコニット炉を用い、空気中て、300℃、4
時間仮焼した。この段階で、白色の流動性の良い粉末が
得られる。この粉末を、1850℃。
23.33 g of 6 silicon nitride (sIgu, i) is added to this rB solution and mixed for 6 hours using a ball mill. The mixed solution is spray dried. The injection conditions are as follows. Droplet speed H
20cc/min, hot air blowing temperature: 140°C, hot air volume: 13
4/min, blown air amount: 0.3rn'/min. The spray-dried powder was heated in air at 300°C for 4 hours using a siliconite furnace.
Calcined for an hour. At this stage, a white, free-flowing powder is obtained. This powder was heated to 1850°C.

300kg / cwt の圧力下で1時間焼結した。Sintering was performed under a pressure of 300 kg/cwt for 1 hour.

表1に、焼結体の密度、X線組成及び室温における曲げ
強度を、5j3N4とα−A1203粉末を実施例1と
同じ組成になるように称量し、ボールミルで3時間混合
後、1850℃、300kg/ciの圧力下で焼結しt
コ焼粘体の特性値と比較して示した。
Table 1 shows the density, X-ray composition, and bending strength at room temperature of the sintered body. 5j3N4 and α-A1203 powder were weighed to have the same composition as in Example 1, mixed in a ball mill for 3 hours, and then heated at 1850°C. , sintered under a pressure of 300 kg/ci.
A comparison with the characteristic values of co-fired viscous material is shown.

表1・a−S13N4とアルミニウムエトオキサイドを
蒸発乾固し得た焼結体の特性 実施例 2 アルミニウムエトオキサイド(人1 (OC112C[
+3) 3)15.88 gをヘンセン5ooITh+
+ニ溶解し、コノ溶1【々ニ、窒化珪素23.33gを
添加し、ボールミルで6時間混合する。混合物をビー力
に移し、ホットプレート付マグネチックスクーラーで加
熱、攪拌しながら、ピペットて水を滴下する。滴下速度
は、10滴/分である。水約300m1を滴下し、加熱
攪拌しながら、混合液中のベンセンを除去する。混合n
lをさらに攪拌しながら加熱し、スラリー状にする。
Table 1・a-Characteristics of the sintered body obtained by evaporating S13N4 and aluminum ethoxide to dryness Example 2 Aluminum ethoxide (Person 1 (OC112C[
+3) 3) 15.88 g of Hensen 5ooITh+
23.33 g of silicon nitride was added to the mixture and mixed in a ball mill for 6 hours. Transfer the mixture to a microwave oven, heat with a magnetic cooler equipped with a hot plate, and add water dropwise using a pipette while stirring. The dropping rate is 10 drops/min. Approximately 300 ml of water is added dropwise, and benzene in the mixed solution is removed while heating and stirring. mixed n
1 is further heated while stirring to form a slurry.

このスラリーをプレスフィルターを用い口過し、60℃
に保った真空乾燥器中で、−昼夜乾燥し、次いで、空気
中、750℃で、4時間、仮焼した。仮焼ケーキを乳鉢
でほぐした後、1850℃、300kg/cutの圧力
下で、1時間焼結した。
This slurry was passed through a press filter at 60°C.
The sample was dried in a vacuum dryer maintained at -400° C., and then calcined in air at 750° C. for 4 hours. After loosening the calcined cake in a mortar, it was sintered at 1850° C. under a pressure of 300 kg/cut for 1 hour.

表2に、焼結体の密度、曲げ強度及びX線組成を示した
Table 2 shows the density, bending strength, and X-ray composition of the sintered body.

の混合物を加水分解して得た粉末から製造した焼結体の
特性 乙のように、本発明でj与だ焼結体の強度は、いずれも
a−3i3N4とα−八へ203をボールミル粉末から
得た焼結体の強度を凌駕するものであっtこ。
Characteristics of the sintered body manufactured from the powder obtained by hydrolyzing the mixture of The strength exceeds the strength of the sintered body obtained from.

特許出願人 工業技術院長 川 1)裕 部指定代理人
 工業技術院 凡用工業技術院長)n 水 嘉 重 部 手続補正書(方式) %式% 2、発明の名称 β−サイアロン焼結体の製造方法 3、?II]正をする者 事件との関係 特許出願人 東京都千代田区霞が関1丁目3番1号 (114)工業技術院長 川 1)裕 部昭和sq年2
月28日
Patent applicant: Director of the Agency of Industrial Science and Technology Kawa 1) Designated agent Hirobe (Director of the Agency of Industrial Science and Technology) Method 3? II] Relationship with the person who takes corrective action Patent applicant 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo (114) Director of the Agency of Industrial Science and Technology Kawa 1) Hirobe Showa sq.
28th of the month

Claims (2)

【特許請求の範囲】[Claims] (1)窒化珪素とアルミニウムアルコキシド溶液の混合
物を出発原料とすることを特徴とするβ−サイアロン焼
結体の製造方法
(1) A method for producing a β-sialon sintered body, characterized in that a mixture of silicon nitride and aluminum alkoxide solution is used as a starting material
(2)窒化珪素とアルミニウムアルコキシド溶液の混合
物を加水分解して得た試料を出発原料とすることを特徴
とするβ−サイアロン焼結体の製造方法
(2) A method for producing a β-sialon sintered body, characterized in that a sample obtained by hydrolyzing a mixture of silicon nitride and an aluminum alkoxide solution is used as a starting material.
JP58212925A 1983-11-11 1983-11-11 Manufacture of beta-sialon sintered body Granted JPS60108371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58212925A JPS60108371A (en) 1983-11-11 1983-11-11 Manufacture of beta-sialon sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58212925A JPS60108371A (en) 1983-11-11 1983-11-11 Manufacture of beta-sialon sintered body

Publications (2)

Publication Number Publication Date
JPS60108371A true JPS60108371A (en) 1985-06-13
JPS614789B2 JPS614789B2 (en) 1986-02-13

Family

ID=16630554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58212925A Granted JPS60108371A (en) 1983-11-11 1983-11-11 Manufacture of beta-sialon sintered body

Country Status (1)

Country Link
JP (1) JPS60108371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816428A (en) * 1985-02-14 1989-03-28 Agency Of Industrial Science And Technology Process for producing high strength βsialon-silicon carbide composite
DE102017008649A1 (en) 2016-09-20 2018-03-22 Ngk Insulators, Ltd. SIALON SINTERED BODY, METHOD FOR THE PRODUCTION THEREOF, COMPOSITE SUBSTRATE AND ELECTRONIC DEVICE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816428A (en) * 1985-02-14 1989-03-28 Agency Of Industrial Science And Technology Process for producing high strength βsialon-silicon carbide composite
DE102017008649A1 (en) 2016-09-20 2018-03-22 Ngk Insulators, Ltd. SIALON SINTERED BODY, METHOD FOR THE PRODUCTION THEREOF, COMPOSITE SUBSTRATE AND ELECTRONIC DEVICE
KR20180031588A (en) 2016-09-20 2018-03-28 엔지케이 인슐레이터 엘티디 Sialon sintered body, method for producing the same, composite substrate, and electronic device
US10399906B2 (en) 2016-09-20 2019-09-03 Ngk Insulators, Ltd. Sialon sintered body, method for producing the same, composite substrate, and electronic device
DE102017008649B4 (en) 2016-09-20 2023-01-05 Ngk Insulators, Ltd. SIALON SINTERED BODY, METHOD OF PRODUCTION THEREOF, COMPOSITE SUBSTRATE AND ITS USE IN AN ELECTRONIC DEVICE

Also Published As

Publication number Publication date
JPS614789B2 (en) 1986-02-13

Similar Documents

Publication Publication Date Title
JPH0139989B2 (en)
JPS62100412A (en) Production of alumina-zirconia compound powder body
US5773733A (en) Alumina-aluminum nitride-nickel composites
JPS6350311B2 (en)
US5308561A (en) Process for production of a Si3 N4, based material
JPS60108371A (en) Manufacture of beta-sialon sintered body
JPH06144918A (en) Production of ceramic granulated powder and production of ceramic sintered body
WO1990009350A1 (en) Zirconia sol, preparation thereof, slurry for use in the production of porous ceramic, and porous ceramic produced from said slurry
JPS60210574A (en) Manufacture of high strength heat-resistant ceramic sinteredbody
US5362691A (en) Sintered material based on Si3 N4 and processes for its production
JPH0455368A (en) Production of sintered body of oxide of rare earth element
JPS63285175A (en) Production of ceramic sintered material
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPH01126276A (en) Production of ceramic sintered body
JPH04305052A (en) Alpha-alumina-zirconia clad powder and its production
JPS5891019A (en) Manufacture of aluminum nitride-base powder
JPS63242972A (en) Manufacture of aluminum nitride sintered body
JPS6256356A (en) Manufacture of mullite sintered body
JPH05229805A (en) Production of aluminum nitride powder
JPH02311361A (en) Production of aluminum titanate sintered compact stable at high temperature
JPS5926966A (en) Manufacture of ceramics green molded body
JPS61117153A (en) Manufacture of alumina sintered body
JPH11114403A (en) Molding method for ceramic powder
JPS63219561A (en) Chromium-oxide rod for thermal spraying and its production
JPS61186266A (en) Manufacture of beta-sialon sintered body